metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m515-m516

{6,6′-Dieth­­oxy-2,2′-[2,2-di­methyl­propane-1,3-diylbis(nitrilo­methyl­­idyne)]diphenolato}copper(II) monohydrate

aDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 17 March 2009; accepted 4 April 2009; online 10 April 2009)

In the title complex, [Cu(C23H28N2O4)]·H2O, the CuII ion has a distorted planar geometry, coordinated by the N2O2 unit of the tetra­dentate Schiff base ligand. The asymmetric unit comprises one complex mol­ecule and a water mol­ecule of crystallization. The water H atoms form bifurcated O—H⋯(O,O) inter­molecular hydrogen bonds with the O atoms of the phenolate and eth­oxy groups with R12(5) and R12(6) ring motifs, which may, in part, influence the mol­ecular configuration. The dihedral angle between the two O—Cu—N coordination planes is 31.02 (6)° and the dihedral angle between the two benzene rings is 34.98 (7)°. In the crystal structure, mol­ecules are linked together by inter­molecular C—H⋯O inter­actions, forming extended chains along the a axis. The crystal structure is further stabilized by inter­molecular C—H⋯π and ππ [centroid–centroid = 3.5068 (13) Å] inter­actions.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures see, for example: Clark et al. (1968[Clark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, pp. 223-226.], 1969[Clark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, pp. 823-829.], 1970[Clark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, pp. 396-399.]). For applications and bioactivity of Cu(II) and Ni(II) Schiff base complexes see, for example: Elmali et al. (2000[Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423-424.]); Blower (1998[Blower, P. J. (1998). Transition Met. Chem. 23, 109-112.]); Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Li & Chang (1991[Li, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35-39.]); Shahrokhian et al. (2000[Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956-962.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C23H28N2O4)]·H2O

  • Mr = 478.03

  • Triclinic, [P \overline 1]

  • a = 9.427 (3) Å

  • b = 10.805 (3) Å

  • c = 12.771 (4) Å

  • α = 114.554 (13)°

  • β = 99.479 (14)°

  • γ = 102.676 (14)°

  • V = 1105.3 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 100 K

  • 0.50 × 0.22 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.628, Tmax = 0.861

  • 36656 measured reflections

  • 7929 independent reflections

  • 6977 reflections with I > 2σI)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.05

  • 7929 reflections

  • 290 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W1⋯O2i 0.78 (2) 2.41 (2) 2.9959 (18) 132.8 (18)
O1W—H2W1⋯O4i 0.78 (2) 2.27 (2) 3.0097 (19) 159 (2)
O1W—H1W1⋯O1i 0.75 (2) 2.20 (2) 2.8749 (16) 151 (2)
O1W—H1W1⋯O3i 0.75 (2) 2.54 (2) 3.1684 (19) 143 (2)
C7—H7A⋯O1W 0.95 2.56 3.451 (2) 157
C10—H10B⋯O2ii 0.99 2.57 3.476 (2) 151
C8—H8BCg1i 0.99 2.78 3.4918 (19) 129
C13—H13ACg1ii 0.95 2.85 3.3718 (18) 116
C18—H18BCg2iii 0.99 2.79 3.718 (2) 157
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) x, y-1, z. Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 benzene rings.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base complexes are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of Schiff bases have been studied extensively, and copper(II) and Ni(II) complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Blower, 1998; Granovski et al., 1993; Li & Chang, 1991; Shahrokhian et al., 2000). Tetradentate Schiff base metal complexes may form trans or cis planar or tetrahedral structures (Elmali et al., 2000).

The CuII ion of the title compound (Fig. 1), shows a distorted planar geometry which is coordinated by two imine N atoms and two phenol O atoms of the tetradentate Schiff base ligand. The bond lengths (Allen et al.,, 1987) and angles are within normal ranges and are comparable with the related structures (Clark et al., 1968, 1969, 1970). The asymmetric unit of the title compound comprises one molecule of complex and a water molecule of crystallization. The water H atoms form bifurcated O—H···(O,O) intermolecular hydrogen bonds with the O atoms of the phenolato and ethoxy groups with R12(5) and R12(6) ring motifs (Bernstein et al., 1995), which may, in part, influence the molecular configuration. The dihedral angle between the two benzene rings is 34.98 (7)°. In the crystal structure, the molecules are linked together by intermolecular C—H···O interactions, forming 1-D extended chains along the a axis (Fig. 2). The crystal structure is further stabilized by intermolecular C—H···π (Table 1) and ππ interactions [Cg3···Cg3i = 3.5068 (13) Å, Cg3 is the centroid of the Cu1/O1/C1/C6/C7/N1 ring, symmetry operation i = 1-x, 1-y, 1-z].

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see Allen et al. (1987). For related structures see, for example: Clark et al. (1968, 1969, 1970). For applications and bioactivity of Cu(II) and Ni(II) Schiff base complexes see, for example: Elmali et al. (2000); Blower (1998); Granovski et al. (1993); Li & Chang (1991); Shahrokhian et al. (2000). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 #benzene rings.

Experimental top

A chloroform solution (40 ml) of [N,N'-Bis(3-ethoxy-salicylidene)-2, 2-dimethyl-1,3-propanediamin (1 mmol, 399 mg) was added to an ethanol solution (20 ml) of CuCl2.4H2O (1.05 mmol, 216 mg). The mixture was refluxed for 30 min and then filtered. After keeping the filtrate in air, green plate-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement top

The water H-atoms were located from the difference Fourier map and freely refined. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.95–99 Å] and refined using a riding approximation model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was used for the methyl groups of the ethoxy substituents.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing 1-D extended chains along the a-axis. Intermolecular interactions are drawn as dashed lines.
{6,6'-Diethoxy-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethylidyne)]diphenolato}copper(II) monohydrate top
Crystal data top
[Cu(C23H28N2O4)]·H2OZ = 2
Mr = 478.03F(000) = 502
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.427 (3) ÅCell parameters from 9641 reflections
b = 10.805 (3) Åθ = 2.5–36.5°
c = 12.771 (4) ŵ = 1.03 mm1
α = 114.554 (13)°T = 100 K
β = 99.479 (14)°Plate, green
γ = 102.676 (14)°0.50 × 0.22 × 0.15 mm
V = 1105.3 (6) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7929 independent reflections
Radiation source: fine-focus sealed tube6977 reflections with I > 2˘I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 32.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1413
Tmin = 0.628, Tmax = 0.861k = 1616
36656 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.035P)2 + 0.4488P]
where P = (Fo2 + 2Fc2)/3
7929 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu(C23H28N2O4)]·H2Oγ = 102.676 (14)°
Mr = 478.03V = 1105.3 (6) Å3
Triclinic, P1Z = 2
a = 9.427 (3) ÅMo Kα radiation
b = 10.805 (3) ŵ = 1.03 mm1
c = 12.771 (4) ÅT = 100 K
α = 114.554 (13)°0.50 × 0.22 × 0.15 mm
β = 99.479 (14)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7929 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6977 reflections with I > 2˘I)
Tmin = 0.628, Tmax = 0.861Rint = 0.029
36656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.58 e Å3
7929 reflectionsΔρmin = 0.30 e Å3
290 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.234895 (16)0.580803 (14)0.526101 (11)0.01366 (4)
O10.29055 (10)0.46744 (9)0.59658 (7)0.01601 (15)
O20.25360 (10)0.72661 (9)0.68076 (7)0.01635 (16)
O30.30299 (10)0.32190 (9)0.71356 (7)0.01808 (16)
O40.28979 (11)0.88036 (9)0.90698 (7)0.01849 (16)
N10.28983 (11)0.47831 (10)0.38154 (8)0.01475 (17)
N20.09621 (11)0.64285 (10)0.44256 (8)0.01524 (17)
C10.32220 (13)0.34876 (12)0.54318 (10)0.01426 (19)
C20.33163 (13)0.26509 (12)0.60485 (10)0.01502 (19)
C30.36453 (14)0.13847 (13)0.55507 (11)0.0185 (2)
H3A0.36620.08270.59610.022*
C40.39567 (15)0.09205 (13)0.44348 (11)0.0213 (2)
H4A0.42000.00560.40970.026*
C50.39097 (15)0.17149 (13)0.38339 (10)0.0195 (2)
H5A0.41550.14110.30940.023*
C60.35016 (14)0.29772 (12)0.42996 (10)0.0157 (2)
C70.34006 (13)0.37055 (12)0.35797 (10)0.0161 (2)
H7A0.37290.33660.28770.019*
C80.29016 (14)0.54430 (13)0.30186 (10)0.0167 (2)
H8A0.34330.50090.24240.020*
H8B0.34750.64810.35010.020*
C90.12840 (14)0.52549 (13)0.23410 (10)0.0162 (2)
C100.02042 (13)0.54321 (13)0.31412 (10)0.0168 (2)
H10A0.05820.57810.28480.020*
H10B0.03170.44780.30540.020*
C110.04829 (13)0.75010 (12)0.49386 (10)0.0165 (2)
H11A0.01890.76940.44290.020*
C120.08778 (13)0.84286 (12)0.62132 (10)0.0160 (2)
C130.01217 (14)0.94670 (13)0.65979 (11)0.0197 (2)
H13A0.05060.96030.60190.024*
C140.02888 (15)1.02735 (13)0.77935 (12)0.0218 (2)
H14A0.02301.09580.80410.026*
C150.12292 (15)1.00898 (13)0.86580 (11)0.0198 (2)
H15A0.13471.06570.94880.024*
C160.19833 (14)0.90889 (12)0.83082 (10)0.0160 (2)
C170.18268 (13)0.82185 (12)0.70661 (10)0.01464 (19)
C180.35853 (15)0.27727 (14)0.79952 (11)0.0194 (2)
H18A0.46970.29700.81580.023*
H18B0.30910.17310.76850.023*
C190.32030 (16)0.36231 (15)0.91229 (11)0.0232 (2)
H19A0.36240.34040.97560.035*
H19B0.20970.33670.89610.035*
H19C0.36390.46520.93860.035*
C200.29694 (16)0.94726 (13)1.03175 (10)0.0213 (2)
H20A0.19350.93001.04140.026*
H20B0.34791.05221.06910.026*
C210.38663 (17)0.88079 (14)1.08999 (11)0.0240 (3)
H21A0.38500.91581.17380.036*
H21B0.49180.90751.08750.036*
H21C0.34120.77601.04650.036*
C220.05721 (16)0.37457 (14)0.12689 (11)0.0237 (2)
H22A0.04500.36410.08480.036*
H22B0.05100.30290.15560.036*
H22C0.12010.36020.07160.036*
C230.14514 (17)0.63837 (16)0.19007 (13)0.0265 (3)
H23A0.04480.63040.14670.040*
H23B0.20980.62250.13620.040*
H23C0.19160.73450.25910.040*
O1W0.54758 (13)0.33956 (12)0.15477 (9)0.0257 (2)
H2W10.592 (2)0.287 (2)0.1566 (18)0.038 (5)*
H1W10.595 (2)0.409 (2)0.2094 (19)0.037 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01571 (7)0.01562 (7)0.01206 (6)0.00751 (5)0.00543 (5)0.00692 (5)
O10.0211 (4)0.0163 (4)0.0143 (3)0.0101 (3)0.0072 (3)0.0077 (3)
O20.0201 (4)0.0175 (4)0.0143 (3)0.0106 (3)0.0065 (3)0.0073 (3)
O30.0224 (4)0.0241 (4)0.0159 (4)0.0136 (3)0.0081 (3)0.0128 (3)
O40.0248 (5)0.0187 (4)0.0132 (3)0.0098 (3)0.0070 (3)0.0067 (3)
N10.0145 (4)0.0175 (4)0.0133 (4)0.0055 (3)0.0050 (3)0.0075 (3)
N20.0138 (4)0.0179 (4)0.0141 (4)0.0050 (4)0.0044 (3)0.0076 (3)
C10.0125 (5)0.0153 (4)0.0145 (4)0.0054 (4)0.0039 (4)0.0061 (4)
C20.0125 (5)0.0181 (5)0.0153 (4)0.0064 (4)0.0040 (4)0.0079 (4)
C30.0184 (6)0.0188 (5)0.0207 (5)0.0095 (4)0.0045 (4)0.0101 (4)
C40.0236 (6)0.0190 (5)0.0216 (5)0.0129 (5)0.0061 (5)0.0070 (4)
C50.0212 (6)0.0207 (5)0.0168 (5)0.0117 (5)0.0069 (4)0.0059 (4)
C60.0171 (5)0.0174 (5)0.0135 (4)0.0090 (4)0.0052 (4)0.0062 (4)
C70.0157 (5)0.0187 (5)0.0133 (4)0.0061 (4)0.0057 (4)0.0061 (4)
C80.0160 (5)0.0212 (5)0.0157 (5)0.0055 (4)0.0063 (4)0.0108 (4)
C90.0155 (5)0.0207 (5)0.0146 (4)0.0050 (4)0.0053 (4)0.0102 (4)
C100.0127 (5)0.0210 (5)0.0142 (4)0.0036 (4)0.0032 (4)0.0072 (4)
C110.0130 (5)0.0188 (5)0.0190 (5)0.0051 (4)0.0035 (4)0.0104 (4)
C120.0136 (5)0.0153 (5)0.0188 (5)0.0050 (4)0.0042 (4)0.0076 (4)
C130.0162 (5)0.0172 (5)0.0245 (5)0.0070 (4)0.0033 (4)0.0087 (4)
C140.0204 (6)0.0164 (5)0.0273 (6)0.0094 (4)0.0081 (5)0.0069 (4)
C150.0217 (6)0.0159 (5)0.0204 (5)0.0070 (4)0.0089 (4)0.0057 (4)
C160.0173 (5)0.0150 (5)0.0161 (5)0.0056 (4)0.0062 (4)0.0070 (4)
C170.0143 (5)0.0134 (4)0.0170 (5)0.0042 (4)0.0060 (4)0.0073 (4)
C180.0182 (6)0.0266 (6)0.0212 (5)0.0099 (5)0.0064 (4)0.0168 (5)
C190.0242 (6)0.0287 (6)0.0191 (5)0.0075 (5)0.0059 (5)0.0140 (5)
C200.0323 (7)0.0171 (5)0.0136 (5)0.0082 (5)0.0093 (5)0.0052 (4)
C210.0349 (7)0.0206 (5)0.0152 (5)0.0074 (5)0.0066 (5)0.0082 (4)
C220.0228 (6)0.0276 (6)0.0151 (5)0.0043 (5)0.0051 (4)0.0068 (4)
C230.0235 (6)0.0352 (7)0.0322 (7)0.0095 (6)0.0085 (5)0.0259 (6)
O1W0.0312 (6)0.0263 (5)0.0172 (4)0.0159 (4)0.0028 (4)0.0062 (4)
Geometric parameters (Å, º) top
Cu1—O21.8952 (10)C10—H10B0.9900
Cu1—O11.9049 (9)C11—C121.4400 (16)
Cu1—N11.9417 (11)C11—H11A0.9500
Cu1—N21.9536 (11)C12—C171.4185 (16)
O1—C11.3064 (13)C12—C131.4200 (16)
O2—C171.3066 (13)C13—C141.3675 (18)
O3—C21.3656 (14)C13—H13A0.9500
O3—C181.4398 (14)C14—C151.4076 (18)
O4—C161.3689 (14)C14—H14A0.9500
O4—C201.4326 (14)C15—C161.3838 (16)
N1—C71.2915 (15)C15—H15A0.9500
N1—C81.4653 (15)C16—C171.4299 (16)
N2—C111.2933 (15)C18—C191.5049 (18)
N2—C101.4728 (15)C18—H18A0.9900
C1—C61.4109 (15)C18—H18B0.9900
C1—C21.4317 (15)C19—H19A0.9800
C2—C31.3786 (16)C19—H19B0.9800
C3—C41.4061 (17)C19—H19C0.9800
C3—H3A0.9500C20—C211.5123 (19)
C4—C51.3713 (18)C20—H20A0.9900
C4—H4A0.9500C20—H20B0.9900
C5—C61.4120 (16)C21—H21A0.9800
C5—H5A0.9500C21—H21B0.9800
C6—C71.4418 (16)C21—H21C0.9800
C7—H7A0.9500C22—H22A0.9800
C8—C91.5487 (17)C22—H22B0.9800
C8—H8A0.9900C22—H22C0.9800
C8—H8B0.9900C23—H23A0.9800
C9—C231.5308 (17)C23—H23B0.9800
C9—C221.5315 (18)C23—H23C0.9800
C9—C101.5436 (16)O1W—H2W10.78 (2)
C10—H10A0.9900O1W—H1W10.75 (2)
O2—Cu1—O189.59 (4)C12—C11—H11A117.1
O2—Cu1—N1158.91 (4)C17—C12—C13120.39 (11)
O1—Cu1—N193.25 (4)C17—C12—C11122.37 (10)
O2—Cu1—N293.89 (4)C13—C12—C11116.79 (10)
O1—Cu1—N2156.16 (4)C14—C13—C12120.65 (11)
N1—Cu1—N291.92 (5)C14—C13—H13A119.7
C1—O1—Cu1126.73 (7)C12—C13—H13A119.7
C17—O2—Cu1127.10 (8)C13—C14—C15120.06 (11)
C2—O3—C18117.73 (9)C13—C14—H14A120.0
C16—O4—C20118.24 (9)C15—C14—H14A120.0
C7—N1—C8119.06 (10)C16—C15—C14120.49 (11)
C7—N1—Cu1126.05 (8)C16—C15—H15A119.8
C8—N1—Cu1114.43 (8)C14—C15—H15A119.8
C11—N2—C10117.74 (10)O4—C16—C15125.27 (10)
C11—N2—Cu1125.32 (8)O4—C16—C17113.69 (10)
C10—N2—Cu1115.96 (8)C15—C16—C17121.03 (11)
O1—C1—C6124.96 (10)O2—C17—C12125.30 (10)
O1—C1—C2117.64 (10)O2—C17—C16117.30 (10)
C6—C1—C2117.40 (10)C12—C17—C16117.38 (10)
O3—C2—C3124.88 (10)O3—C18—C19106.52 (10)
O3—C2—C1113.66 (10)O3—C18—H18A110.4
C3—C2—C1121.45 (10)C19—C18—H18A110.4
C2—C3—C4119.90 (11)O3—C18—H18B110.4
C2—C3—H3A120.0C19—C18—H18B110.4
C4—C3—H3A120.0H18A—C18—H18B108.6
C5—C4—C3120.03 (11)C18—C19—H19A109.5
C5—C4—H4A120.0C18—C19—H19B109.5
C3—C4—H4A120.0H19A—C19—H19B109.5
C4—C5—C6120.94 (11)C18—C19—H19C109.5
C4—C5—H5A119.5H19A—C19—H19C109.5
C6—C5—H5A119.5H19B—C19—H19C109.5
C1—C6—C5120.15 (10)O4—C20—C21106.68 (10)
C1—C6—C7122.48 (10)O4—C20—H20A110.4
C5—C6—C7117.36 (10)C21—C20—H20A110.4
N1—C7—C6125.07 (10)O4—C20—H20B110.4
N1—C7—H7A117.5C21—C20—H20B110.4
C6—C7—H7A117.5H20A—C20—H20B108.6
N1—C8—C9112.96 (10)C20—C21—H21A109.5
N1—C8—H8A109.0C20—C21—H21B109.5
C9—C8—H8A109.0H21A—C21—H21B109.5
N1—C8—H8B109.0C20—C21—H21C109.5
C9—C8—H8B109.0H21A—C21—H21C109.5
H8A—C8—H8B107.8H21B—C21—H21C109.5
C23—C9—C22110.02 (10)C9—C22—H22A109.5
C23—C9—C10110.56 (10)C9—C22—H22B109.5
C22—C9—C10106.70 (10)H22A—C22—H22B109.5
C23—C9—C8106.81 (10)C9—C22—H22C109.5
C22—C9—C8110.29 (10)H22A—C22—H22C109.5
C10—C9—C8112.48 (9)H22B—C22—H22C109.5
N2—C10—C9114.22 (10)C9—C23—H23A109.5
N2—C10—H10A108.7C9—C23—H23B109.5
C9—C10—H10A108.7H23A—C23—H23B109.5
N2—C10—H10B108.7C9—C23—H23C109.5
C9—C10—H10B108.7H23A—C23—H23C109.5
H10A—C10—H10B107.6H23B—C23—H23C109.5
N2—C11—C12125.77 (11)H2W1—O1W—H1W1103 (2)
N2—C11—H11A117.1
O2—Cu1—O1—C1170.54 (10)Cu1—N1—C7—C66.52 (17)
N1—Cu1—O1—C111.46 (10)C1—C6—C7—N17.79 (19)
N2—Cu1—O1—C190.74 (13)C5—C6—C7—N1172.71 (12)
O1—Cu1—O2—C17153.04 (10)C7—N1—C8—C9114.46 (12)
N1—Cu1—O2—C17108.98 (13)Cu1—N1—C8—C972.85 (11)
N2—Cu1—O2—C173.35 (10)N1—C8—C9—C23161.31 (10)
O2—Cu1—N1—C799.12 (14)N1—C8—C9—C2279.16 (12)
O1—Cu1—N1—C71.82 (10)N1—C8—C9—C1039.83 (13)
N2—Cu1—N1—C7154.90 (10)C11—N2—C10—C9123.50 (12)
O2—Cu1—N1—C872.98 (14)Cu1—N2—C10—C967.24 (11)
O1—Cu1—N1—C8170.28 (8)C23—C9—C10—N288.70 (12)
N2—Cu1—N1—C833.01 (8)C22—C9—C10—N2151.68 (10)
O2—Cu1—N2—C110.13 (10)C8—C9—C10—N230.61 (14)
O1—Cu1—N2—C1197.69 (13)C10—N2—C11—C12167.99 (11)
N1—Cu1—N2—C11159.83 (10)Cu1—N2—C11—C120.16 (17)
O2—Cu1—N2—C10168.46 (8)N2—C11—C12—C172.29 (19)
O1—Cu1—N2—C1070.64 (13)N2—C11—C12—C13174.60 (12)
N1—Cu1—N2—C1031.83 (8)C17—C12—C13—C140.38 (19)
Cu1—O1—C1—C613.28 (17)C11—C12—C13—C14172.08 (12)
Cu1—O1—C1—C2167.75 (8)C12—C13—C14—C150.7 (2)
C18—O3—C2—C321.84 (17)C13—C14—C15—C160.4 (2)
C18—O3—C2—C1159.14 (10)C20—O4—C16—C156.95 (18)
O1—C1—C2—O30.97 (15)C20—O4—C16—C17171.68 (10)
C6—C1—C2—O3179.98 (10)C14—C15—C16—O4178.61 (12)
O1—C1—C2—C3179.98 (11)C14—C15—C16—C170.07 (19)
C6—C1—C2—C30.92 (17)Cu1—O2—C17—C126.51 (17)
O3—C2—C3—C4178.50 (11)Cu1—O2—C17—C16171.46 (8)
C1—C2—C3—C42.56 (19)C13—C12—C17—O2177.86 (11)
C2—C3—C4—C51.0 (2)C11—C12—C17—O25.82 (18)
C3—C4—C5—C62.1 (2)C13—C12—C17—C160.11 (17)
O1—C1—C6—C5176.78 (11)C11—C12—C17—C16172.14 (11)
C2—C1—C6—C52.20 (17)O4—C16—C17—O20.89 (15)
O1—C1—C6—C72.71 (19)C15—C16—C17—O2177.80 (11)
C2—C1—C6—C7178.31 (11)O4—C16—C17—C12179.03 (10)
C4—C5—C6—C13.77 (19)C15—C16—C17—C120.33 (17)
C4—C5—C6—C7176.71 (12)C2—O3—C18—C19176.50 (10)
C8—N1—C7—C6178.29 (11)C16—O4—C20—C21172.02 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O2i0.78 (2)2.41 (2)2.9959 (18)132.8 (18)
O1W—H2W1···O4i0.78 (2)2.27 (2)3.0097 (19)159 (2)
O1W—H1W1···O1i0.75 (2)2.20 (2)2.8749 (16)151 (2)
O1W—H1W1···O3i0.75 (2)2.54 (2)3.1684 (19)143 (2)
C7—H7A···O1W0.952.563.451 (2)157
C10—H10B···O2ii0.992.573.476 (2)151
C8—H8B···Cg1i0.992.783.4918 (19)129
C13—H13A···Cg1ii0.952.853.3718 (18)116
C18—H18B···Cg2iii0.992.793.718 (2)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C23H28N2O4)]·H2O
Mr478.03
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.427 (3), 10.805 (3), 12.771 (4)
α, β, γ (°)114.554 (13), 99.479 (14), 102.676 (14)
V3)1105.3 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.50 × 0.22 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.628, 0.861
No. of measured, independent and
observed [I > 2˘I)] reflections
36656, 7929, 6977
Rint0.029
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.05
No. of reflections7929
No. of parameters290
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.30

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O2i0.78 (2)2.41 (2)2.9959 (18)132.8 (18)
O1W—H2W1···O4i0.78 (2)2.27 (2)3.0097 (19)159 (2)
O1W—H1W1···O1i0.75 (2)2.20 (2)2.8749 (16)151 (2)
O1W—H1W1···O3i0.75 (2)2.54 (2)3.1684 (19)143 (2)
C7—H7A···O1W0.95002.56003.451 (2)157.00
C10—H10B···O2ii0.99002.57003.476 (2)151.00
C8—H8B···Cg1i0.992.783.4918 (19)129
C13—H13A···Cg1ii0.952.853.3718 (18)116
C18—H18B···Cg2iii0.992.793.718 (2)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y1, z.
 

Footnotes

Additional correspondance author, e-mail: zsrkk@yahoo.com.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK and AJ thank PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem. 23, 109–112.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, pp. 223–226.  CSD CrossRef Google Scholar
First citationClark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, pp. 823–829.  CSD CrossRef Google Scholar
First citationClark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, pp. 396–399.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationElmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationLi, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35–39.  CrossRef CAS Web of Science Google Scholar
First citationShahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956–962.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m515-m516
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds