metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aquanickel(II)]-μ-pyridine-2,6-di­carboxylato-[aquanickel(II)]-μ-2,5-di-4-pyridyl-1,3,4-thia­diazole]

aLi Shui Vocational & Technical College, Lishui, Zhejiang 323000, People's Republic of China
*Correspondence e-mail: zjlszxa@126.com

(Received 27 March 2009; accepted 3 April 2009; online 8 April 2009)

The two independent NiII ions in the one-dimensional title complex, [Ni2(C7H3NO4)2(C12H8N4S)(H2O)2]n or [Ni2(pydc)2(bpt)(H2O)2]n (H2pydc = pyridine-2,6-dicarboxylic acid and bpt = 2,5-di-4-pyrid­yl-1,3,4-thia­diazole), have different coordination environments. One NiII ion is in a slightly-distorted octa­hedral coordination environment formed by three O atoms from two adjacent pydc ligands, two N atoms from bpt and pydc ligands, and one water mol­ecule, while the other NiII ion is in distorted square-pyramidal geometry, coordinated by two O atoms from two carboxyl­ate groups and two N atoms from the pyridine rings of the pydc and bpt ligands in the basal plane, while a coordinated water mol­ecule occupies the apical site. In the crystal structure, the H atoms of both water mol­ecules are involved in inter­molecular hydrogen bonds with the O atoms of uncoordinated carboxyl­ate groups, which link chains into a three-dimensional network.

Related literature

For information on the types of ligands used for metal-organic frameworks, see: Zhang et al. (2005[Zhang, X. M., Fang, R. Q. & Wu, H. S. (2005). CrystEngcomm, 7, 96-101.]); Wen et al. (2007[Wen, L.-L., Tian, Z.-F., Zhu, H.-Z. & Meng, Q.-J. (2007). Z. Anorg. Allg. Chem. 632, 689-694.]); Dong et al. (2003[Dong, Y. B., Ma, J. P., Huang, R. Q., Smith, M. D. & Loye, H. C. (2003). Inorg. Chem. 42, 294-300.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C7H3NO4)2(C12H8N4S)(H2O)2]

  • Mr = 723.94

  • Triclinic, [P \overline 1]

  • a = 8.2998 (12) Å

  • b = 10.0819 (15) Å

  • c = 17.318 (3) Å

  • α = 96.652 (2)°

  • β = 100.629 (2)°

  • γ = 108.077 (2)°

  • V = 1330.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 298 K

  • 0.28 × 0.21 × 0.15 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.668, Tmax = 0.799

  • 9932 measured reflections

  • 4735 independent reflections

  • 3249 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.147

  • S = 0.97

  • 4735 reflections

  • 406 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H1W⋯O4i 0.83 1.99 2.815 (5) 178
O9—H2W⋯O8ii 0.83 1.95 2.755 (5) 161
O9—H2W⋯O7ii 0.83 2.43 3.093 (5) 138
O10—H3W⋯S1iii 0.85 2.75 3.601 (5) 179
O10—H4W⋯O5iv 0.85 1.97 2.814 (6) 168
Symmetry codes: (i) -x+4, -y+3, -z+2; (ii) x+2, y+1, z; (iii) x-1, y, z; (iv) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, metal-organic frameworks have been obtained by using linear 4,4'-bipyridine, 1,2-bis(4-pyridyl)ethene and other bipyridine-like N,N'-donor ligands. However, the V-shaped N,N'-ligands, such as 2,5-di-4-pyridyl-1,3,4-oxadiazole, 4-amino-2,5-di-4-pyridyl-1,2,4-triazole, and 2,5-bis-(4- pyridyl)-1,3,4-thiadiazole find limited use as building blocks (Zhang et al., 2005, Dong et al., 2003). A study on the effect of angular N-containing ligands on the construction of coordination polymers in the presence of pyridine-2,6-dicarboxylic acid (pydc) is still not available (Wen et al., 2007). In this paper, we report crystal structure of the title complex (I) containing an angular co-ligand.

The asymmetric unit of the title compound contains of two independent NiII ions, one bpt ligand, two pydc moieties, and two coordinated water molecules (Scheme 1, Figure 1). The two unique NiII ions have different coordination environments. Atom Ni1 adopts a slightly-distorted octahedral coordination formed by three O atoms from two adjacent pydc ligands, two N atoms from bpt and pydc ligands, and one coordinated water molecule, while atom Ni2 has distorted square-pyramidal coordination geometry and is coordinated by two oxygen atoms from two carboxylate groups and two N atoms from the pyridine rings of pydc and bpt, and one coordinated water molecule is located at the apical site. Both carboxylic groups are out of the plane of corresponding pyridine rings, with the dihedral angles 88.3 (5)° and 90.5 (7)°, respectively. The bpt ligands connect Ni atoms via two terminal pyridyl N atoms to form a binuclear unit. Furthermore, adjacent dimeric units are linked by carboxylic oxygen atoms of pydc ligands to form 1-D zigzag polymeric chains along [110]. In the crystal structure, H atoms of both water molecules are involved in hydrogen bonds with O atoms of uncoordinated carboxylate groups which link extended chains to form an three-dimensional network (Table 1).

Related literature top

For information on the types of ligands used for metal-organic frameworks, see: Zhang et al. (2005); Wen et al. (2007); Dong et al. (2003).

Experimental top

A mixture of bpt (0.031 g, 0.15 mmol), NiSO4 (0.029 g, 0.13 mmol), and H2pydc (0.38g, 0.26mmol) in NaOH (0.2mL, 0.5M) and CH3CN(20 mL) solution, was stirred vigourously for 3 hours, and then then filtered. The resulting liquid was kept at room temperature and one week later single crystals suitable for X-ray diffraction measurements were formed.

Refinement top

The H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). The H atoms of water molecule were located in difference Fourier maps and refined in 'as found' positions with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing the atom-labeling scheme. Displacement ellipsoids are shown at the 30% probability level. The symmetry related O1(-x-2, -1-y, -z) atom bonded to Ni1 is drawn to illustrate the slightly-distorted octahedral coordination environment.
catena-Poly[[aquanickel(II)]-µ-pyridine-2,6- dicarboxylato-[aquanickel(II)]-µ-2,5-di-4-pyridyl-1,3,4-thiadiazole] top
Crystal data top
[Ni2(C7H3NO4)2(C12H8N4S)(H2O)2]Z = 2
Mr = 723.94F(000) = 736
Triclinic, P1Dx = 1.807 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2998 (12) ÅCell parameters from 4735 reflections
b = 10.0819 (15) Åθ = 2.3–25.2°
c = 17.318 (3) ŵ = 1.57 mm1
α = 96.652 (2)°T = 298 K
β = 100.629 (2)°Block, green
γ = 108.077 (2)°0.28 × 0.21 × 0.15 mm
V = 1330.6 (3) Å3
Data collection top
Bruker APEXII
diffractometer
4735 independent reflections
Radiation source: fine-focus sealed tube3249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.668, Tmax = 0.799k = 1212
9932 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0901P)2]
where P = (Fo2 + 2Fc2)/3
4735 reflections(Δ/σ)max = 0.001
406 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Ni2(C7H3NO4)2(C12H8N4S)(H2O)2]γ = 108.077 (2)°
Mr = 723.94V = 1330.6 (3) Å3
Triclinic, P1Z = 2
a = 8.2998 (12) ÅMo Kα radiation
b = 10.0819 (15) ŵ = 1.57 mm1
c = 17.318 (3) ÅT = 298 K
α = 96.652 (2)°0.28 × 0.21 × 0.15 mm
β = 100.629 (2)°
Data collection top
Bruker APEXII
diffractometer
4735 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3249 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 0.799Rint = 0.038
9932 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 0.97Δρmax = 0.43 e Å3
4735 reflectionsΔρmin = 0.54 e Å3
406 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni21.69956 (7)1.19003 (6)0.87739 (3)0.02962 (19)
Ni10.14341 (8)0.36762 (7)0.60834 (4)0.0429 (2)
S10.77693 (15)0.77425 (14)0.74915 (8)0.0431 (4)
O11.8982 (4)1.1719 (4)0.6830 (2)0.0488 (9)
O21.7107 (4)1.1265 (4)0.76286 (19)0.0402 (8)
O31.7748 (4)1.2547 (4)0.99695 (19)0.0403 (8)
O42.0135 (4)1.3775 (4)1.0943 (2)0.0455 (9)
O50.0806 (5)0.2964 (4)0.5084 (2)0.0594 (11)
O60.1988 (6)0.1538 (5)0.3893 (2)0.0734 (13)
O70.2846 (5)0.4040 (4)0.6856 (2)0.0475 (9)
O80.5522 (5)0.3199 (4)0.7064 (2)0.0547 (10)
O91.6629 (4)1.4007 (4)0.8577 (2)0.0427 (8)
H1W1.75811.46600.87040.064*
H2W1.61801.38850.80910.064*
O100.1970 (7)0.5901 (5)0.5634 (3)0.0955 (16)
H3W0.20390.63370.60700.143*
H4W0.11030.63610.54610.143*
N11.9442 (5)1.2626 (4)0.8884 (2)0.0321 (9)
N20.3695 (5)0.2512 (4)0.5473 (2)0.0406 (10)
N31.4516 (5)1.0892 (4)0.8666 (2)0.0340 (9)
N40.8221 (5)0.9038 (5)0.8903 (2)0.0449 (11)
N50.6470 (5)0.8299 (5)0.8649 (2)0.0442 (11)
N60.0871 (5)0.4965 (4)0.6684 (2)0.0390 (10)
C11.8619 (6)1.1791 (5)0.7489 (3)0.0339 (11)
C22.0073 (6)1.2550 (5)0.8231 (3)0.0323 (11)
C32.1824 (6)1.3118 (5)0.8283 (3)0.0372 (12)
H32.22701.30790.78300.045*
C42.2911 (6)1.3751 (6)0.9028 (3)0.0467 (14)
H42.41091.41310.90810.056*
C52.2227 (6)1.3823 (5)0.9695 (3)0.0435 (13)
H52.29541.42581.01970.052*
C62.0453 (6)1.3240 (5)0.9606 (3)0.0329 (11)
C71.9391 (6)1.3217 (5)1.0237 (3)0.0362 (11)
C80.2127 (8)0.2105 (6)0.4531 (3)0.0529 (15)
C90.3855 (7)0.1851 (6)0.4741 (3)0.0462 (13)
C100.5481 (7)0.1018 (6)0.4266 (3)0.0535 (15)
H100.56110.05410.37530.064*
C110.6908 (8)0.0937 (6)0.4600 (4)0.0584 (16)
H110.80220.04100.42960.070*
C120.6711 (7)0.1626 (6)0.5379 (3)0.0535 (15)
H120.76670.15540.56010.064*
C130.5039 (7)0.2415 (6)0.5803 (3)0.0427 (13)
C140.4484 (7)0.3255 (6)0.6637 (3)0.0420 (13)
C151.3472 (6)1.0279 (5)0.7932 (3)0.0370 (12)
H151.39661.03190.74910.044*
C161.1708 (6)0.9599 (5)0.7813 (3)0.0357 (11)
H161.10270.91850.73010.043*
C171.0954 (6)0.9536 (5)0.8465 (3)0.0304 (10)
C181.2028 (6)1.0150 (5)0.9222 (3)0.0347 (11)
H181.15681.01160.96720.042*
C191.3778 (6)1.0807 (5)0.9293 (3)0.0357 (11)
H191.44871.12140.98010.043*
C200.9077 (6)0.8850 (5)0.8354 (3)0.0323 (11)
C210.6026 (6)0.7566 (5)0.7930 (3)0.0328 (11)
C220.2237 (6)0.5116 (6)0.6344 (3)0.0460 (13)
H220.20440.46380.58250.055*
C230.3899 (7)0.5949 (6)0.6736 (3)0.0469 (14)
H230.48080.60170.64820.056*
C240.4242 (6)0.6691 (5)0.7506 (3)0.0343 (11)
C250.2834 (6)0.6548 (5)0.7860 (3)0.0388 (12)
H250.29950.70130.83790.047*
C260.1188 (6)0.5695 (5)0.7419 (3)0.0385 (12)
H260.02480.56290.76510.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni20.0176 (3)0.0381 (4)0.0277 (3)0.0029 (3)0.0071 (2)0.0001 (3)
Ni10.0297 (4)0.0543 (5)0.0314 (4)0.0011 (3)0.0087 (3)0.0033 (3)
S10.0250 (7)0.0552 (8)0.0370 (7)0.0022 (6)0.0088 (5)0.0093 (6)
O10.040 (2)0.066 (3)0.033 (2)0.0106 (18)0.0136 (17)0.0056 (18)
O20.0252 (18)0.048 (2)0.0379 (19)0.0035 (16)0.0056 (15)0.0007 (16)
O30.0267 (18)0.053 (2)0.0344 (19)0.0057 (16)0.0079 (15)0.0024 (16)
O40.036 (2)0.057 (2)0.035 (2)0.0085 (18)0.0064 (16)0.0009 (17)
O50.047 (2)0.077 (3)0.041 (2)0.005 (2)0.0176 (19)0.001 (2)
O60.074 (3)0.084 (3)0.050 (3)0.012 (2)0.025 (2)0.011 (2)
O70.038 (2)0.050 (2)0.044 (2)0.0007 (17)0.0134 (17)0.0023 (17)
O80.040 (2)0.076 (3)0.049 (2)0.017 (2)0.0185 (19)0.005 (2)
O90.0343 (19)0.048 (2)0.041 (2)0.0102 (16)0.0086 (16)0.0013 (16)
O100.097 (4)0.097 (4)0.089 (4)0.015 (3)0.040 (3)0.025 (3)
N10.026 (2)0.037 (2)0.032 (2)0.0074 (17)0.0110 (17)0.0031 (18)
N20.037 (2)0.043 (3)0.035 (2)0.006 (2)0.0076 (19)0.003 (2)
N30.027 (2)0.038 (2)0.033 (2)0.0054 (18)0.0097 (18)0.0025 (18)
N40.028 (2)0.055 (3)0.038 (3)0.001 (2)0.0104 (19)0.006 (2)
N50.022 (2)0.055 (3)0.044 (3)0.0002 (19)0.0111 (19)0.006 (2)
N60.029 (2)0.041 (2)0.038 (2)0.0025 (19)0.0070 (19)0.002 (2)
C10.024 (3)0.041 (3)0.033 (3)0.010 (2)0.006 (2)0.002 (2)
C20.029 (3)0.033 (3)0.033 (3)0.009 (2)0.010 (2)0.001 (2)
C30.024 (3)0.046 (3)0.042 (3)0.011 (2)0.014 (2)0.005 (2)
C40.020 (3)0.056 (3)0.054 (4)0.003 (2)0.011 (2)0.003 (3)
C50.030 (3)0.047 (3)0.043 (3)0.004 (2)0.006 (2)0.009 (2)
C60.026 (3)0.037 (3)0.033 (3)0.009 (2)0.008 (2)0.002 (2)
C70.031 (3)0.041 (3)0.034 (3)0.009 (2)0.010 (2)0.004 (2)
C80.060 (4)0.052 (4)0.035 (3)0.007 (3)0.012 (3)0.002 (3)
C90.051 (3)0.040 (3)0.041 (3)0.007 (3)0.011 (3)0.005 (2)
C100.055 (4)0.048 (3)0.039 (3)0.001 (3)0.001 (3)0.000 (3)
C110.047 (4)0.059 (4)0.049 (4)0.004 (3)0.005 (3)0.002 (3)
C120.035 (3)0.058 (4)0.055 (4)0.004 (3)0.005 (3)0.001 (3)
C130.036 (3)0.045 (3)0.044 (3)0.010 (2)0.010 (2)0.007 (2)
C140.039 (3)0.047 (3)0.035 (3)0.012 (3)0.005 (2)0.003 (2)
C150.027 (3)0.045 (3)0.031 (3)0.005 (2)0.008 (2)0.002 (2)
C160.026 (3)0.042 (3)0.032 (3)0.004 (2)0.008 (2)0.000 (2)
C170.027 (2)0.029 (3)0.029 (3)0.003 (2)0.007 (2)0.002 (2)
C180.027 (3)0.038 (3)0.035 (3)0.003 (2)0.013 (2)0.007 (2)
C190.029 (3)0.047 (3)0.026 (3)0.008 (2)0.003 (2)0.002 (2)
C200.026 (3)0.033 (3)0.031 (3)0.004 (2)0.004 (2)0.001 (2)
C210.023 (2)0.036 (3)0.038 (3)0.005 (2)0.013 (2)0.007 (2)
C220.032 (3)0.057 (4)0.040 (3)0.004 (3)0.010 (2)0.002 (3)
C230.031 (3)0.057 (3)0.046 (3)0.010 (3)0.012 (2)0.002 (3)
C240.030 (3)0.032 (3)0.038 (3)0.008 (2)0.007 (2)0.000 (2)
C250.030 (3)0.040 (3)0.040 (3)0.005 (2)0.011 (2)0.002 (2)
C260.026 (3)0.046 (3)0.040 (3)0.006 (2)0.010 (2)0.005 (2)
Geometric parameters (Å, º) top
Ni2—N11.897 (4)C1—C21.523 (6)
Ni2—N31.954 (4)C2—C31.368 (6)
Ni2—O32.015 (3)C3—C41.381 (7)
Ni2—O22.040 (3)C3—H30.9300
Ni2—O92.291 (3)C4—C51.382 (7)
Ni1—N21.906 (4)C4—H40.9300
Ni1—N61.960 (4)C5—C61.377 (6)
Ni1—O72.007 (3)C5—H50.9300
Ni1—O52.015 (4)C6—C71.523 (6)
Ni1—O102.594 (5)C8—C91.497 (8)
Ni1—O1i2.556 (4)C9—C101.389 (7)
S1—C201.708 (5)C10—C111.395 (8)
S1—C211.726 (4)C10—H100.9300
O1—C11.234 (5)C11—C121.401 (8)
O2—C11.281 (5)C11—H110.9300
O3—C71.286 (6)C12—C131.379 (7)
O4—C71.240 (6)C12—H120.9300
O5—C81.304 (7)C13—C141.498 (7)
O6—C81.226 (6)C15—C161.374 (6)
O7—C141.300 (6)C15—H150.9300
O8—C141.229 (6)C16—C171.387 (6)
O9—H1W0.8282C16—H160.9300
O9—H2W0.8325C17—C181.390 (6)
O10—H3W0.8496C17—C201.460 (6)
O10—H4W0.8529C18—C191.372 (6)
N1—C61.328 (6)C18—H180.9300
N1—C21.334 (6)C19—H190.9300
N2—C91.325 (6)C21—C241.466 (6)
N2—C131.326 (6)C22—C231.368 (7)
N3—C191.339 (6)C22—H220.9300
N3—C151.353 (6)C23—C241.384 (7)
N4—C201.318 (6)C23—H230.9300
N4—N51.370 (5)C24—C251.394 (6)
N5—C211.297 (6)C25—C261.387 (7)
N6—C261.330 (6)C25—H250.9300
N6—C221.348 (6)C26—H260.9300
N1—Ni2—N3171.86 (16)N1—C6—C5119.3 (4)
N1—Ni2—O380.99 (14)N1—C6—C7111.7 (4)
N3—Ni2—O399.57 (15)C5—C6—C7128.9 (4)
N1—Ni2—O280.38 (14)O4—C7—O3125.9 (4)
N3—Ni2—O297.88 (14)O4—C7—C6119.9 (4)
O3—Ni2—O2160.06 (14)O3—C7—C6114.1 (4)
N1—Ni2—O993.67 (14)O6—C8—O5123.7 (6)
N3—Ni2—O994.42 (14)O6—C8—C9122.1 (5)
O3—Ni2—O992.34 (13)O5—C8—C9114.2 (5)
O2—Ni2—O995.87 (13)N2—C9—C10120.9 (5)
N2—Ni1—N6176.70 (18)N2—C9—C8112.0 (5)
N2—Ni1—O780.93 (16)C10—C9—C8127.1 (5)
N6—Ni1—O798.94 (16)C9—C10—C11116.4 (5)
N2—Ni1—O580.32 (17)C9—C10—H10121.8
N6—Ni1—O599.67 (16)C11—C10—H10121.8
O7—Ni1—O5161.16 (16)C10—C11—C12121.9 (5)
N2—Ni1—O1090.19 (17)C10—C11—H11119.0
N6—Ni1—O1086.53 (17)C12—C11—H11119.0
O7—Ni1—O1081.20 (16)C13—C12—C11117.0 (5)
O5—Ni1—O1097.04 (17)C13—C12—H12121.5
N2—Ni1—O1i93.23 (15)C11—C12—H12121.5
N6—Ni1—O1i90.06 (15)N2—C13—C12120.5 (5)
O7—Ni1—O1i86.78 (13)N2—C13—C14112.0 (5)
O5—Ni1—O1i96.07 (14)C12—C13—C14127.5 (5)
C20—S1—C2187.9 (2)O8—C14—O7123.9 (5)
C1—O2—Ni2113.8 (3)O8—C14—C13121.6 (5)
C7—O3—Ni2114.5 (3)O7—C14—C13114.6 (4)
C8—O5—Ni1114.6 (4)N3—C15—C16122.4 (4)
C14—O7—Ni1113.8 (3)N3—C15—H15118.8
Ni2—O9—H1W110.3C16—C15—H15118.8
Ni2—O9—H2W105.3C15—C16—C17119.4 (5)
H1W—O9—H2W111.2C15—C16—H16120.3
Ni1—O10—H3W101.0C17—C16—H16120.3
Ni1—O10—H4W108.8C18—C17—C16118.2 (4)
H3W—O10—H4W112.9C18—C17—C20121.3 (4)
C6—N1—C2122.7 (4)C16—C17—C20120.5 (4)
C6—N1—Ni2118.3 (3)C19—C18—C17119.0 (4)
C2—N1—Ni2118.9 (3)C19—C18—H18120.5
C9—N2—C13123.2 (5)C17—C18—H18120.5
C9—N2—Ni1118.8 (4)N3—C19—C18123.2 (4)
C13—N2—Ni1118.0 (4)N3—C19—H19118.4
C19—N3—C15117.7 (4)C18—C19—H19118.4
C19—N3—Ni2122.7 (3)N4—C20—C17123.4 (4)
C15—N3—Ni2119.6 (3)N4—C20—S1113.4 (3)
C20—N4—N5112.2 (4)C17—C20—S1123.2 (3)
C21—N5—N4113.4 (4)N5—C21—C24125.1 (4)
C26—N6—C22117.2 (4)N5—C21—S1113.0 (3)
C26—N6—Ni1124.1 (3)C24—C21—S1121.9 (4)
C22—N6—Ni1118.7 (4)N6—C22—C23122.3 (5)
O1—C1—O2126.5 (4)N6—C22—H22118.9
O1—C1—C2118.9 (4)C23—C22—H22118.9
O2—C1—C2114.6 (4)C22—C23—C24120.8 (5)
N1—C2—C3120.5 (4)C22—C23—H23119.6
N1—C2—C1111.2 (4)C24—C23—H23119.6
C3—C2—C1128.3 (4)C23—C24—C25117.3 (5)
C2—C3—C4118.2 (4)C23—C24—C21120.8 (4)
C2—C3—H3120.9C25—C24—C21121.9 (4)
C4—C3—H3120.9C26—C25—C24118.3 (5)
C3—C4—C5120.3 (5)C26—C25—H25120.9
C3—C4—H4119.9C24—C25—H25120.9
C5—C4—H4119.9N6—C26—C25124.1 (5)
C6—C5—C4119.0 (5)N6—C26—H26118.0
C6—C5—H5120.5C25—C26—H26118.0
C4—C5—H5120.5
N1—Ni2—O2—C19.6 (3)N1—C6—C7—O33.7 (6)
N3—Ni2—O2—C1178.5 (3)C5—C6—C7—O3178.0 (5)
O3—Ni2—O2—C130.6 (6)Ni1—O5—C8—O6178.0 (5)
O9—Ni2—O2—C183.2 (3)Ni1—O5—C8—C91.6 (6)
N1—Ni2—O3—C75.5 (3)C13—N2—C9—C101.0 (8)
N3—Ni2—O3—C7177.3 (3)Ni1—N2—C9—C10178.4 (4)
O2—Ni2—O3—C726.5 (6)C13—N2—C9—C8178.0 (5)
O9—Ni2—O3—C787.8 (3)Ni1—N2—C9—C82.5 (6)
N2—Ni1—O5—C80.2 (4)O6—C8—C9—N2176.9 (5)
N6—Ni1—O5—C8176.9 (4)O5—C8—C9—N22.6 (7)
O7—Ni1—O5—C85.8 (8)O6—C8—C9—C102.0 (10)
O10—Ni1—O5—C889.2 (4)O5—C8—C9—C10178.4 (5)
N2—Ni1—O7—C146.8 (3)N2—C9—C10—C110.6 (8)
N6—Ni1—O7—C14176.5 (3)C8—C9—C10—C11179.5 (5)
O5—Ni1—O7—C1412.4 (7)C9—C10—C11—C121.6 (9)
O10—Ni1—O7—C1498.4 (4)C10—C11—C12—C131.1 (9)
O3—Ni2—N1—C63.3 (3)C9—N2—C13—C121.6 (8)
O2—Ni2—N1—C6176.2 (4)Ni1—N2—C13—C12177.9 (4)
O9—Ni2—N1—C688.4 (4)C9—N2—C13—C14179.3 (5)
O3—Ni2—N1—C2179.3 (4)Ni1—N2—C13—C141.3 (6)
O2—Ni2—N1—C26.4 (3)C11—C12—C13—N20.5 (8)
O9—Ni2—N1—C288.9 (4)C11—C12—C13—C14179.5 (5)
O7—Ni1—N2—C9176.8 (4)Ni1—O7—C14—O8171.5 (4)
O5—Ni1—N2—C91.4 (4)Ni1—O7—C14—C139.2 (5)
O10—Ni1—N2—C995.7 (4)N2—C13—C14—O8173.6 (5)
O7—Ni1—N2—C132.7 (4)C12—C13—C14—O87.3 (9)
O5—Ni1—N2—C13179.1 (4)N2—C13—C14—O77.1 (6)
O10—Ni1—N2—C1383.8 (4)C12—C13—C14—O7172.0 (5)
O3—Ni2—N3—C191.1 (4)C19—N3—C15—C160.7 (7)
O2—Ni2—N3—C19171.4 (4)Ni2—N3—C15—C16177.6 (4)
O9—Ni2—N3—C1992.0 (4)N3—C15—C16—C170.3 (8)
O3—Ni2—N3—C15179.3 (4)C15—C16—C17—C181.0 (7)
O2—Ni2—N3—C1510.4 (4)C15—C16—C17—C20178.5 (4)
O9—Ni2—N3—C1586.2 (4)C16—C17—C18—C190.9 (7)
C20—N4—N5—C210.5 (6)C20—C17—C18—C19178.7 (4)
O7—Ni1—N6—C265.0 (4)C15—N3—C19—C180.9 (7)
O5—Ni1—N6—C26177.9 (4)Ni2—N3—C19—C18177.4 (4)
O10—Ni1—N6—C2685.5 (4)C17—C18—C19—N30.1 (7)
O7—Ni1—N6—C22176.0 (4)N5—N4—C20—C17178.9 (4)
O5—Ni1—N6—C221.1 (4)N5—N4—C20—S10.2 (5)
O10—Ni1—N6—C2295.5 (4)C18—C17—C20—N416.3 (7)
Ni2—O2—C1—O1170.4 (4)C16—C17—C20—N4163.3 (5)
Ni2—O2—C1—C210.6 (5)C18—C17—C20—S1164.7 (4)
C6—N1—C2—C30.1 (7)C16—C17—C20—S115.8 (7)
Ni2—N1—C2—C3177.1 (3)C21—S1—C20—N40.1 (4)
C6—N1—C2—C1179.9 (4)C21—S1—C20—C17179.2 (4)
Ni2—N1—C2—C12.7 (5)N4—N5—C21—C24179.2 (4)
O1—C1—C2—N1175.3 (4)N4—N5—C21—S10.6 (6)
O2—C1—C2—N15.7 (6)C20—S1—C21—N50.4 (4)
O1—C1—C2—C34.5 (8)C20—S1—C21—C24179.1 (4)
O2—C1—C2—C3174.5 (5)C26—N6—C22—C231.8 (8)
N1—C2—C3—C40.8 (7)Ni1—N6—C22—C23177.2 (4)
C1—C2—C3—C4179.4 (5)N6—C22—C23—C240.7 (9)
C2—C3—C4—C51.1 (8)C22—C23—C24—C250.3 (8)
C3—C4—C5—C60.7 (8)C22—C23—C24—C21179.1 (5)
C2—N1—C6—C50.3 (7)N5—C21—C24—C23179.8 (5)
Ni2—N1—C6—C5177.5 (4)S1—C21—C24—C231.3 (7)
C2—N1—C6—C7178.2 (4)N5—C21—C24—C251.5 (8)
Ni2—N1—C6—C71.0 (5)S1—C21—C24—C25180.0 (4)
C4—C5—C6—N10.0 (8)C23—C24—C25—C260.9 (7)
C4—C5—C6—C7178.2 (5)C21—C24—C25—C26179.7 (4)
Ni2—O3—C7—O4176.1 (4)C22—N6—C26—C252.6 (7)
Ni2—O3—C7—C66.4 (5)Ni1—N6—C26—C25176.4 (4)
N1—C6—C7—O4178.5 (4)C24—C25—C26—N62.2 (7)
C5—C6—C7—O40.2 (8)
Symmetry code: (i) x2, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H1W···O4ii0.831.992.815 (5)178
O9—H2W···O8iii0.831.952.755 (5)161
O9—H2W···O7iii0.832.433.093 (5)138
O10—H3W···S1iv0.852.753.601 (5)179
O10—H4W···O5v0.851.972.814 (6)168
Symmetry codes: (ii) x+4, y+3, z+2; (iii) x+2, y+1, z; (iv) x1, y, z; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni2(C7H3NO4)2(C12H8N4S)(H2O)2]
Mr723.94
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.2998 (12), 10.0819 (15), 17.318 (3)
α, β, γ (°)96.652 (2), 100.629 (2), 108.077 (2)
V3)1330.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.28 × 0.21 × 0.15
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.668, 0.799
No. of measured, independent and
observed [I > 2σ(I)] reflections
9932, 4735, 3249
Rint0.038
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.147, 0.97
No. of reflections4735
No. of parameters406
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.54

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H1W···O4i0.831.992.815 (5)177.6
O9—H2W···O8ii0.831.952.755 (5)161.1
O9—H2W···O7ii0.832.433.093 (5)137.5
O10—H3W···S1iii0.852.753.601 (5)179.4
O10—H4W···O5iv0.851.972.814 (6)167.9
Symmetry codes: (i) x+4, y+3, z+2; (ii) x+2, y+1, z; (iii) x1, y, z; (iv) x, y+1, z+1.
 

Acknowledgements

The author is grateful to Li Shui Vocational & Technical College for financial support.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationDong, Y. B., Ma, J. P., Huang, R. Q., Smith, M. D. & Loye, H. C. (2003). Inorg. Chem. 42, 294–300.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, L.-L., Tian, Z.-F., Zhu, H.-Z. & Meng, Q.-J. (2007). Z. Anorg. Allg. Chem. 632, 689–694.  Web of Science CSD CrossRef Google Scholar
First citationZhang, X. M., Fang, R. Q. & Wu, H. S. (2005). CrystEngcomm, 7, 96–101.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds