organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A redetermination of 2-nitro­benzoic acid

aChemistry Department, "Sapienza" University of Rome, P.le A. Moro, 5, I-00185 Rome, Italy
*Correspondence e-mail: g.portalone@caspur.it

(Received 24 March 2009; accepted 30 March 2009; online 2 April 2009)

The crystal structure of the title compound, C7H5NO4, was first reported by Kurahashi, Fukuyo & Shimada [(1967). Bull. Chem. Soc. Jpn, 40, 1296]. It has been re-examined, improving the precision of the derived geometric parameters. The asymmetric unit comprises a non-planar independent mol­ecule, as the nitro and the carb­oxy substituents force each other to be twisted away from the plane of the aromatic ring by 54.9 (2) and 24.0 (2)°, respectively. The mol­ecules form a conventional dimeric unit via centrosymmetric inter­molecular hydrogen bonds.

Related literature

For the previous structure determination, see: Kurahashi et al. (1967[Kurahashi, M., Fukuyo, M. & Shimada, A. (1967). Bull. Chem. Soc. Jpn, 40, 1296]); Sakore et al. (1967[Sakore, T. D., Tavale, S. S. & Pant, L. M. (1967). Acta Cryst. 22, 720-725.]); Tavale & Pant (1973[Tavale, S. S. & Pant, L. M. (1973). Acta Cryst. B29, 2979-2980.]). For the effect of nitro and carboxy substitution on the geometry of polysubstituted benzene rings, see: Colapietro et al. (1984[Colapietro, M., Domenicano, A., Marciante, C. & Portalone, G. (1984). Acta Cryst. A40, C98-C99.]); Domenicano et al. (1989[Domenicano, A., Schultz, Gy., Hargittai, I., Colapietro, M., Portalone, G., George, P. & Bock, C. W. (1989). Struct. Chem. 1, 107-122.]). For the formation of hydrogen-bonded dimers in monocarboylic acids, see:Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]). For computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Motherwell et al. (1999[Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044-1056.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5NO4

  • Mr = 167.12

  • Triclinic, [P \overline 1]

  • a = 5.0147 (15) Å

  • b = 7.527 (2) Å

  • c = 10.620 (2) Å

  • α = 69.41 (2)°

  • β = 86.07 (2)°

  • γ = 71.01 (3)°

  • V = 354.35 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.15 × 0.15 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.879, Tmax = 0.980

  • 3862 measured reflections

  • 1872 independent reflections

  • 1087 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.148

  • S = 1.07

  • 1872 reflections

  • 113 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.90 (3) 1.77 (4) 2.660 (3) 173 (3)
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

o-Nitrobenzoic acid was determined more than 40 years ago (Kurahashi et al., 1967), but the final refinement was carried only to R=0.18. Subsequently, a new X-ray structure determination was reported (Sakore et al., 1967). In this study, 1250 unique reflections were collected at ambient temperature on an equi-inclination Weissenberg camera using Cu Kα radiation. Data were corrected for Lp effects as well as for the effect of spot extension, but not for absorption [µ(Cu Kα)= 135 mm-1]. 694 visually estimated reflections having values significantly above background were used in the isotropic least-squares refinement. The final calculations led to R = 0.142 for 49 refined parameters, as the H atoms were not localized. A further anisotropic refinement of the structure was eventually carried out (Tavale & Pant, 1973). In this calculation, based on the same data set but with the inclusion of H atoms. the R factor decreased to 0.104, with a data-to-parameter ratio of 5.6, and average standard deviations of 0.013Å in C—C bond lengths and 0.9° in bond angles.

The asymmetric unit of (I) comprises a non-planar independent molecule, as the nitro and carboxy substituents force each other to be twisted away from the plane of the aromatic ring by 54.9 (2) and 24.0 (2)°, respectively (Fig. 1). The pattern of bond lengths and bond angles is consistent with those reported in previous structural investigations concerning the effect of the nitro and the carboxy groups on the geometry of polysubstituted benzene rings (Colapietro et al., 1984; Domenicano et al., 1989). Analysis of the crystal packing of (I), (Fig. 2), shows that the molecular components form the conventional dimeric units observed in monocarboylic acids (Leiserowitz, 1976). The structure is stabilized by very short [2.660 (3) Å] intermolecular O—H···O interactions of descriptor R22(8) (Etter et al., 1990; Bernstein et al., 1995; Motherwell et al., 1999) (Table 1) between the OH moiety and the carbonyl O atom (O1i) [symmetry code: (i) -x + 2, -y + 1, -z + 1].

Related literature top

For the previous structure determination, see: Kurahashi et al. (1967); Sakore et al. (1967); Tavale & Pant (1973). For related literature, see: Leiserowitz (1976); Colapietro et al. (1984); Domenicano et al. (1989). For computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990); Bernstein et al. (1995); Motherwell et al. (1999).

Experimental top

o-Nitrobenzoic acid (0.1 mmol, Sigma Aldrich at 95% purity) was dissolved in water (5 ml) and gently heated under reflux for 1 h. After cooling the solution to an ambient temperature, crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solvent after few days.

Refinement top

All H atoms were found in a difference map and then treated as riding atoms, with C—H = 0.93Å and Uiso values equal to 1.2Ueq(C, phenyl). The remaining H atom of the carboxy group was freely refined.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacements ellipsoids are at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing diagram for (I) viewed approximately down a. All atoms are shown as small spheres of arbitrary radii. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. Hydrogen bonding is indicated by dashed lines.
2-nitrobenzoic acid top
Crystal data top
C7H5NO4Z = 2
Mr = 167.12F(000) = 172
Triclinic, P1Dx = 1.566 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0147 (15) ÅCell parameters from 861 reflections
b = 7.527 (2) Åθ = 3.0–32.5°
c = 10.620 (2) ŵ = 0.13 mm1
α = 69.41 (2)°T = 298 K
β = 86.07 (2)°Tablets, colourless
γ = 71.01 (3)°0.15 × 0.15 × 0.10 mm
V = 354.35 (18) Å3
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
1872 independent reflections
Radiation source: Enhance (Mo) X-ray Source1087 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 16.0696 pixels mm-1θmax = 29.0°, θmin = 3.0°
ω and ϕ scansh = 66
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1010
Tmin = 0.879, Tmax = 0.980l = 1414
3862 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.0451P]
where P = (Fo2 + 2Fc2)/3
1872 reflections(Δ/σ)max < 0.001
113 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C7H5NO4γ = 71.01 (3)°
Mr = 167.12V = 354.35 (18) Å3
Triclinic, P1Z = 2
a = 5.0147 (15) ÅMo Kα radiation
b = 7.527 (2) ŵ = 0.13 mm1
c = 10.620 (2) ÅT = 298 K
α = 69.41 (2)°0.15 × 0.15 × 0.10 mm
β = 86.07 (2)°
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
1872 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
1087 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.980Rint = 0.050
3862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.26 e Å3
1872 reflectionsΔρmin = 0.20 e Å3
113 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.29 (release 10-06-2008 CrysAlis171 .NET) (compiled Jun 10 2008,16:49:55) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8083 (4)0.3762 (3)0.6058 (2)0.0471 (6)
O21.2483 (4)0.2482 (3)0.5512 (2)0.0481 (6)
H21.221 (7)0.378 (5)0.504 (3)0.068 (11)*
O30.7790 (4)0.2147 (3)0.8921 (2)0.0537 (6)
O40.4118 (4)0.1514 (3)0.8517 (2)0.0533 (6)
N10.6642 (5)0.1288 (3)0.8481 (2)0.0344 (5)
C11.0287 (5)0.0235 (3)0.6923 (2)0.0305 (6)
C20.8416 (5)0.0231 (4)0.7933 (2)0.0297 (6)
C30.8224 (6)0.2123 (4)0.8508 (3)0.0381 (7)
H30.69040.23750.91470.046*
C41.0025 (6)0.3648 (4)0.8123 (3)0.0450 (7)
H40.99270.49410.85030.054*
C51.1971 (6)0.3249 (4)0.7172 (3)0.0440 (8)
H51.32190.42860.69330.053*
C61.2084 (6)0.1327 (4)0.6572 (3)0.0393 (7)
H61.33860.10800.59220.047*
C71.0188 (5)0.2327 (4)0.6144 (3)0.0334 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0457 (12)0.0296 (10)0.0542 (13)0.0083 (9)0.0228 (10)0.0080 (9)
O20.0461 (13)0.0350 (12)0.0543 (13)0.0151 (9)0.0236 (10)0.0071 (10)
O30.0600 (14)0.0563 (13)0.0657 (14)0.0290 (11)0.0177 (11)0.0391 (12)
O40.0361 (12)0.0638 (14)0.0638 (15)0.0131 (10)0.0160 (10)0.0321 (12)
N10.0411 (14)0.0319 (12)0.0275 (12)0.0140 (10)0.0117 (10)0.0071 (10)
C10.0335 (14)0.0287 (14)0.0275 (13)0.0088 (11)0.0023 (11)0.0090 (11)
C20.0312 (13)0.0300 (14)0.0270 (13)0.0084 (10)0.0045 (11)0.0106 (11)
C30.0486 (17)0.0355 (15)0.0323 (15)0.0205 (12)0.0114 (13)0.0097 (12)
C40.062 (2)0.0263 (14)0.0437 (17)0.0150 (13)0.0056 (15)0.0079 (13)
C50.0530 (18)0.0312 (15)0.0436 (17)0.0052 (12)0.0085 (14)0.0169 (13)
C60.0402 (16)0.0393 (16)0.0357 (15)0.0105 (12)0.0132 (13)0.0138 (13)
C70.0392 (15)0.0320 (14)0.0304 (14)0.0148 (12)0.0131 (12)0.0116 (11)
Geometric parameters (Å, º) top
O1—C71.222 (3)C2—C31.372 (3)
O2—C71.310 (3)C3—C41.380 (3)
O2—H20.90 (3)C3—H30.9300
O3—N11.208 (3)C4—C51.381 (4)
O4—N11.221 (3)C4—H40.9300
N1—C21.474 (3)C5—C61.379 (4)
C1—C61.381 (3)C5—H50.9300
C1—C21.402 (3)C6—H60.9300
C1—C71.485 (3)
C7—O2—H2108 (2)C3—C4—C5119.8 (2)
O3—N1—O4124.6 (2)C3—C4—H4120.1
O3—N1—C2118.2 (2)C5—C4—H4120.1
O4—N1—C2117.1 (2)C6—C5—C4120.6 (2)
C6—C1—C2117.2 (2)C6—C5—H5119.7
C6—C1—C7119.9 (2)C4—C5—H5119.7
C2—C1—C7122.7 (2)C5—C6—C1120.9 (2)
C3—C2—C1122.5 (2)C5—C6—H6119.6
C3—C2—N1116.4 (2)C1—C6—H6119.6
C1—C2—N1121.1 (2)O1—C7—O2123.4 (2)
C2—C3—C4118.9 (2)O1—C7—C1122.2 (2)
C2—C3—H3120.6O2—C7—C1114.4 (2)
C4—C3—H3120.6
C6—C1—C2—C33.7 (4)C2—C3—C4—C50.1 (4)
C7—C1—C2—C3169.9 (3)C3—C4—C5—C61.9 (4)
C6—C1—C2—N1173.2 (2)C4—C5—C6—C11.1 (4)
C7—C1—C2—N113.3 (4)C2—C1—C6—C51.6 (4)
O3—N1—C2—C3122.6 (3)C7—C1—C6—C5172.1 (3)
O4—N1—C2—C353.9 (3)C6—C1—C7—O1152.9 (3)
O3—N1—C2—C154.5 (3)C2—C1—C7—O120.5 (4)
O4—N1—C2—C1129.1 (3)C6—C1—C7—O223.9 (4)
C1—C2—C3—C42.9 (4)C2—C1—C7—O2162.7 (2)
N1—C2—C3—C4174.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.90 (3)1.77 (4)2.660 (3)173 (3)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H5NO4
Mr167.12
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.0147 (15), 7.527 (2), 10.620 (2)
α, β, γ (°)69.41 (2), 86.07 (2), 71.01 (3)
V3)354.35 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.15 × 0.15 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur S CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.879, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
3862, 1872, 1087
Rint0.050
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.148, 1.07
No. of reflections1872
No. of parameters113
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.20

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.90 (3)1.77 (4)2.660 (3)173 (3)
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

I thank MIUR (Rome) for 2006 financial support of the project `X-ray diffractometry and spectrometry'.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationColapietro, M., Domenicano, A., Marciante, C. & Portalone, G. (1984). Acta Cryst. A40, C98–C99.  CrossRef IUCr Journals Google Scholar
First citationDomenicano, A., Schultz, Gy., Hargittai, I., Colapietro, M., Portalone, G., George, P. & Bock, C. W. (1989). Struct. Chem. 1, 107–122.  Web of Science CSD CrossRef Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKurahashi, M., Fukuyo, M. & Shimada, A. (1967). Bull. Chem. Soc. Jpn, 40, 1296  CrossRef CAS Web of Science Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMotherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044–1056.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSakore, T. D., Tavale, S. S. & Pant, L. M. (1967). Acta Cryst. 22, 720–725.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTavale, S. S. & Pant, L. M. (1973). Acta Cryst. B29, 2979–2980.  CSD CrossRef IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds