metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Fluoro­benzyl­­idene­amino)pyridinium bis­­(1,2-di­cyano­ethene-1,2-di­thiol­ato)nickelate(II)

aDepartment of Chemistry, Huangshan University, Huangshang 245001, People's Republic of China
*Correspondence e-mail: xuanfang.1984@163.com

(Received 14 April 2009; accepted 24 April 2009; online 30 April 2009)

In the title complex, (C12H10FN2)2[Ni(C4N2S2)2], the anion lies on an inversion center with the NiII ion coordinated by four S atoms in a slightly distorted square-planar environment. In the unique cation, the dihedral angle between the benzene and pyridine rings is 7.1 (2) Å.

Related literature

For metal–[dithiol­ene]2 complexes, see: Ni et al. (2004[Ni, C. L., Dang, D. B. & Song, Y. (2004). Chem. Phys. Lett. 396, 353-358.], 2005[Ni, Z. P., Ren, X. M. & Ma, J. (2005). J. Am. Chem. Soc. 127, 14330-14338.]); Nishijo et al. (2000[Nishijo, J., Ogura, E., Yamaura, J. & Miyazaki, A. (2000). Solid State Commun. 116, 661-664.]); Ren et al. (2004[Ren, X. M., Okudera, H. & Kremer, R. K. (2004). Inorg. Chem. 43, 2569-2576.]); Robertson & Cronin (2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H10FN2)2[Ni(C4N2S2)2]

  • Mr = 741.51

  • Triclinic, [P \overline 1]

  • a = 7.9248 (13) Å

  • b = 9.1774 (15) Å

  • c = 11.1526 (18) Å

  • α = 88.326 (3)°

  • β = 77.202 (4)°

  • γ = 85.448 (4)°

  • V = 788.4 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.732, Tmax = 0.809

  • 4282 measured reflections

  • 3030 independent reflections

  • 1785 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.094

  • S = 0.76

  • 3030 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Molecular solids based on transition metal dithiolene complexes have attracted intense interest in recent years, not only owing to the fundamental research of magnetic interactions and magneto-structural correlations but also to the development of new functional molecule-based materials (Robertson & Cronin (2002). Much work has been performed on molecular solids based on M[dithiolene]2 complexes owing to their application as building blocks in molecular-based materials showing magnetic, superconducting, and optical properties (Nishijo et al., 2000; Ni et al., 2005). Herein we report the crystal structure of the title compound (I).

The molecular structure of (I) is illustrated in Fig. 1. The asymmetric unit contains one half [Ni(mnt)2]2- (mnt = maleonitriledithiolato) dianion and one o-fluorbenzylidene-1-aminopyrazine cation, the formula unit being generated by an inversion center. In the [Ni(mnt)2]2- cation the bond lengths and angles are in good agreement with related [Ni(mnt)2]2- compounds (Ni et al., 2004; Ren et al., 2004)

Related literature top

For metal–[dithiolene]2 complexes, see: Ni et al. (2004, 2005); Nishijo et al. (2000); Ren et al. (2004); Robertson & Cronin (2002).

Experimental top

Disodium maleonitriledithiolate (456 mg, 2.5 mmol) and nickel chloride hexahydrate (297 mg, 1.25 mmol) were mixed under stirring in water (20 mL) at room temperature. A solution of o-fluorbenzylidene-1-aminopyridinium bromide(665 mg, 2.5 mmol) in methanol (10 mL) was added to the mixture, and the red precipitate that was immediately formed was filtered off, and washed with methanol. The crude product was recrystallized in acetone (20 mL) to give red block crystals. Anal. Calcd. for C32 H20 F2 N8 Ni S4: C, 51.83; H, 2.72; N, 15.11%. Found: C, 51.96; H, 2.93; N, 15.03%.

Refinement top

The H atoms were placed in geometrically idealized positions (C—H = 0.93 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. Only the symmetry unique anion is shown. Symmetry code (A): -x, -y+1, -z.
1-(2-Fluorobenzylideneamino)pyridinium bis(1,2-dicyanoethene-1,2-dithiolato)nickelate(II) top
Crystal data top
(C12H10FN2)2[Ni(C4N2S2)2]V = 788.4 (2) Å3
Mr = 741.51Z = 1
Triclinic, P1F(000) = 378
Hall symbol: -P 1Dx = 1.562 Mg m3
a = 7.9248 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1774 (15) Åθ = 1.9–26.0°
c = 11.1526 (18) ŵ = 0.93 mm1
α = 88.326 (3)°T = 293 K
β = 77.202 (4)°Block, red
γ = 85.448 (4)°0.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3030 independent reflections
Radiation source: fine-focus sealed tube1785 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 89
Tmin = 0.732, Tmax = 0.809k = 1111
4282 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 0.76 w = 1/[σ2(Fo2) + (0.0323P)2]
where P = (Fo2 + 2Fc2)/3
3030 reflections(Δ/σ)max = 0.004
214 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
(C12H10FN2)2[Ni(C4N2S2)2]γ = 85.448 (4)°
Mr = 741.51V = 788.4 (2) Å3
Triclinic, P1Z = 1
a = 7.9248 (13) ÅMo Kα radiation
b = 9.1774 (15) ŵ = 0.93 mm1
c = 11.1526 (18) ÅT = 293 K
α = 88.326 (3)°0.30 × 0.20 × 0.20 mm
β = 77.202 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3030 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1785 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.809Rint = 0.038
4282 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 0.76Δρmax = 0.31 e Å3
3030 reflectionsΔρmin = 0.24 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.5021 (3)0.3555 (2)0.1896 (2)0.0724 (7)
N70.7362 (4)0.1871 (3)0.1593 (3)0.0528 (8)
N80.7118 (5)0.1192 (3)0.0532 (3)0.0646 (10)
C210.5600 (5)0.2153 (4)0.2199 (4)0.0561 (11)
C220.5388 (6)0.1628 (5)0.3283 (4)0.0735 (13)
H22A0.48320.22000.38040.088*
C230.6029 (6)0.0220 (5)0.3571 (4)0.0797 (14)
H23A0.59490.01560.43200.096*
C240.6779 (6)0.0643 (5)0.2792 (4)0.0742 (14)
H24A0.71790.16020.30010.089*
C250.6944 (5)0.0094 (4)0.1700 (4)0.0609 (11)
H25A0.74520.06860.11660.073*
C260.6362 (5)0.1333 (4)0.1381 (3)0.0484 (10)
C270.6580 (5)0.1978 (4)0.0257 (4)0.0531 (10)
H27A0.63190.29740.01260.064*
C280.8296 (6)0.1020 (4)0.2236 (4)0.0616 (12)
H28A0.87230.00890.19560.074*
C290.8626 (6)0.1496 (4)0.3287 (4)0.0704 (13)
H29A0.92910.09050.37250.085*
C300.7965 (5)0.2868 (4)0.3703 (4)0.0622 (12)
H30A0.81820.32150.44250.075*
C310.6997 (6)0.3708 (4)0.3049 (4)0.0667 (13)
H31A0.65330.46320.33260.080*
C320.6708 (6)0.3200 (4)0.1996 (4)0.0700 (13)
H32A0.60480.37800.15460.084*
Ni10.00000.50000.00000.0484 (2)
S10.17387 (15)0.40603 (10)0.11191 (9)0.0589 (3)
S20.08272 (14)0.68427 (10)0.12200 (9)0.0585 (3)
N10.2744 (5)0.4501 (4)0.4175 (3)0.0771 (12)
N20.0466 (5)0.8166 (4)0.4231 (3)0.0776 (12)
C10.0194 (5)0.7374 (4)0.3440 (4)0.0571 (11)
C20.0169 (5)0.6389 (4)0.2423 (3)0.0490 (10)
C30.1256 (5)0.5188 (4)0.2397 (3)0.0501 (10)
C40.2087 (6)0.4806 (4)0.3384 (4)0.0553 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0756 (18)0.0615 (15)0.0818 (18)0.0122 (13)0.0271 (14)0.0013 (13)
N70.063 (2)0.0415 (18)0.054 (2)0.0031 (17)0.0156 (18)0.0038 (16)
N80.088 (3)0.050 (2)0.062 (2)0.0107 (19)0.033 (2)0.0115 (18)
C210.049 (3)0.057 (3)0.061 (3)0.001 (2)0.010 (2)0.006 (2)
C220.076 (4)0.084 (3)0.067 (3)0.005 (3)0.031 (3)0.004 (3)
C230.089 (4)0.091 (4)0.066 (3)0.004 (3)0.027 (3)0.023 (3)
C240.090 (4)0.062 (3)0.072 (3)0.006 (3)0.022 (3)0.021 (3)
C250.070 (3)0.049 (2)0.068 (3)0.003 (2)0.026 (2)0.006 (2)
C260.048 (3)0.050 (2)0.048 (2)0.006 (2)0.010 (2)0.0039 (19)
C270.053 (3)0.044 (2)0.061 (3)0.003 (2)0.011 (2)0.007 (2)
C280.078 (3)0.046 (2)0.062 (3)0.010 (2)0.024 (2)0.001 (2)
C290.091 (4)0.058 (3)0.068 (3)0.013 (3)0.036 (3)0.005 (2)
C300.072 (3)0.064 (3)0.053 (3)0.001 (2)0.020 (2)0.009 (2)
C310.089 (4)0.050 (3)0.060 (3)0.014 (2)0.019 (3)0.016 (2)
C320.095 (4)0.053 (3)0.066 (3)0.026 (2)0.035 (3)0.012 (2)
Ni10.0527 (5)0.0408 (4)0.0520 (5)0.0016 (3)0.0130 (4)0.0090 (3)
S10.0704 (8)0.0504 (6)0.0575 (7)0.0119 (5)0.0214 (6)0.0151 (5)
S20.0655 (8)0.0496 (6)0.0631 (7)0.0100 (5)0.0230 (6)0.0163 (5)
N10.100 (3)0.068 (2)0.068 (3)0.008 (2)0.032 (2)0.010 (2)
N20.109 (3)0.061 (2)0.066 (3)0.007 (2)0.028 (2)0.0186 (19)
C10.064 (3)0.051 (3)0.058 (3)0.002 (2)0.018 (2)0.000 (2)
C20.050 (3)0.039 (2)0.056 (3)0.0034 (19)0.008 (2)0.0112 (19)
C30.057 (3)0.043 (2)0.051 (3)0.000 (2)0.013 (2)0.0091 (19)
C40.068 (3)0.042 (2)0.055 (3)0.001 (2)0.011 (2)0.011 (2)
Geometric parameters (Å, º) top
F1—C211.358 (4)C29—C301.378 (5)
N7—C281.335 (4)C29—H29A0.9300
N7—C321.337 (4)C30—C311.355 (5)
N7—N81.410 (4)C30—H30A0.9300
N8—C271.249 (4)C31—C321.348 (5)
C21—C221.364 (5)C31—H31A0.9300
C21—C261.377 (5)C32—H32A0.9300
C22—C231.371 (5)Ni1—S2i2.1689 (10)
C22—H22A0.9300Ni1—S22.1689 (9)
C23—C241.360 (5)Ni1—S1i2.1703 (10)
C23—H23A0.9300Ni1—S12.1703 (10)
C24—C251.369 (4)S1—C31.741 (3)
C24—H24A0.9300S2—C21.726 (4)
C25—C261.382 (5)N1—C41.138 (4)
C25—H25A0.9300N2—C11.132 (4)
C26—C271.451 (4)C1—C21.436 (5)
C27—H27A0.9300C2—C31.341 (5)
C28—C291.348 (5)C3—C41.424 (5)
C28—H28A0.9300
C28—N7—C32120.4 (3)C28—C29—C30119.2 (4)
C28—N7—N8113.1 (3)C28—C29—H29A120.4
C32—N7—N8126.4 (3)C30—C29—H29A120.4
C27—N8—N7118.0 (3)C31—C30—C29119.3 (4)
F1—C21—C22118.7 (4)C31—C30—H30A120.3
F1—C21—C26117.7 (3)C29—C30—H30A120.3
C22—C21—C26123.5 (4)C32—C31—C30119.8 (4)
C21—C22—C23117.0 (4)C32—C31—H31A120.1
C21—C22—H22A121.5C30—C31—H31A120.1
C23—C22—H22A121.5N7—C32—C31120.6 (4)
C24—C23—C22121.9 (4)N7—C32—H32A119.7
C24—C23—H23A119.1C31—C32—H32A119.7
C22—C23—H23A119.1S2i—Ni1—S2180.0
C23—C24—C25119.7 (4)S2i—Ni1—S1i92.10 (4)
C23—C24—H24A120.1S2—Ni1—S1i87.90 (4)
C25—C24—H24A120.1S2i—Ni1—S187.90 (4)
C24—C25—C26120.7 (4)S2—Ni1—S192.10 (4)
C24—C25—H25A119.7S1i—Ni1—S1180.00 (4)
C26—C25—H25A119.7C3—S1—Ni1102.69 (14)
C21—C26—C25117.1 (4)C2—S2—Ni1102.72 (13)
C21—C26—C27120.4 (4)N2—C1—C2178.9 (5)
C25—C26—C27122.5 (4)C3—C2—C1121.6 (4)
N8—C27—C26119.8 (3)C3—C2—S2121.5 (3)
N8—C27—H27A120.1C1—C2—S2116.9 (3)
C26—C27—H27A120.1C2—C3—C4121.9 (3)
N7—C28—C29120.7 (4)C2—C3—S1120.3 (3)
N7—C28—H28A119.7C4—C3—S1117.7 (3)
C29—C28—H28A119.7N1—C4—C3179.7 (5)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C12H10FN2)2[Ni(C4N2S2)2]
Mr741.51
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.9248 (13), 9.1774 (15), 11.1526 (18)
α, β, γ (°)88.326 (3), 77.202 (4), 85.448 (4)
V3)788.4 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.732, 0.809
No. of measured, independent and
observed [I > 2σ(I)] reflections
4282, 3030, 1785
Rint0.038
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.094, 0.76
No. of reflections3030
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Natural Science Foundation of High Learning Institutions of Abhui Province, China, for financial support (grant No. KJ2009B275Z).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNi, C. L., Dang, D. B. & Song, Y. (2004). Chem. Phys. Lett. 396, 353–358.  Web of Science CSD CrossRef CAS Google Scholar
First citationNi, Z. P., Ren, X. M. & Ma, J. (2005). J. Am. Chem. Soc. 127, 14330–14338.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNishijo, J., Ogura, E., Yamaura, J. & Miyazaki, A. (2000). Solid State Commun. 116, 661–664.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, X. M., Okudera, H. & Kremer, R. K. (2004). Inorg. Chem. 43, 2569–2576.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRobertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds