organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o990-o991

N-(2-Hy­droxy­ethyl)-2-[3-(p-tol­yl)triazen-1-yl]benzamide

aCentro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22500, Tijuana, BC, Mexico
*Correspondence e-mail: gaguirre@tectijuana.mx

(Received 9 March 2009; accepted 31 March 2009; online 8 April 2009)

In the solid state, the structure of the title compound, C16H18N4O2, is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds. These hydrogen bonds arrange the mol­ecules into a double-layer supra­molecular structure. The mol­ecular conformation is is consolidated by an intra­molecular N—H⋯N hydrogen bond. The dihedral angle between the aromatic rings is 8.01 (10)°

Related literature

For the synthesis of new ligands to stabilize dinuclear complexes and control their reactivity, see: Das et al. (2008[Das, S., Brudvig, G. W. & Crabtree, R. H. (2008). Chem. Commun. 4, 413-424.]); Estevan et al. (2006[Estevan, F., Lloret, J., Sanau, M. & Ubeda, M. A. (2006). Organometallics, 25, 4977-4984.]); Jie et al. (2007[Jie, S., Agostinho, M., Kermagoret, A., Cazin, C. S. J. & Braunstein, P. (2007). Dalton Trans. pp. 4472-4482.]); Müller & Vogt (2007[Müller, C. & Vogt, D. (2007). Dalton Trans. pp. 5505-5523.]); Schilling et al. (2008[Schilling, M., Görl, C. & Alt, H. G. (2008). Appl. Catal. A, 348, 79-85.]). For the synthesis of 1,3-bis­(ar­yl)triazenes as precursors for triazenido ligands bearing Lewis basic ortho substituents such as ester, meth­oxy and methyl­mercapto groups, see: Nuricumbo-Escobar et al.(2007[Nuricumbo-Escobar, J. J., Campos-Alvarado, C., Ríos-Moreno, G., Morales-Morales, D., Walsh, P. J. & Parra-Hake, M. (2007). Inorg. Chem. 46, 6182-6189.]); Ríos-Moreno et al. (2003[Ríos-Moreno, G., Aguirre, G., Parra-Hake, M. & Walsh, P. J. (2003). Polyhedron, 22, 563-568.]); Rodríguez et al. (1999[Rodríguez, J. G., Parra-Hake, M., Aguirre, G., Ortega, F. & Walsh, P. J. (1999). Polyhedron, 18, 3051-3055.]); Tejel et al. (2004[Tejel, C., Ciriano, M. A., Rios-Moreno, G., Dobrinovitch, I. T., Lahoz, F. J., Oro, L. A. & Parra-Hake, M. (2004). Inorg. Chem. 43, 4719-4726.]). The starting material 2-[4,5-dihydro-1,3-oxazol-2-yl]aniline was synthesized by a modification of the literature method of Gómez et al. (2005[Gómez, M., Jansat, S., Muller, G., Aullón, G. & Maestro, M. A. (2005). Eur. J. Inorg. Chem. 2005, 4341-4351.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, V., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Orpen et al. (1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18N4O2

  • Mr = 298.34

  • Monoclinic, P 21 /c

  • a = 16.846 (2) Å

  • b = 12.2053 (17) Å

  • c = 7.4302 (11) Å

  • β = 93.212 (13)°

  • V = 1525.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.40 × 0.22 × 0.14 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: none

  • 4153 measured reflections

  • 3067 independent reflections

  • 1778 reflections with I > 2σ(I)

  • Rint = 0.044

  • 3 standard reflections every 97 reflections intensity decay: 2.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.188

  • S = 1.04

  • 3067 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N1 0.86 2.05 2.696 (3) 132
O2—H2B⋯O1i 0.82 1.92 2.729 (2) 169
N3—H3A⋯O2ii 0.86 2.00 2.851 (2) 170
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis of alternative ligands to stabilize dinuclear complexes and control their reactivity is an area of great importance in coordination and organometallic chemistry (for recent literature see: Das et al., 2008; Estevan et al., 2006; Jie et al., 2007; Müller & Vogt, 2007; Schilling et al., 2008). In this context, we have focused our attention to the synthesis of 1,3-bis(aryl)triazenes as precursors for triazenido ligands bearing Lewis basic ortho substituents such as ester, methoxy and methylmercapto groups (Nuricumbo-Escobar et al., 2007; Ríos-Moreno et al., 2003; Rodríguez et al., 1999; Tejel et al., 2004); it has been found that the nature of the substituent produces a dramatic impact on their coordination chemistry and reactivity. As part of our ongoing research, we have synthesized the title compound (I, Fig. 1) using the diazonium salt N-coupling methodology.

The molecular structure of (I) shows the characteristic trans stereochemistry about NN of the diazoamino group of free triazenes. The N1N2 bond [1.264 (3) Å] is longer than the typical value for NN bond (1.222 Å), whereas the N2—N3 bond [1.320 (3) Å] is shorter than typical value for a Nsp3—Nsp2 single bond (1.420 Å) (Allen et al., 1987). In addition, the C7—N3 bond [1.395 (3) Å] is shorter than the characteristic Caryl—NH single bonds for secondary aromatic amines (1.419 Å) (Orpen, et al., 1989). An intramolecular N1—H···N4 hydrogen bond is observed (Fig. 1 and Table 1).

In the crystal structure, adjacent units are arranged into a two-dimensional network along the (100) plane via intermolecular N— H···O and O—H···O hydrogen bond interactions (Fig. 2 and Table 1). These layers are linked together via intermolecular N—H···O and O—H···O hydrogen bonds forming a zig-zag bilayered array along the [001] direction (Fig. 3).

Related literature top

The synthesis of alternative ligands to stabilize dinuclear complexes and control their reactivity is an area of great importance in coordination and organometallic chemistry, see: Das et al. (2008); Estevan et al. (2006); Jie et al. (2007); Müller & Vogt (2007); Schilling et al. (2008). For the synthesis of 1,3-bis(aryl)triazenes as precursors for triazenido ligands bearing Lewis basic ortho substituents such as ester, methoxy and methylmercapto groups, see: Nuricumbo-Escobar et al.(2007); Ríos-Moreno et al. (2003); Rodríguez et al. (1999); Tejel et al. (2004). The starting material 2-[4,5-dihydro-1,3-oxazol-2-yl]aniline was synthesized by a modification of the literature method of Gómez et al. (2005). For bond-length data, see: Allen et al. (1987); Orpen et al. (1989).

Experimental top

The synthesis of the title compound included reagents and solvents of reagent grade, which were used without further purification. As a starting material we synthesized 2-[4,5-dihydro-1,3-oxazol-2-yl]aniline by a modification of the Gómez and coworkers methodology (Gómez et al., 2005). 2-[4,5-Dihydro-1,3-oxazol-2-yl]aniline (1.00 g, 6.17 mmol) was dissolved in aqueous HCl 2 M (9.25 ml, 18.50 mmol) and cooled to 268 K. A sodium nitrite solution (0.51 g, 7.40 mmol) in water (6 ml) was slowly added with continuous stirring. A solution of p-toluidine (0.66 g, 6.17 mmol) in methanol (10 ml) was added slowly to the reaction mixture, and stirred for 30 m at 268 K. The resulting mixture was neutralised with a saturated aqueous solution of NaHCO3. A crude yellow-orange was separated by filtration and washed with small portions of water. The product was purified by flash chromatography on neutral alumina (hexane/ethyl acetate, 1:9), and recrystallized from an ethyl acetate/hexane mixture (9 : 1). Orange bar-shaped crystals of (I), suitable for X-ray analysis, were obtained by slow evaporation of the solvent mixture. Yield 47% (0.87 g, 2.90 mmol), based on 2-[4,5-dihydro-1,3-oxazol-2-yl]aniline; m.p., 111–113 °C. IR (KBr pellet, cm-1), 3278, 3233, 1625, 1538, 1269.1H NMR [(CD3)2CO, 200 MHz] δ 12.89 (s), 8.10 (s), 7.93–7.02 (m, 8H), 4.10 (s), 3.74 (dd J = 5.4, 11.0 Hz, 2H), 3.54 (dd, J = 5.4, 11.0 Hz, 2H), 2.35 (s, 3H).13C NMR [(C D3)2CO, 50 MHz] δ 135.4, 133.0, 130.1, 128.4, 121.7,114.9, 61.2, 43.2, 21.0. Anal. Calcd. for C16H18N4O2: C, 64.41; H, 6.08;N, 18.78%. Found C, 64.11; H, 6.44; N, 18.93%. HRESIMS Calcd. for [M+H]+299.1503. Found 299.1519.

Refinement top

Refinement for H atoms was carried out using a riding model, with distances constrained to: 0.93 Å for aromatic CH, 0.98 Å for methine CH. Isotropic U parameters were fixed to Uiso(H)=1.2Ueq(carrier atom) for aromatic CH.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound (I) with displacement ellipsoids drawn at the 30% probability level. Intramolecular H-bond is indicated by dashed lines.
[Figure 2] Fig. 2. Packing of I showing the H-bonds. The molecules are forming a two dimensional network in the (100) plane. H-bonds are indicated by dashed lines.
[Figure 3] Fig. 3. Packing of I showing the bilayer. The molecules are forming a zig-zag array along the [001] direction.
N-(2-Hydroxyethyl)-2-[3-(p-tolyl)triazen-1-yl]benzamide top
Crystal data top
C16H18N4O2F(000) = 632
Mr = 298.34Dx = 1.299 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 76 reflections
a = 16.846 (2) Åθ = 4.7–12.0°
b = 12.2053 (17) ŵ = 0.09 mm1
c = 7.4302 (11) ÅT = 298 K
β = 93.212 (13)°Neele, yellow
V = 1525.3 (4) Å30.40 × 0.22 × 0.14 mm
Z = 4
Data collection top
Bruker P4
diffractometer
Rint = 0.044
Radiation source: fine-focus sealed tubeθmax = 26.3°, θmin = 2.1°
Graphite monochromatorh = 2020
2θ/ω scansk = 151
4153 measured reflectionsl = 91
3067 independent reflections3 standard reflections every 97 reflections
1778 reflections with I > 2σ(I) intensity decay: 2.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.188 w = 1/[σ2(Fo2) + (0.1035P)2 + 0.0651P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3067 reflectionsΔρmax = 0.57 e Å3
201 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (3)
Crystal data top
C16H18N4O2V = 1525.3 (4) Å3
Mr = 298.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.846 (2) ŵ = 0.09 mm1
b = 12.2053 (17) ÅT = 298 K
c = 7.4302 (11) Å0.40 × 0.22 × 0.14 mm
β = 93.212 (13)°
Data collection top
Bruker P4
diffractometer
Rint = 0.044
4153 measured reflections3 standard reflections every 97 reflections
3067 independent reflections intensity decay: 2.8%
1778 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.04Δρmax = 0.57 e Å3
3067 reflectionsΔρmin = 0.22 e Å3
201 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.69940 (11)0.33793 (15)0.0017 (3)0.0484 (5)
N20.76320 (11)0.39013 (16)0.0332 (3)0.0481 (5)
N40.54570 (10)0.30472 (15)0.1084 (3)0.0456 (5)
H4A0.57900.34800.05250.055*
O10.51316 (10)0.13062 (14)0.1750 (2)0.0574 (5)
O20.39653 (10)0.39859 (16)0.0593 (3)0.0651 (6)
H2B0.43410.38340.12990.098*
N30.75322 (11)0.49670 (16)0.0124 (3)0.0521 (6)
H3A0.70660.52190.01750.063*
C10.70741 (13)0.22274 (19)0.0146 (3)0.0434 (6)
C20.64042 (13)0.15801 (18)0.0313 (3)0.0424 (6)
C30.64717 (15)0.0445 (2)0.0087 (4)0.0550 (7)
H3B0.60290.00060.03460.066*
C40.71719 (17)0.0036 (2)0.0504 (4)0.0646 (8)
H4B0.72000.07920.06510.078*
C50.78345 (15)0.0601 (2)0.0881 (4)0.0654 (8)
H5A0.83170.02750.12370.078*
C60.77816 (14)0.1716 (2)0.0729 (4)0.0577 (7)
H6A0.82280.21410.10220.069*
C70.81680 (13)0.56925 (19)0.0379 (3)0.0472 (6)
C80.80588 (14)0.6767 (2)0.0132 (4)0.0552 (7)
H8A0.75690.69930.06420.066*
C90.86733 (16)0.7513 (2)0.0109 (4)0.0608 (7)
H9A0.85880.82400.02270.073*
C100.94103 (16)0.7200 (3)0.0839 (4)0.0622 (8)
C110.95105 (16)0.6126 (3)0.1297 (4)0.0682 (8)
H11A1.00060.58960.17710.082*
C120.89054 (14)0.5364 (2)0.1086 (4)0.0608 (7)
H12A0.89940.46370.14160.073*
C130.56158 (13)0.19811 (19)0.1101 (3)0.0420 (5)
C140.47468 (13)0.3509 (2)0.1968 (3)0.0495 (6)
H14A0.46710.31860.31570.059*
H14B0.48290.42890.21260.059*
C150.40087 (15)0.3347 (2)0.0995 (4)0.0617 (8)
H15A0.35550.35230.18060.074*
H15B0.39680.25800.06760.074*
C161.0073 (2)0.8027 (3)0.1157 (5)0.0921 (11)
H16A1.05690.76490.13740.138*
H16B0.99680.84700.21840.138*
H16C1.01010.84860.01130.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0424 (10)0.0407 (11)0.0617 (13)0.0019 (9)0.0007 (9)0.0026 (9)
N20.0432 (11)0.0418 (11)0.0585 (13)0.0002 (9)0.0026 (9)0.0039 (9)
N40.0368 (10)0.0412 (11)0.0581 (13)0.0021 (8)0.0039 (9)0.0023 (9)
O10.0554 (10)0.0464 (10)0.0678 (12)0.0062 (8)0.0189 (9)0.0037 (8)
O20.0477 (10)0.0882 (14)0.0579 (12)0.0226 (9)0.0101 (8)0.0129 (10)
N30.0373 (10)0.0382 (11)0.0796 (15)0.0020 (8)0.0072 (10)0.0020 (10)
C10.0409 (12)0.0430 (13)0.0461 (13)0.0018 (10)0.0015 (10)0.0002 (10)
C20.0438 (12)0.0405 (13)0.0428 (13)0.0027 (10)0.0001 (10)0.0001 (10)
C30.0560 (15)0.0425 (14)0.0654 (17)0.0017 (11)0.0071 (12)0.0009 (12)
C40.0697 (18)0.0407 (14)0.082 (2)0.0094 (13)0.0100 (15)0.0012 (14)
C50.0509 (15)0.0536 (16)0.090 (2)0.0143 (12)0.0097 (14)0.0021 (15)
C60.0426 (13)0.0525 (16)0.0771 (19)0.0020 (11)0.0053 (12)0.0019 (13)
C70.0385 (12)0.0428 (13)0.0603 (15)0.0017 (10)0.0020 (11)0.0070 (11)
C80.0420 (13)0.0508 (15)0.0726 (18)0.0000 (11)0.0029 (12)0.0010 (13)
C90.0587 (16)0.0510 (16)0.0737 (18)0.0109 (12)0.0113 (14)0.0017 (13)
C100.0525 (15)0.0679 (18)0.0669 (18)0.0196 (13)0.0083 (13)0.0146 (15)
C110.0412 (14)0.078 (2)0.084 (2)0.0023 (13)0.0095 (13)0.0153 (17)
C120.0469 (14)0.0481 (14)0.086 (2)0.0037 (12)0.0122 (13)0.0078 (14)
C130.0422 (12)0.0436 (13)0.0398 (12)0.0002 (10)0.0004 (10)0.0004 (10)
C140.0487 (14)0.0481 (14)0.0508 (15)0.0031 (11)0.0051 (11)0.0011 (11)
C150.0456 (14)0.0737 (19)0.0643 (18)0.0056 (13)0.0097 (12)0.0006 (15)
C160.073 (2)0.103 (3)0.100 (3)0.043 (2)0.0043 (18)0.016 (2)
Geometric parameters (Å, º) top
N1—N21.264 (3)C6—H6A0.9300
N1—C11.417 (3)C7—C81.375 (4)
N2—N31.319 (3)C7—C121.381 (3)
N4—C131.329 (3)C8—C91.383 (3)
N4—C141.447 (3)C8—H8A0.9300
N4—H4A0.8600C9—C101.381 (4)
O1—C131.238 (3)C9—H9A0.9300
O2—C151.420 (3)C10—C111.363 (4)
O2—H2B0.8200C10—C161.513 (4)
N3—C71.395 (3)C11—C121.382 (4)
N3—H3A0.8600C11—H11A0.9300
C1—C61.393 (3)C12—H12A0.9300
C1—C21.404 (3)C14—C151.486 (4)
C2—C31.400 (3)C14—H14A0.9700
C2—C131.503 (3)C14—H14B0.9700
C3—C41.368 (3)C15—H15A0.9700
C3—H3B0.9300C15—H15B0.9700
C4—C51.376 (4)C16—H16A0.9600
C4—H4B0.9300C16—H16B0.9600
C5—C61.367 (4)C16—H16C0.9600
C5—H5A0.9300
N2—N1—C1114.01 (19)C10—C9—C8121.2 (3)
N1—N2—N3111.82 (19)C10—C9—H9A119.4
C13—N4—C14122.64 (19)C8—C9—H9A119.4
C13—N4—H4A118.7C11—C10—C9117.4 (2)
C14—N4—H4A118.7C11—C10—C16121.5 (3)
C15—O2—H2B109.5C9—C10—C16121.0 (3)
N2—N3—C7121.21 (19)C10—C11—C12122.6 (3)
N2—N3—H3A119.4C10—C11—H11A118.7
C7—N3—H3A119.4C12—C11—H11A118.7
C6—C1—C2119.0 (2)C7—C12—C11119.3 (3)
C6—C1—N1123.2 (2)C7—C12—H12A120.3
C2—C1—N1117.79 (19)C11—C12—H12A120.3
C3—C2—C1118.0 (2)O1—C13—N4121.8 (2)
C3—C2—C13115.7 (2)O1—C13—C2118.9 (2)
C1—C2—C13126.3 (2)N4—C13—C2119.3 (2)
C4—C3—C2121.7 (2)N4—C14—C15114.9 (2)
C4—C3—H3B119.1N4—C14—H14A108.5
C2—C3—H3B119.1C15—C14—H14A108.5
C3—C4—C5119.9 (3)N4—C14—H14B108.5
C3—C4—H4B120.1C15—C14—H14B108.5
C5—C4—H4B120.1H14A—C14—H14B107.5
C6—C5—C4119.8 (2)O2—C15—C14114.5 (2)
C6—C5—H5A120.1O2—C15—H15A108.6
C4—C5—H5A120.1C14—C15—H15A108.6
C5—C6—C1121.5 (2)O2—C15—H15B108.6
C5—C6—H6A119.3C14—C15—H15B108.6
C1—C6—H6A119.3H15A—C15—H15B107.6
C8—C7—C12119.1 (2)C10—C16—H16A109.5
C8—C7—N3118.6 (2)C10—C16—H16B109.5
C12—C7—N3122.3 (2)H16A—C16—H16B109.5
C7—C8—C9120.3 (2)C10—C16—H16C109.5
C7—C8—H8A119.8H16A—C16—H16C109.5
C9—C8—H8A119.8H16B—C16—H16C109.5
C1—N1—N2—N3178.6 (2)N3—C7—C8—C9179.6 (2)
N1—N2—N3—C7177.7 (2)C7—C8—C9—C100.9 (4)
N2—N1—C1—C63.2 (3)C8—C9—C10—C110.6 (4)
N2—N1—C1—C2176.6 (2)C8—C9—C10—C16178.0 (3)
C6—C1—C2—C32.7 (3)C9—C10—C11—C121.2 (4)
N1—C1—C2—C3177.6 (2)C16—C10—C11—C12177.4 (3)
C6—C1—C2—C13174.8 (2)C8—C7—C12—C111.3 (4)
N1—C1—C2—C135.0 (3)N3—C7—C12—C11179.8 (2)
C1—C2—C3—C42.1 (4)C10—C11—C12—C70.2 (5)
C13—C2—C3—C4175.6 (2)C14—N4—C13—O16.1 (4)
C2—C3—C4—C50.5 (4)C14—N4—C13—C2173.9 (2)
C3—C4—C5—C62.5 (5)C3—C2—C13—O111.0 (3)
C4—C5—C6—C12.0 (5)C1—C2—C13—O1166.5 (2)
C2—C1—C6—C50.7 (4)C3—C2—C13—N4169.0 (2)
N1—C1—C6—C5179.5 (3)C1—C2—C13—N413.5 (3)
N2—N3—C7—C8169.7 (2)C13—N4—C14—C1576.5 (3)
N2—N3—C7—C128.8 (4)N4—C14—C15—O271.8 (3)
C12—C7—C8—C91.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N10.862.052.696 (3)132
O2—H2B···O1i0.821.922.729 (2)169
N3—H3A···O2ii0.862.002.851 (2)170
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H18N4O2
Mr298.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)16.846 (2), 12.2053 (17), 7.4302 (11)
β (°) 93.212 (13)
V3)1525.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.22 × 0.14
Data collection
DiffractometerBruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4153, 3067, 1778
Rint0.044
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.188, 1.04
No. of reflections3067
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.22

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N10.862.052.696 (3)131.7
O2—H2B···O1i0.821.922.729 (2)168.6
N3—H3A···O2ii0.862.002.851 (2)170.4
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z.
 

Acknowledgements

We gratefully acknowledge support for this project by Consejo Nacional de Ciencia y Tecnología (CONACyT grant 60467), Consejo del Sistema Nacional de EducaciónTecno­lógica (COSNET grant 486–02-P) and a graduate scholarship from CONACyT for F. Rocha-Alonzo. The authors are indebted to Adrián Ochoa Terán and Ignacio Rivero Espejel for their support in this work. We acknowledge Universidad Autónoma de Nuevo-León (Monterrey, México) for diffractometer time.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, V., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationDas, S., Brudvig, G. W. & Crabtree, R. H. (2008). Chem. Commun. 4, 413–424.  Web of Science CrossRef Google Scholar
First citationEstevan, F., Lloret, J., Sanau, M. & Ubeda, M. A. (2006). Organometallics, 25, 4977–4984.  Web of Science CSD CrossRef CAS Google Scholar
First citationGómez, M., Jansat, S., Muller, G., Aullón, G. & Maestro, M. A. (2005). Eur. J. Inorg. Chem. 2005, 4341–4351.  Google Scholar
First citationJie, S., Agostinho, M., Kermagoret, A., Cazin, C. S. J. & Braunstein, P. (2007). Dalton Trans. pp. 4472–4482.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMüller, C. & Vogt, D. (2007). Dalton Trans. pp. 5505–5523.  Google Scholar
First citationNuricumbo-Escobar, J. J., Campos-Alvarado, C., Ríos-Moreno, G., Morales-Morales, D., Walsh, P. J. & Parra-Hake, M. (2007). Inorg. Chem. 46, 6182–6189.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83.  CrossRef Web of Science Google Scholar
First citationRíos-Moreno, G., Aguirre, G., Parra-Hake, M. & Walsh, P. J. (2003). Polyhedron, 22, 563–568.  Web of Science CSD CrossRef CAS Google Scholar
First citationRodríguez, J. G., Parra-Hake, M., Aguirre, G., Ortega, F. & Walsh, P. J. (1999). Polyhedron, 18, 3051–3055.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchilling, M., Görl, C. & Alt, H. G. (2008). Appl. Catal. A, 348, 79–85.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTejel, C., Ciriano, M. A., Rios-Moreno, G., Dobrinovitch, I. T., Lahoz, F. J., Oro, L. A. & Parra-Hake, M. (2004). Inorg. Chem. 43, 4719–4726.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o990-o991
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds