organic compounds
5,7-Dichloroquinolin-8-ol
aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my
The molecule of the title compound, C9H5Cl2NO, is essentially planar [give maximum or r.m.s. deviation] and the hydroxy group acts as a hydrogen-bond donor to the N atom of a symmetry-related molecule, generating a hydrogen-bonded dimer,which lies on a twofold rotation axis.
Related literature
Unlike quinolin-8-ol, which yields a large number of metal derivatives, 5,7-dichloroquinolin-8-ol forms only a small number of metal chelates. For their crystal structures, see: García-Granda et al. (1987); Artizzu et al. (2007, 2008); Day et al. (1980); González-Baró et al. (1998); Horton & Wendlandt (1963); Miyashita et al. (2005); Suganuma et al. (2001); Van Deun et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809014846/lh2808sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809014846/lh2808Isup2.hkl
The organic reactant was returned unchanged in an unsuccessful attempt at reacting it with a zinc salt in methanol.
Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the
in the riding model approximation, with U(H) set to 1.2 U(C). The hydroxy hydrogen atom was located in a difference Fourier map, and was refined with a distance restraint of O–H 0.84±0.01 Å; its temperature factor was freely refined.Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).C9H5Cl2NO | F(000) = 432 |
Mr = 214.04 | Dx = 1.685 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yc | Cell parameters from 3573 reflections |
a = 15.5726 (3) Å | θ = 2.5–28.3° |
b = 3.8062 (1) Å | µ = 0.72 mm−1 |
c = 16.1269 (3) Å | T = 123 K |
β = 118.029 (1)° | Plate, colorless |
V = 843.76 (3) Å3 | 0.36 × 0.09 × 0.02 mm |
Z = 4 |
Bruker SMART APEX diffractometer | 1919 independent reflections |
Radiation source: fine-focus sealed tube | 1644 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ω scans | θmax = 27.5°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −20→20 |
Tmin = 0.782, Tmax = 0.986 | k = −4→4 |
7279 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0684P)2 + 0.4949P] where P = (Fo2 + 2Fc2)/3 |
1919 reflections | (Δ/σ)max < 0.001 |
122 parameters | Δρmax = 0.55 e Å−3 |
1 restraint | Δρmin = −0.36 e Å−3 |
C9H5Cl2NO | V = 843.76 (3) Å3 |
Mr = 214.04 | Z = 4 |
Monoclinic, P2/c | Mo Kα radiation |
a = 15.5726 (3) Å | µ = 0.72 mm−1 |
b = 3.8062 (1) Å | T = 123 K |
c = 16.1269 (3) Å | 0.36 × 0.09 × 0.02 mm |
β = 118.029 (1)° |
Bruker SMART APEX diffractometer | 1919 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1644 reflections with I > 2σ(I) |
Tmin = 0.782, Tmax = 0.986 | Rint = 0.032 |
7279 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 1 restraint |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.55 e Å−3 |
1919 reflections | Δρmin = −0.36 e Å−3 |
122 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.29367 (4) | 0.38966 (13) | 0.24587 (3) | 0.02310 (17) | |
Cl2 | 0.44255 (4) | 0.89258 (14) | 0.59720 (3) | 0.02635 (18) | |
O1 | 0.10638 (11) | 0.6233 (4) | 0.22642 (10) | 0.0223 (3) | |
N1 | 0.07459 (12) | 0.9357 (4) | 0.36439 (11) | 0.0186 (4) | |
H1 | 0.0565 (14) | 0.729 (7) | 0.220 (2) | 0.051 (9)* | |
C1 | 0.18119 (14) | 0.6852 (5) | 0.31223 (13) | 0.0176 (4) | |
C2 | 0.27416 (15) | 0.5885 (5) | 0.33230 (13) | 0.0184 (4) | |
C3 | 0.35486 (14) | 0.6504 (5) | 0.42003 (14) | 0.0193 (4) | |
H3 | 0.4180 | 0.5794 | 0.4316 | 0.023* | |
C4 | 0.34192 (14) | 0.8134 (5) | 0.48869 (13) | 0.0183 (4) | |
C5 | 0.24865 (14) | 0.9212 (5) | 0.47354 (13) | 0.0168 (4) | |
C6 | 0.16747 (14) | 0.8502 (5) | 0.38470 (13) | 0.0170 (4) | |
C7 | 0.23008 (15) | 1.0924 (5) | 0.54108 (13) | 0.0191 (4) | |
H7 | 0.2822 | 1.1462 | 0.6013 | 0.023* | |
C8 | 0.13659 (15) | 1.1807 (5) | 0.51946 (14) | 0.0201 (4) | |
H8 | 0.1230 | 1.2970 | 0.5641 | 0.024* | |
C9 | 0.06103 (15) | 1.0957 (5) | 0.42978 (14) | 0.0204 (4) | |
H9 | −0.0036 | 1.1574 | 0.4155 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0336 (3) | 0.0238 (3) | 0.0188 (3) | 0.00576 (19) | 0.0180 (2) | 0.00172 (18) |
Cl2 | 0.0229 (3) | 0.0305 (3) | 0.0203 (3) | 0.0002 (2) | 0.0057 (2) | −0.00406 (19) |
O1 | 0.0229 (7) | 0.0304 (8) | 0.0137 (6) | 0.0030 (6) | 0.0086 (6) | −0.0021 (5) |
N1 | 0.0230 (8) | 0.0202 (9) | 0.0157 (7) | 0.0008 (6) | 0.0117 (6) | 0.0020 (6) |
C1 | 0.0242 (10) | 0.0166 (9) | 0.0139 (8) | −0.0012 (7) | 0.0105 (7) | 0.0016 (7) |
C2 | 0.0280 (10) | 0.0158 (10) | 0.0171 (9) | 0.0009 (7) | 0.0154 (8) | 0.0016 (7) |
C3 | 0.0223 (9) | 0.0173 (10) | 0.0215 (9) | 0.0015 (7) | 0.0130 (8) | 0.0025 (8) |
C4 | 0.0211 (9) | 0.0182 (10) | 0.0145 (8) | −0.0019 (7) | 0.0074 (7) | 0.0014 (7) |
C5 | 0.0216 (9) | 0.0142 (9) | 0.0164 (9) | −0.0012 (7) | 0.0104 (7) | 0.0021 (7) |
C6 | 0.0220 (9) | 0.0161 (9) | 0.0162 (9) | −0.0010 (7) | 0.0117 (7) | 0.0010 (7) |
C7 | 0.0276 (10) | 0.0183 (10) | 0.0143 (8) | −0.0029 (8) | 0.0122 (8) | −0.0001 (7) |
C8 | 0.0297 (10) | 0.0187 (10) | 0.0181 (9) | −0.0013 (8) | 0.0164 (8) | −0.0007 (7) |
C9 | 0.0263 (10) | 0.0210 (10) | 0.0200 (9) | 0.0004 (8) | 0.0160 (8) | 0.0019 (7) |
Cl1—C2 | 1.7337 (19) | C3—H3 | 0.9500 |
Cl2—C4 | 1.7412 (19) | C4—C5 | 1.416 (3) |
O1—C1 | 1.346 (2) | C5—C7 | 1.411 (3) |
O1—H1 | 0.835 (10) | C5—C6 | 1.422 (3) |
N1—C9 | 1.318 (2) | C7—C8 | 1.370 (3) |
N1—C6 | 1.364 (2) | C7—H7 | 0.9500 |
C1—C2 | 1.377 (3) | C8—C9 | 1.408 (3) |
C1—C6 | 1.428 (3) | C8—H8 | 0.9500 |
C2—C3 | 1.402 (3) | C9—H9 | 0.9500 |
C3—C4 | 1.364 (3) | ||
C1—O1—H1 | 111 (2) | C7—C5—C6 | 117.26 (17) |
C9—N1—C6 | 117.95 (17) | C4—C5—C6 | 118.24 (17) |
O1—C1—C2 | 120.07 (17) | N1—C6—C5 | 122.49 (17) |
O1—C1—C6 | 121.87 (17) | N1—C6—C1 | 117.25 (17) |
C2—C1—C6 | 118.05 (17) | C5—C6—C1 | 120.26 (17) |
C1—C2—C3 | 122.49 (18) | C8—C7—C5 | 119.71 (18) |
C1—C2—Cl1 | 119.33 (15) | C8—C7—H7 | 120.1 |
C3—C2—Cl1 | 118.17 (15) | C5—C7—H7 | 120.1 |
C4—C3—C2 | 119.43 (18) | C7—C8—C9 | 118.71 (17) |
C4—C3—H3 | 120.3 | C7—C8—H8 | 120.6 |
C2—C3—H3 | 120.3 | C9—C8—H8 | 120.6 |
C3—C4—C5 | 121.50 (18) | N1—C9—C8 | 123.88 (18) |
C3—C4—Cl2 | 119.21 (15) | N1—C9—H9 | 118.1 |
C5—C4—Cl2 | 119.28 (14) | C8—C9—H9 | 118.1 |
C7—C5—C4 | 124.50 (18) | ||
O1—C1—C2—C3 | 179.21 (17) | C7—C5—C6—N1 | −1.1 (3) |
C6—C1—C2—C3 | −0.9 (3) | C4—C5—C6—N1 | 178.25 (17) |
O1—C1—C2—Cl1 | 0.4 (3) | C7—C5—C6—C1 | 178.50 (17) |
C6—C1—C2—Cl1 | −179.66 (14) | C4—C5—C6—C1 | −2.1 (3) |
C1—C2—C3—C4 | −0.2 (3) | O1—C1—C6—N1 | 1.6 (3) |
Cl1—C2—C3—C4 | 178.56 (15) | C2—C1—C6—N1 | −178.29 (17) |
C2—C3—C4—C5 | 0.2 (3) | O1—C1—C6—C5 | −178.02 (17) |
C2—C3—C4—Cl2 | −179.52 (14) | C2—C1—C6—C5 | 2.1 (3) |
C3—C4—C5—C7 | −179.67 (18) | C4—C5—C7—C8 | −179.00 (19) |
Cl2—C4—C5—C7 | 0.0 (3) | C6—C5—C7—C8 | 0.3 (3) |
C3—C4—C5—C6 | 1.0 (3) | C5—C7—C8—C9 | 0.3 (3) |
Cl2—C4—C5—C6 | −179.31 (14) | C6—N1—C9—C8 | −0.6 (3) |
C9—N1—C6—C5 | 1.2 (3) | C7—C8—C9—N1 | −0.2 (3) |
C9—N1—C6—C1 | −178.39 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.84 (1) | 2.01 (2) | 2.761 (2) | 150 (3) |
Symmetry code: (i) −x, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H5Cl2NO |
Mr | 214.04 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 123 |
a, b, c (Å) | 15.5726 (3), 3.8062 (1), 16.1269 (3) |
β (°) | 118.029 (1) |
V (Å3) | 843.76 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.72 |
Crystal size (mm) | 0.36 × 0.09 × 0.02 |
Data collection | |
Diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.782, 0.986 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7279, 1919, 1644 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.112, 1.05 |
No. of reflections | 1919 |
No. of parameters | 122 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.55, −0.36 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.84 (1) | 2.01 (2) | 2.761 (2) | 150 (3) |
Symmetry code: (i) −x, y, −z+1/2. |
Acknowledgements
I thank the University of Malaya for supporting this study.
References
Artizzu, F., Bernot, K., Caneschi, A., Coronado, E., Clemente-Juan, J. M., Marchiò, L., Mercuri, M. L., Pilia, L., Serpe, A. & Deplano, P. (2008). Eur. J. Inorg. Chem. pp. 3829–3826. Google Scholar
Artizzu, F., Marchiò, L., Mercuri, M. L., Pilia, L., Serpe, A., Quochi, F., Orrù, R., Cordella, F., Saba, M., Mura, A., Bongiovanni, G. & Deplano, P. (2007). Adv. Func. Mater. 17, 2365–2376. Web of Science CSD CrossRef CAS Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Day, R. O., Batschelet, W. H. & Archer, R. D. (1980). Inorg. Chem. 19, 2113–2122. CSD CrossRef CAS Web of Science Google Scholar
García-Granda, S., Beurskens, P. T., Behm, H. J. J. & Gómez-Beltrán, F. (1987). Acta Cryst. C43, 39–41. CSD CrossRef Web of Science IUCr Journals Google Scholar
González-Baró, A. C., Piro, O. E., Parajón-Costa, B. S., Baran, E. J. & Castellano, E. E. (1998). Monatsh. Chem. 129, 31–39. Google Scholar
Horton, G. R. & Wendlandt, W. W. (1963). J. Inorg. Nucl. Chem. 25, 247–252. CSD CrossRef CAS Web of Science Google Scholar
Miyashita, Y., Ohashi, T., Imai, A., Amir, N., Fujisawa, K. & Okamoto, K.-I. (2005). Sci. Technol. Adv. Mater. 6 660–666. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suganuma, S., Tanada, A., Tomizawa, H., Tanaka, M. & Miki, E. (2001). Inorg. Chim. Acta, 320, 22–30. Web of Science CSD CrossRef CAS Google Scholar
Van Deun, R., Fias, P., Nockemann, P., Schepers, A., Parac-Vogt, T. N., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2004). Inorg. Chem. 43, 8461–8469. Web of Science CSD CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A hydrogen-bonded dimer of the title compound is shown in Fig. 1.