organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o992-o993

(1RS,4RS,5RS)-Methyl 2-(3,5-di­nitro­benzo­yl)-2-oxa-3-aza­bi­cyclo­[3.3.0]oct-7-ene-4-carboxyl­ate

aCentro de Investigação em Química, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal, and bDepartamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
*Correspondence e-mail: carlos.sousa@fc.up.pt

(Received 14 February 2009; accepted 2 April 2009; online 8 April 2009)

The title compound, C15H13N3O8, comprises two crystallographically independent mol­ecules in the asymmetric unit. In the crystal, intermolecular C—H⋯O hydrogen bonds link the molecules and short C=O⋯π contacts are seen.

Related literature

For the preparation of the precursor of the title compound, see: Sousa et al. (2008[Sousa, C. A. D., Vale, M. L. C., Rodrígues-Borges, J. E. & García-Mera, X. (2008). Tetrahedron Lett. 49, 5777-5781.]). For examples of the use of the 3,5dinitro­benzoyl­ation technique for the assignment of structures by X-ray, see: Caamaño et al. (2000[Caamaño, O., Fernández, F., Garcia-Mera, X. & Rodrígues-Borges, J. E. (2000). Tetrahedron Lett. 41, 4123-4125.]); Fernández et al. (2001[Fernández, F., Garcia-Mera, X. & Rodrígues-Borges, J. E. (2001). Tetrahedron Asymmetry, 12, 365-368.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O8

  • Mr = 363.28

  • Triclinic, [P \overline 1]

  • a = 8.7157 (3) Å

  • b = 10.8269 (3) Å

  • c = 17.0677 (5) Å

  • α = 79.881 (1)°

  • β = 77.773 (1)°

  • γ = 78.281 (1)°

  • V = 1526.35 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.26 × 0.23 × 0.1 mm

Data collection
  • Bruker ApexII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.913, Tmax = 0.99

  • 28142 measured reflections

  • 6012 independent reflections

  • 4564 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.124

  • S = 1.05

  • 6012 reflections

  • 471 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O11i 0.98 2.40 3.064 (3) 124
C47—H47⋯O41ii 0.98 2.45 3.083 (3) 122
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Table 2
Geometric parameters of YXCg contacts (Å, °)

YXCg XCg YXCg YCg
C13—O14⋯Cg2 3.2009 (18) 106.47 (13) 3.736 (3)
C43—O44⋯Cg1 3.1434 (18) 104.52 (13) 3.649 (3)
Cg1 and Cg2 are the centroids of the rings defined by C1, C2, C3, C7, C8, C12 and C31, C32, C33, C37, C38, C42, respectively.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1997[Altomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. & Spagna, R. (1997). SIR97. University of Bari, Italy.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In organic synthesis, the usual techniques as NMR, mass or infra-red spectrometry and elemental analysis are often not enough for the unequivocally determination of a structure of a compound. When it is possible to crystallize desired compound, the X-ray crystallography is the ultimate analysis. 3,5-dinitrobenzoylation of 2-oxa-3-azabicyclo[3.3.0]oct-7-ene-4- carboxylate leaded to title compound (I) that was unambigously analysed by X-ray analysis.

The two independent molecules of the title compound (I) are coupled by π···π interactions of the 3,5-dinitrobenzoyl rings (Fig. 1) [Cg1-Cg2iv = 4.2295 Å, symmetry code: (iv) 1 + x, y, z]. It is also possible to verify the existence of the three stereogenic centres of the same chirality in both molecules of the asymmetric unit. As the space group is centrosymmetric, a racemate is present in a crystal. No other stereoisomers of methyl 2-oxa-3-azabicyclo[3.3.0]oct-7-ene-4-carboxylate are obtained from the reported synthetic methodology (Sousa et al. 2008).

In the crystal structure, each pair of the molecules are linked by π··· π contacts between the 3,5-dinitrobenzoyl rings along [100] direction (Fig. 2) (Cg1-Cg2iii = 4.4862 Å, Cg2-Cg1iii = 4.4862 Å; symmetry code: (iii) x, y, z). Intermolecular interactions between carbonyl and nitro groups (distance C···O 3.0 Å), between nitro groups (distance N···O 3.0 Å) and C—H···O intermolecular hydrogen bonds (Table 1) generate an assembly by packing these chains along [010] direction (Fig. 3). Table 2 lists the interactions between aromatic rings (resulting in a π···π stacking assembly).

The carbonyl and nitro groups are very electronegative; as a result, the electronic density of the 3,5-dinitrobenzoyl rings is delocalized from the centre of π-system towards the electronegative O atoms. This delocalization origins from electrostatic intermolecular interactions between the oxygen atoms and the centre of the π-system (Table 3).

This analysis suggest that the most important intermolecular interactions in compound (I) are due to the 3,5-dinitrobenzoyl ring (including the nitro and carbonyl groups), which seems to be the main reason why compound (I) is a solid.

Related literature top

For the preparation of the precursor of the title compound, see: Sousa et al. (2008). For examples of the use of the 3,5dinitrobenzoylation technique for the assignment of structures by X-ray, see: Caamaño et al. (2000); Fernández et al. (2001).

Experimental top

The title compound was synthesized from 2-oxa-3-azabicyclo[3.3.0]oct-7-ene-4-carboxylate as reported in literature (Sousa et al. 2008). Crystals were obtained from a slow evaporation of a dichlorometane/methanol/hexane solution of (I).

Refinement top

All H atoms were found in a difference Fourier map and placed in geometrically idealized and constrained to ride on their parent atoms [C—H = 0.93–0.98 Å and Uiso(H) = 1.2 (1.5 for methyl groups) × Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of a pair of independent molecules of (I) connected by π···π interactions (dashed lines) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I) viewed along the b axis. Dashed lines show Cg1-Cg2 (π···π) interactions along [100] direction and the respective distances are given in Å. H atoms are omitted for clarity.
[Figure 3] Fig. 3. Part of the crystal structure of (I) viewed along the a axis. Dashed lines show CO···NO2, NO2···NO2 and C—H···O interactions along [010] direction. H atoms not involved in hydrogen bonding have been omitted for clarity.
(1RS,4RS,5RS)-Methyl 2-(3,5-dinitrobenzoyl)-2-oxa-3- azabicyclo[3.3.0]oct-7-ene-4-carboxylate top
Crystal data top
C15H13N3O8Z = 4
Mr = 363.28F(000) = 752
Triclinic, P1Dx = 1.581 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.7157 (3) ÅCell parameters from 6065 reflections
b = 10.8269 (3) Åθ = 2.4–26.0°
c = 17.0677 (5) ŵ = 0.13 mm1
α = 79.881 (1)°T = 100 K
β = 77.773 (1)°Prism, colourless
γ = 78.281 (1)°0.26 × 0.23 × 0.1 mm
V = 1526.35 (8) Å3
Data collection top
Bruker ApexII CCD area-detector
diffractometer
6012 independent reflections
Radiation source: sealed tube4564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.913, Tmax = 0.99k = 1313
28142 measured reflectionsl = 021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0478P)2 + 1.4085P]
where P = (Fo2 + 2Fc2)/3
6012 reflections(Δ/σ)max < 0.001
471 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H13N3O8γ = 78.281 (1)°
Mr = 363.28V = 1526.35 (8) Å3
Triclinic, P1Z = 4
a = 8.7157 (3) ÅMo Kα radiation
b = 10.8269 (3) ŵ = 0.13 mm1
c = 17.0677 (5) ÅT = 100 K
α = 79.881 (1)°0.26 × 0.23 × 0.1 mm
β = 77.773 (1)°
Data collection top
Bruker ApexII CCD area-detector
diffractometer
6012 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4564 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.99Rint = 0.039
28142 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.05Δρmax = 0.27 e Å3
6012 reflectionsΔρmin = 0.24 e Å3
471 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9942 (2)0.18394 (19)0.38593 (13)0.0155 (4)
C21.0752 (2)0.2818 (2)0.34588 (13)0.0166 (4)
H21.09920.29560.28960.02*
C31.1195 (2)0.35814 (19)0.39127 (13)0.0160 (4)
N41.2051 (2)0.46174 (17)0.34844 (11)0.0195 (4)
O51.2230 (2)0.48129 (16)0.27460 (10)0.0313 (4)
O61.25526 (19)0.52204 (15)0.38914 (10)0.0246 (4)
C71.0872 (2)0.34329 (19)0.47509 (13)0.0159 (4)
H71.12010.39460.50440.019*
C81.0029 (2)0.24721 (19)0.51215 (13)0.0152 (4)
N90.9606 (2)0.22901 (17)0.60139 (11)0.0187 (4)
O101.0221 (2)0.28525 (15)0.63892 (10)0.0267 (4)
O110.8644 (2)0.15906 (15)0.63199 (10)0.0269 (4)
C120.9546 (2)0.1685 (2)0.47014 (13)0.0165 (4)
H120.89640.10590.49770.02*
C130.9295 (3)0.0975 (2)0.34540 (13)0.0176 (5)
O140.81962 (18)0.04407 (14)0.38263 (9)0.0207 (3)
N150.9857 (2)0.08830 (17)0.26587 (11)0.0189 (4)
O161.13586 (18)0.11886 (14)0.22609 (9)0.0213 (4)
C171.2273 (3)0.0039 (2)0.20221 (14)0.0206 (5)
H171.2780.05630.24580.025*
C181.3444 (3)0.0181 (2)0.12586 (14)0.0243 (5)
H181.43850.04840.12230.029*
C191.2969 (3)0.0111 (2)0.06383 (14)0.0259 (5)
H191.35610.00570.01160.031*
C201.1382 (3)0.0538 (2)0.08611 (14)0.0264 (5)
H20A1.14340.13430.06730.032*
H20B1.05710.00930.06350.032*
C211.1035 (3)0.0680 (2)0.17955 (13)0.0200 (5)
H211.11970.15860.20160.024*
C220.9406 (3)0.0004 (2)0.22286 (13)0.0201 (5)
H220.88920.06350.26260.024*
C230.8278 (3)0.0653 (2)0.16619 (14)0.0240 (5)
O240.7600 (2)0.00814 (17)0.13342 (10)0.0308 (4)
O250.8140 (2)0.19225 (16)0.15572 (10)0.0307 (4)
C260.7075 (4)0.2615 (3)0.10190 (17)0.0400 (7)
H26A0.74760.23950.04840.06*
H26B0.70090.35140.10070.06*
H26C0.60340.23940.1210.06*
C310.6061 (2)0.36166 (19)0.38716 (13)0.0163 (4)
C320.5616 (2)0.2795 (2)0.34533 (13)0.0176 (5)
H320.58630.28810.28910.021*
C330.4798 (2)0.1845 (2)0.38893 (13)0.0173 (5)
N340.4341 (2)0.09760 (17)0.34395 (12)0.0205 (4)
O350.4812 (2)0.10687 (17)0.27083 (10)0.0318 (4)
O360.35044 (19)0.02069 (15)0.38273 (10)0.0253 (4)
C370.4382 (2)0.16728 (19)0.47197 (13)0.0175 (5)
H370.37990.10490.49970.021*
C380.4885 (2)0.2484 (2)0.51171 (13)0.0164 (4)
N390.4501 (2)0.23228 (17)0.60065 (11)0.0196 (4)
O400.3526 (2)0.16400 (16)0.63497 (10)0.0290 (4)
O410.5182 (2)0.28796 (15)0.63533 (10)0.0268 (4)
C420.5721 (2)0.3436 (2)0.47166 (13)0.0175 (5)
H420.60550.39510.50070.021*
C430.7027 (3)0.4644 (2)0.34872 (13)0.0179 (5)
O440.78205 (18)0.50231 (14)0.38786 (9)0.0209 (3)
N450.7092 (2)0.50775 (18)0.26884 (11)0.0209 (4)
O460.59327 (19)0.49161 (14)0.22645 (9)0.0234 (4)
C470.5203 (3)0.6231 (2)0.19852 (14)0.0242 (5)
H470.43380.65870.23950.029*
C480.4685 (3)0.6268 (2)0.12065 (15)0.0294 (6)
H480.37770.59840.11570.035*
C490.5688 (3)0.6761 (3)0.05900 (16)0.0346 (6)
H490.5560.6860.00540.042*
C500.7046 (3)0.7143 (3)0.08449 (15)0.0358 (6)
H50A0.71370.80210.06280.043*
H50B0.80450.65980.06660.043*
C510.6601 (3)0.6973 (2)0.17758 (14)0.0241 (5)
H510.62510.78090.19620.029*
C520.7859 (3)0.6152 (2)0.22667 (14)0.0221 (5)
H520.80120.6640.26680.026*
C530.9452 (3)0.5754 (2)0.17384 (14)0.0241 (5)
O541.0372 (2)0.64757 (16)0.14466 (11)0.0317 (4)
O550.9688 (2)0.45359 (16)0.16190 (10)0.0292 (4)
C561.1169 (3)0.4105 (3)0.10927 (16)0.0362 (6)
H56A1.12340.46440.0580.054*
H56B1.12020.32440.10120.054*
H56C1.20520.41420.13370.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0128 (10)0.0146 (10)0.0202 (11)0.0019 (8)0.0055 (8)0.0069 (8)
C20.0151 (11)0.0174 (11)0.0166 (11)0.0011 (8)0.0038 (8)0.0042 (8)
C30.0127 (10)0.0142 (10)0.0211 (12)0.0016 (8)0.0034 (9)0.0026 (8)
N40.0183 (10)0.0174 (9)0.0239 (11)0.0043 (8)0.0045 (8)0.0035 (8)
O50.0433 (11)0.0351 (10)0.0194 (9)0.0212 (8)0.0033 (8)0.0003 (7)
O60.0266 (9)0.0219 (8)0.0310 (9)0.0100 (7)0.0095 (7)0.0073 (7)
C70.0122 (10)0.0154 (10)0.0217 (12)0.0023 (8)0.0071 (9)0.0072 (9)
C80.0121 (10)0.0178 (11)0.0154 (11)0.0025 (8)0.0043 (8)0.0050 (8)
N90.0192 (10)0.0189 (9)0.0183 (10)0.0016 (8)0.0046 (8)0.0035 (8)
O100.0353 (10)0.0287 (9)0.0213 (9)0.0083 (8)0.0118 (7)0.0063 (7)
O110.0319 (9)0.0299 (9)0.0204 (9)0.0129 (8)0.0024 (7)0.0017 (7)
C120.0124 (10)0.0156 (10)0.0215 (12)0.0003 (8)0.0035 (9)0.0042 (9)
C130.0181 (11)0.0160 (11)0.0199 (12)0.0003 (9)0.0079 (9)0.0037 (9)
O140.0179 (8)0.0228 (8)0.0234 (8)0.0070 (7)0.0018 (6)0.0072 (7)
N150.0194 (10)0.0240 (10)0.0168 (10)0.0108 (8)0.0014 (8)0.0067 (8)
O160.0215 (8)0.0247 (8)0.0202 (8)0.0118 (7)0.0023 (6)0.0077 (7)
C170.0226 (12)0.0226 (11)0.0194 (12)0.0071 (9)0.0030 (9)0.0077 (9)
C180.0251 (13)0.0274 (12)0.0219 (12)0.0099 (10)0.0008 (10)0.0072 (10)
C190.0290 (13)0.0275 (13)0.0198 (12)0.0055 (10)0.0008 (10)0.0055 (10)
C200.0270 (13)0.0387 (14)0.0171 (12)0.0081 (11)0.0025 (10)0.0124 (10)
C210.0233 (12)0.0208 (11)0.0191 (12)0.0069 (9)0.0054 (9)0.0060 (9)
C220.0250 (12)0.0219 (11)0.0178 (12)0.0112 (9)0.0029 (9)0.0075 (9)
C230.0229 (12)0.0285 (13)0.0221 (12)0.0048 (10)0.0019 (10)0.0103 (10)
O240.0285 (9)0.0382 (10)0.0328 (10)0.0059 (8)0.0123 (8)0.0159 (8)
O250.0382 (10)0.0264 (9)0.0315 (10)0.0015 (8)0.0165 (8)0.0067 (7)
C260.0500 (18)0.0405 (16)0.0317 (15)0.0081 (13)0.0213 (13)0.0123 (12)
C310.0126 (10)0.0148 (10)0.0217 (12)0.0002 (8)0.0044 (9)0.0038 (9)
C320.0153 (11)0.0186 (11)0.0186 (12)0.0011 (8)0.0052 (9)0.0041 (9)
C330.0144 (10)0.0153 (10)0.0240 (12)0.0002 (8)0.0060 (9)0.0073 (9)
N340.0193 (10)0.0182 (10)0.0269 (11)0.0023 (8)0.0086 (8)0.0072 (8)
O350.0441 (11)0.0366 (10)0.0211 (10)0.0182 (8)0.0053 (8)0.0085 (7)
O360.0254 (9)0.0199 (8)0.0338 (10)0.0093 (7)0.0069 (7)0.0043 (7)
C370.0135 (10)0.0129 (10)0.0257 (12)0.0004 (8)0.0044 (9)0.0030 (9)
C380.0124 (10)0.0177 (11)0.0181 (11)0.0016 (8)0.0035 (8)0.0037 (9)
N390.0182 (10)0.0186 (9)0.0213 (10)0.0014 (8)0.0022 (8)0.0051 (8)
O400.0308 (9)0.0296 (9)0.0262 (9)0.0129 (8)0.0036 (7)0.0048 (7)
O410.0300 (9)0.0285 (9)0.0248 (9)0.0079 (7)0.0062 (7)0.0069 (7)
C420.0150 (11)0.0146 (10)0.0246 (12)0.0013 (8)0.0082 (9)0.0062 (9)
C430.0151 (11)0.0158 (11)0.0236 (12)0.0016 (8)0.0039 (9)0.0057 (9)
O440.0214 (8)0.0200 (8)0.0247 (9)0.0068 (7)0.0078 (7)0.0036 (6)
N450.0250 (10)0.0241 (10)0.0184 (10)0.0124 (8)0.0073 (8)0.0019 (8)
O460.0310 (9)0.0233 (8)0.0221 (9)0.0116 (7)0.0134 (7)0.0011 (7)
C470.0253 (12)0.0229 (12)0.0253 (13)0.0062 (10)0.0062 (10)0.0012 (10)
C480.0358 (14)0.0269 (13)0.0284 (14)0.0073 (11)0.0140 (11)0.0001 (10)
C490.0433 (16)0.0377 (15)0.0226 (14)0.0041 (12)0.0123 (12)0.0005 (11)
C500.0349 (15)0.0435 (16)0.0252 (14)0.0083 (12)0.0076 (11)0.0098 (12)
C510.0262 (13)0.0217 (12)0.0249 (13)0.0068 (10)0.0045 (10)0.0016 (9)
C520.0304 (13)0.0204 (11)0.0183 (12)0.0102 (10)0.0062 (10)0.0017 (9)
C530.0280 (13)0.0254 (12)0.0212 (12)0.0086 (10)0.0089 (10)0.0007 (10)
O540.0287 (10)0.0324 (10)0.0342 (10)0.0134 (8)0.0028 (8)0.0008 (8)
O550.0315 (10)0.0266 (9)0.0284 (9)0.0067 (7)0.0002 (8)0.0059 (7)
C560.0370 (15)0.0363 (15)0.0307 (15)0.0046 (12)0.0028 (12)0.0051 (12)
Geometric parameters (Å, º) top
C1—C21.390 (3)C31—C321.390 (3)
C1—C121.393 (3)C31—C421.396 (3)
C1—C131.510 (3)C31—C431.505 (3)
C2—C31.384 (3)C32—C331.388 (3)
C2—H20.93C32—H320.93
C3—C71.385 (3)C33—C371.375 (3)
C3—N41.473 (3)C33—N341.473 (3)
N4—O51.222 (2)N34—O351.221 (2)
N4—O61.226 (2)N34—O361.230 (2)
C7—C81.380 (3)C37—C381.384 (3)
C7—H70.93C37—H370.93
C8—C121.380 (3)C38—C421.381 (3)
C8—N91.477 (3)C38—N391.470 (3)
N9—O111.217 (2)N39—O411.218 (2)
N9—O101.218 (2)N39—O401.226 (2)
C12—H120.93C42—H420.93
C13—O141.222 (3)C43—O441.225 (3)
C13—N151.356 (3)C43—N451.355 (3)
N15—O161.416 (2)N45—O461.414 (2)
N15—C221.463 (3)N45—C521.461 (3)
O16—C171.480 (3)O46—C471.476 (3)
C17—C181.491 (3)C47—C481.483 (3)
C17—C211.539 (3)C47—C511.540 (3)
C17—H170.98C47—H470.98
C18—C191.323 (3)C48—C491.326 (4)
C18—H180.93C48—H480.93
C19—C201.499 (3)C49—C501.498 (4)
C19—H190.93C49—H490.93
C20—C211.545 (3)C50—C511.541 (3)
C20—H20A0.97C50—H50A0.97
C20—H20B0.97C50—H50B0.97
C21—C221.556 (3)C51—C521.557 (3)
C21—H210.98C51—H510.98
C22—C231.512 (3)C52—C531.513 (3)
C22—H220.98C52—H520.98
C23—O241.206 (3)C53—O541.204 (3)
C23—O251.338 (3)C53—O551.338 (3)
O25—C261.451 (3)O55—C561.450 (3)
C26—H26A0.96C56—H56A0.96
C26—H26B0.96C56—H56B0.96
C26—H26C0.96C56—H56C0.96
C2—C1—C12119.33 (19)C32—C31—C42119.20 (19)
C2—C1—C13125.21 (19)C32—C31—C43124.9 (2)
C12—C1—C13115.20 (19)C42—C31—C43115.68 (19)
C3—C2—C1118.7 (2)C33—C32—C31118.8 (2)
C3—C2—H2120.6C33—C32—H32120.6
C1—C2—H2120.6C31—C32—H32120.6
C2—C3—C7123.71 (19)C37—C33—C32123.6 (2)
C2—C3—N4118.47 (19)C37—C33—N34118.10 (19)
C7—C3—N4117.82 (18)C32—C33—N34118.30 (19)
O5—N4—O6124.19 (18)O35—N34—O36124.40 (18)
O5—N4—C3117.94 (17)O35—N34—C33118.04 (18)
O6—N4—C3117.87 (18)O36—N34—C33117.56 (18)
C8—C7—C3115.49 (19)C33—C37—C38115.97 (19)
C8—C7—H7122.3C33—C37—H37122
C3—C7—H7122.3C38—C37—H37122
C12—C8—C7123.4 (2)C42—C38—C37123.0 (2)
C12—C8—N9118.47 (18)C42—C38—N39118.83 (19)
C7—C8—N9118.09 (18)C37—C38—N39118.16 (19)
O11—N9—O10124.79 (19)O41—N39—O40124.37 (19)
O11—N9—C8116.85 (17)O41—N39—C38117.38 (18)
O10—N9—C8118.35 (18)O40—N39—C38118.24 (18)
C8—C12—C1119.23 (19)C38—C42—C31119.3 (2)
C8—C12—H12120.4C38—C42—H42120.3
C1—C12—H12120.4C31—C42—H42120.3
O14—C13—N15120.63 (19)O44—C43—N45120.51 (19)
O14—C13—C1119.92 (19)O44—C43—C31120.4 (2)
N15—C13—C1119.24 (18)N45—C43—C31118.93 (19)
C13—N15—O16122.19 (17)C43—N45—O46121.93 (17)
C13—N15—C22123.37 (17)C43—N45—C52123.86 (18)
O16—N15—C22109.47 (15)O46—N45—C52109.63 (16)
N15—O16—C17103.45 (14)N45—O46—C47103.91 (15)
O16—C17—C18110.40 (18)O46—C47—C48109.52 (19)
O16—C17—C21104.41 (17)O46—C47—C51104.18 (18)
C18—C17—C21105.22 (18)C48—C47—C51105.38 (19)
O16—C17—H17112.1O46—C47—H47112.4
C18—C17—H17112.1C48—C47—H47112.4
C21—C17—H17112.1C51—C47—H47112.4
C19—C18—C17111.1 (2)C49—C48—C47111.0 (2)
C19—C18—H18124.5C49—C48—H48124.5
C17—C18—H18124.5C47—C48—H48124.5
C18—C19—C20113.4 (2)C48—C49—C50113.1 (2)
C18—C19—H19123.3C48—C49—H49123.4
C20—C19—H19123.3C50—C49—H49123.4
C19—C20—C21103.39 (18)C49—C50—C51103.6 (2)
C19—C20—H20A111.1C49—C50—H50A111
C21—C20—H20A111.1C51—C50—H50A111
C19—C20—H20B111.1C49—C50—H50B111
C21—C20—H20B111.1C51—C50—H50B111
H20A—C20—H20B109H50A—C50—H50B109
C17—C21—C20105.39 (18)C47—C51—C50105.2 (2)
C17—C21—C22104.16 (17)C47—C51—C52104.17 (18)
C20—C21—C22118.67 (19)C50—C51—C52117.9 (2)
C17—C21—H21109.4C47—C51—H51109.7
C20—C21—H21109.4C50—C51—H51109.7
C22—C21—H21109.4C52—C51—H51109.7
N15—C22—C23112.66 (18)N45—C52—C53113.37 (19)
N15—C22—C21103.44 (17)N45—C52—C51103.52 (18)
C23—C22—C21113.97 (18)C53—C52—C51112.90 (19)
N15—C22—H22108.9N45—C52—H52109
C23—C22—H22108.9C53—C52—H52108.9
C21—C22—H22108.9C51—C52—H52109
O24—C23—O25124.3 (2)O54—C53—O55124.6 (2)
O24—C23—C22122.9 (2)O54—C53—C52123.0 (2)
O25—C23—C22112.79 (19)O55—C53—C52112.42 (19)
C23—O25—C26115.69 (19)C53—O55—C56115.30 (19)
O25—C26—H26A109.5O55—C56—H56A109.5
O25—C26—H26B109.5O55—C56—H56B109.5
H26A—C26—H26B109.5H56A—C56—H56B109.5
O25—C26—H26C109.5O55—C56—H56C109.5
H26A—C26—H26C109.5H56A—C56—H56C109.5
H26B—C26—H26C109.5H56B—C56—H56C109.5
C12—C1—C2—C32.4 (3)C42—C31—C32—C332.2 (3)
C13—C1—C2—C3176.23 (19)C43—C31—C32—C33176.5 (2)
C1—C2—C3—C70.3 (3)C31—C32—C33—C370.6 (3)
C1—C2—C3—N4179.91 (18)C31—C32—C33—N34179.63 (18)
C2—C3—N4—O55.2 (3)C37—C33—N34—O35174.67 (19)
C7—C3—N4—O5174.49 (19)C32—C33—N34—O355.6 (3)
C2—C3—N4—O6174.10 (19)C37—C33—N34—O365.6 (3)
C7—C3—N4—O66.2 (3)C32—C33—N34—O36174.15 (19)
C2—C3—C7—C81.4 (3)C32—C33—C37—C382.4 (3)
N4—C3—C7—C8178.24 (18)N34—C33—C37—C38177.81 (18)
C3—C7—C8—C121.0 (3)C33—C37—C38—C421.5 (3)
C3—C7—C8—N9178.24 (18)C33—C37—C38—N39178.77 (18)
C12—C8—N9—O1111.2 (3)C42—C38—N39—O4113.0 (3)
C7—C8—N9—O11168.04 (19)C37—C38—N39—O41167.26 (19)
C12—C8—N9—O10169.49 (19)C42—C38—N39—O40167.13 (19)
C7—C8—N9—O1011.2 (3)C37—C38—N39—O4012.6 (3)
C7—C8—C12—C11.1 (3)C37—C38—C42—C311.2 (3)
N9—C8—C12—C1179.67 (18)N39—C38—C42—C31178.54 (18)
C2—C1—C12—C82.8 (3)C32—C31—C42—C383.0 (3)
C13—C1—C12—C8177.25 (18)C43—C31—C42—C38177.91 (19)
C2—C1—C13—O14156.4 (2)C32—C31—C43—O44154.8 (2)
C12—C1—C13—O1417.7 (3)C42—C31—C43—O4419.7 (3)
C2—C1—C13—N1518.3 (3)C32—C31—C43—N4520.6 (3)
C12—C1—C13—N15167.64 (19)C42—C31—C43—N45164.86 (19)
O14—C13—N15—O16163.04 (19)O44—C43—N45—O46164.20 (19)
C1—C13—N15—O1622.3 (3)C31—C43—N45—O4620.4 (3)
O14—C13—N15—C2210.6 (3)O44—C43—N45—C5210.7 (3)
C1—C13—N15—C22174.73 (19)C31—C43—N45—C52173.9 (2)
C13—N15—O16—C17116.3 (2)C43—N45—O46—C47118.3 (2)
C22—N15—O16—C1739.5 (2)C52—N45—O46—C4738.5 (2)
N15—O16—C17—C18148.95 (18)N45—O46—C47—C48148.66 (18)
N15—O16—C17—C2136.3 (2)N45—O46—C47—C5136.3 (2)
O16—C17—C18—C19105.7 (2)O46—C47—C48—C49103.5 (2)
C21—C17—C18—C196.4 (3)C51—C47—C48—C498.1 (3)
C17—C18—C19—C201.9 (3)C47—C48—C49—C500.2 (3)
C18—C19—C20—C219.1 (3)C48—C49—C50—C517.8 (3)
O16—C17—C21—C20104.78 (19)O46—C47—C51—C50103.0 (2)
C18—C17—C21—C2011.5 (2)C48—C47—C51—C5012.3 (3)
O16—C17—C21—C2220.9 (2)O46—C47—C51—C5221.7 (2)
C18—C17—C21—C22137.14 (19)C48—C47—C51—C52137.0 (2)
C19—C20—C21—C1712.2 (2)C49—C50—C51—C4712.0 (3)
C19—C20—C21—C22128.3 (2)C49—C50—C51—C52127.5 (2)
C13—N15—C22—C23106.4 (2)C43—N45—C52—C53104.7 (2)
O16—N15—C22—C2398.2 (2)O46—N45—C52—C5399.0 (2)
C13—N15—C22—C21130.1 (2)C43—N45—C52—C51132.6 (2)
O16—N15—C22—C2125.4 (2)O46—N45—C52—C5123.7 (2)
C17—C21—C22—N151.6 (2)C47—C51—C52—N450.1 (2)
C20—C21—C22—N15118.4 (2)C50—C51—C52—N45116.2 (2)
C17—C21—C22—C23121.1 (2)C47—C51—C52—C53122.8 (2)
C20—C21—C22—C234.3 (3)C50—C51—C52—C536.7 (3)
N15—C22—C23—O24169.9 (2)N45—C52—C53—O54168.0 (2)
C21—C22—C23—O2472.7 (3)C51—C52—C53—O5474.7 (3)
N15—C22—C23—O2511.2 (3)N45—C52—C53—O5513.8 (3)
C21—C22—C23—O25106.3 (2)C51—C52—C53—O55103.5 (2)
O24—C23—O25—C261.0 (3)O54—C53—O55—C560.4 (3)
C22—C23—O25—C26179.9 (2)C52—C53—O55—C56177.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O11i0.982.403.064 (3)124
C47—H47···O41ii0.982.453.083 (3)122
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H13N3O8
Mr363.28
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.7157 (3), 10.8269 (3), 17.0677 (5)
α, β, γ (°)79.881 (1), 77.773 (1), 78.281 (1)
V3)1526.35 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.26 × 0.23 × 0.1
Data collection
DiffractometerBruker ApexII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.913, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
28142, 6012, 4564
Rint0.039
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.05
No. of reflections6012
No. of parameters471
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1997), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O11i0.982.403.064 (3)124
C47—H47···O41ii0.982.453.083 (3)122
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1.
Table 2. Geometric parameters of π···π contacts (Å, °) top
Cg X···Cg YCg···Cgαβ
Cg1···Cg24.48620.49 (9)39.43
Cg1···Cg2iii4.22950.49 (9)39.50
Cg2···Cg1iv4.22960.49 (9)39.15
Cg2···Cg14.48620.49 (9)39.08
Symmetry codes: (iii) 1+x, y, z; (iv) -1+x, y, z. Cg1 and Cg2 are the centroids of the rings defined by C1, C2, C3, C7, C8, C12 and C31, C32, C33, C37, C38 C42, respectively.
Table 3. Geometric parameters of Y—X···Cg (π···ring) contacts (Å, °) top
Y—X···CgX···CgY—X···CgY···Cg
N4—O6···Cg2iii3.3345 (18)88.47 (12)3.522 (2)
C13—O14···Cg23.2009 (18)106.47 (13)3.736 (3)
N34—O36···Cg1iv3.4450 (18)91.01 (12)3.678 (2)
C43—O44···Cg13.1434 (18)104.52 (13)3.649 (3)
Symmetry codes: (iii) 1+x, y, z; (iv) -1+x, y, z. Cg1 and Cg2 are the centroids of the rings defined by C1, C2, C3, C7, C8, C12 and C31, C32, C33, C37, C38 C42, respectively.
 

Acknowledgements

This work was supported by Centro de Investigação em Química of the University of Porto. The X-ray data were collected at the Unidade de Raios X, RIAIDT, University of Santiago de Compostela. The authors thank Fundação para a Ciência e Tecnologia (FCT) (POCTI/QUI/44471/2002) and Xunta de Galicia (07CSA008203-PR) for financial support. CADS thanks the FCT for a grant (No. SFRH/BD/31526/2006).

References

First citationAltomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. & Spagna, R. (1997). SIR97. University of Bari, Italy.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaamaño, O., Fernández, F., Garcia-Mera, X. & Rodrígues-Borges, J. E. (2000). Tetrahedron Lett. 41, 4123–4125.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFernández, F., Garcia-Mera, X. & Rodrígues-Borges, J. E. (2001). Tetrahedron Asymmetry, 12, 365–368.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSousa, C. A. D., Vale, M. L. C., Rodrígues-Borges, J. E. & García-Mera, X. (2008). Tetrahedron Lett. 49, 5777–5781.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o992-o993
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds