organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1131

5,7-Di­chloro­quinolin-8-ol

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 20 April 2009; accepted 21 April 2009; online 25 April 2009)

The mol­ecule of the title compound, C9H5Cl2NO, is essentially planar [give maximum or r.m.s. deviation] and the hydr­oxy group acts as a hydrogen-bond donor to the N atom of a symmetry-related mol­ecule, generating a hydrogen-bonded dimer,which lies on a twofold rotation axis.

Related literature

Unlike quinolin-8-ol, which yields a large number of metal derivatives, 5,7-dichloro­quinolin-8-ol forms only a small number of metal chelates. For their crystal structures, see: García-Granda et al. (1987[García-Granda, S., Beurskens, P. T., Behm, H. J. J. & Gómez-Beltrán, F. (1987). Acta Cryst. C43, 39-41.]); Artizzu et al. (2007[Artizzu, F., Marchiò, L., Mercuri, M. L., Pilia, L., Serpe, A., Quochi, F., Orrù, R., Cordella, F., Saba, M., Mura, A., Bongiovanni, G. & Deplano, P. (2007). Adv. Func. Mater. 17, 2365-2376.], 2008[Artizzu, F., Bernot, K., Caneschi, A., Coronado, E., Clemente-Juan, J. M., Marchiò, L., Mercuri, M. L., Pilia, L., Serpe, A. & Deplano, P. (2008). Eur. J. Inorg. Chem. pp. 3829-3826.]); Day et al. (1980[Day, R. O., Batschelet, W. H. & Archer, R. D. (1980). Inorg. Chem. 19, 2113-2122.]); González-Baró et al. (1998[González-Baró, A. C., Piro, O. E., Parajón-Costa, B. S., Baran, E. J. & Castellano, E. E. (1998). Monatsh. Chem. 129, 31-39.]); Horton & Wendlandt (1963[Horton, G. R. & Wendlandt, W. W. (1963). J. Inorg. Nucl. Chem. 25, 247-252.]); Miyashita et al. (2005[Miyashita, Y., Ohashi, T., Imai, A., Amir, N., Fujisawa, K. & Okamoto, K.-I. (2005). Sci. Technol. Adv. Mater. 6 660-666.]); Suganuma et al. (2001[Suganuma, S., Tanada, A., Tomizawa, H., Tanaka, M. & Miki, E. (2001). Inorg. Chim. Acta, 320, 22-30.]); Van Deun et al. (2004[Van Deun, R., Fias, P., Nockemann, P., Schepers, A., Parac-Vogt, T. N., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2004). Inorg. Chem. 43, 8461-8469.]).

[Scheme 1]

Experimental

Crystal data
  • C9H5Cl2NO

  • Mr = 214.04

  • Monoclinic, P 2/c

  • a = 15.5726 (3) Å

  • b = 3.8062 (1) Å

  • c = 16.1269 (3) Å

  • β = 118.029 (1)°

  • V = 843.76 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 123 K

  • 0.36 × 0.09 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.782, Tmax = 0.986

  • 7279 measured reflections

  • 1919 independent reflections

  • 1644 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.112

  • S = 1.05

  • 1919 reflections

  • 122 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.84 (1) 2.01 (2) 2.761 (2) 150 (3)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

A hydrogen-bonded dimer of the title compound is shown in Fig. 1.

Related literature top

Unlike quinolin-8-ol, which yields a large number of metal derivatives, 5,7-dichloroquinolin-8-ol forms only a small number of metal chelates. For their crystal structures, see: García-Granda et al. (1987); Artizzu et al. (2007, 2008); Day et al. (1980); González-Baró et al. (1998); Horton & Wendlandt (1963); Miyashita et al. (2005); Suganuma et al. (2001); Van Deun et al. (2004).

Experimental top

The organic reactant was returned unchanged in an unsuccessful attempt at reacting it with a zinc salt in methanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 U(C). The hydroxy hydrogen atom was located in a difference Fourier map, and was refined with a distance restraint of O–H 0.84±0.01 Å; its temperature factor was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a hydrogen-bonded dimer of the title compound; ellipsoids are drawn at the 70% probability level and H atoms of arbitrary radius. The unlabeled molecule is related by the symmetry operator -x, y, -z+1/2
5,7-Dichloroquinolin-8-ol top
Crystal data top
C9H5Cl2NOF(000) = 432
Mr = 214.04Dx = 1.685 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 3573 reflections
a = 15.5726 (3) Åθ = 2.5–28.3°
b = 3.8062 (1) ŵ = 0.72 mm1
c = 16.1269 (3) ÅT = 123 K
β = 118.029 (1)°Plate, colorless
V = 843.76 (3) Å30.36 × 0.09 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1919 independent reflections
Radiation source: fine-focus sealed tube1644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.782, Tmax = 0.986k = 44
7279 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.4949P]
where P = (Fo2 + 2Fc2)/3
1919 reflections(Δ/σ)max < 0.001
122 parametersΔρmax = 0.55 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C9H5Cl2NOV = 843.76 (3) Å3
Mr = 214.04Z = 4
Monoclinic, P2/cMo Kα radiation
a = 15.5726 (3) ŵ = 0.72 mm1
b = 3.8062 (1) ÅT = 123 K
c = 16.1269 (3) Å0.36 × 0.09 × 0.02 mm
β = 118.029 (1)°
Data collection top
Bruker SMART APEX
diffractometer
1919 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1644 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.986Rint = 0.032
7279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.55 e Å3
1919 reflectionsΔρmin = 0.36 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29367 (4)0.38966 (13)0.24587 (3)0.02310 (17)
Cl20.44255 (4)0.89258 (14)0.59720 (3)0.02635 (18)
O10.10638 (11)0.6233 (4)0.22642 (10)0.0223 (3)
N10.07459 (12)0.9357 (4)0.36439 (11)0.0186 (4)
H10.0565 (14)0.729 (7)0.220 (2)0.051 (9)*
C10.18119 (14)0.6852 (5)0.31223 (13)0.0176 (4)
C20.27416 (15)0.5885 (5)0.33230 (13)0.0184 (4)
C30.35486 (14)0.6504 (5)0.42003 (14)0.0193 (4)
H30.41800.57940.43160.023*
C40.34192 (14)0.8134 (5)0.48869 (13)0.0183 (4)
C50.24865 (14)0.9212 (5)0.47354 (13)0.0168 (4)
C60.16747 (14)0.8502 (5)0.38470 (13)0.0170 (4)
C70.23008 (15)1.0924 (5)0.54108 (13)0.0191 (4)
H70.28221.14620.60130.023*
C80.13659 (15)1.1807 (5)0.51946 (14)0.0201 (4)
H80.12301.29700.56410.024*
C90.06103 (15)1.0957 (5)0.42978 (14)0.0204 (4)
H90.00361.15740.41550.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0336 (3)0.0238 (3)0.0188 (3)0.00576 (19)0.0180 (2)0.00172 (18)
Cl20.0229 (3)0.0305 (3)0.0203 (3)0.0002 (2)0.0057 (2)0.00406 (19)
O10.0229 (7)0.0304 (8)0.0137 (6)0.0030 (6)0.0086 (6)0.0021 (5)
N10.0230 (8)0.0202 (9)0.0157 (7)0.0008 (6)0.0117 (6)0.0020 (6)
C10.0242 (10)0.0166 (9)0.0139 (8)0.0012 (7)0.0105 (7)0.0016 (7)
C20.0280 (10)0.0158 (10)0.0171 (9)0.0009 (7)0.0154 (8)0.0016 (7)
C30.0223 (9)0.0173 (10)0.0215 (9)0.0015 (7)0.0130 (8)0.0025 (8)
C40.0211 (9)0.0182 (10)0.0145 (8)0.0019 (7)0.0074 (7)0.0014 (7)
C50.0216 (9)0.0142 (9)0.0164 (9)0.0012 (7)0.0104 (7)0.0021 (7)
C60.0220 (9)0.0161 (9)0.0162 (9)0.0010 (7)0.0117 (7)0.0010 (7)
C70.0276 (10)0.0183 (10)0.0143 (8)0.0029 (8)0.0122 (8)0.0001 (7)
C80.0297 (10)0.0187 (10)0.0181 (9)0.0013 (8)0.0164 (8)0.0007 (7)
C90.0263 (10)0.0210 (10)0.0200 (9)0.0004 (8)0.0160 (8)0.0019 (7)
Geometric parameters (Å, º) top
Cl1—C21.7337 (19)C3—H30.9500
Cl2—C41.7412 (19)C4—C51.416 (3)
O1—C11.346 (2)C5—C71.411 (3)
O1—H10.835 (10)C5—C61.422 (3)
N1—C91.318 (2)C7—C81.370 (3)
N1—C61.364 (2)C7—H70.9500
C1—C21.377 (3)C8—C91.408 (3)
C1—C61.428 (3)C8—H80.9500
C2—C31.402 (3)C9—H90.9500
C3—C41.364 (3)
C1—O1—H1111 (2)C7—C5—C6117.26 (17)
C9—N1—C6117.95 (17)C4—C5—C6118.24 (17)
O1—C1—C2120.07 (17)N1—C6—C5122.49 (17)
O1—C1—C6121.87 (17)N1—C6—C1117.25 (17)
C2—C1—C6118.05 (17)C5—C6—C1120.26 (17)
C1—C2—C3122.49 (18)C8—C7—C5119.71 (18)
C1—C2—Cl1119.33 (15)C8—C7—H7120.1
C3—C2—Cl1118.17 (15)C5—C7—H7120.1
C4—C3—C2119.43 (18)C7—C8—C9118.71 (17)
C4—C3—H3120.3C7—C8—H8120.6
C2—C3—H3120.3C9—C8—H8120.6
C3—C4—C5121.50 (18)N1—C9—C8123.88 (18)
C3—C4—Cl2119.21 (15)N1—C9—H9118.1
C5—C4—Cl2119.28 (14)C8—C9—H9118.1
C7—C5—C4124.50 (18)
O1—C1—C2—C3179.21 (17)C7—C5—C6—N11.1 (3)
C6—C1—C2—C30.9 (3)C4—C5—C6—N1178.25 (17)
O1—C1—C2—Cl10.4 (3)C7—C5—C6—C1178.50 (17)
C6—C1—C2—Cl1179.66 (14)C4—C5—C6—C12.1 (3)
C1—C2—C3—C40.2 (3)O1—C1—C6—N11.6 (3)
Cl1—C2—C3—C4178.56 (15)C2—C1—C6—N1178.29 (17)
C2—C3—C4—C50.2 (3)O1—C1—C6—C5178.02 (17)
C2—C3—C4—Cl2179.52 (14)C2—C1—C6—C52.1 (3)
C3—C4—C5—C7179.67 (18)C4—C5—C7—C8179.00 (19)
Cl2—C4—C5—C70.0 (3)C6—C5—C7—C80.3 (3)
C3—C4—C5—C61.0 (3)C5—C7—C8—C90.3 (3)
Cl2—C4—C5—C6179.31 (14)C6—N1—C9—C80.6 (3)
C9—N1—C6—C51.2 (3)C7—C8—C9—N10.2 (3)
C9—N1—C6—C1178.39 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.84 (1)2.01 (2)2.761 (2)150 (3)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H5Cl2NO
Mr214.04
Crystal system, space groupMonoclinic, P2/c
Temperature (K)123
a, b, c (Å)15.5726 (3), 3.8062 (1), 16.1269 (3)
β (°) 118.029 (1)
V3)843.76 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.36 × 0.09 × 0.02
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.782, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
7279, 1919, 1644
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.05
No. of reflections1919
No. of parameters122
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.36

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.84 (1)2.01 (2)2.761 (2)150 (3)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

I thank the University of Malaya for supporting this study.

References

First citationArtizzu, F., Bernot, K., Caneschi, A., Coronado, E., Clemente-Juan, J. M., Marchiò, L., Mercuri, M. L., Pilia, L., Serpe, A. & Deplano, P. (2008). Eur. J. Inorg. Chem. pp. 3829–3826.  Google Scholar
First citationArtizzu, F., Marchiò, L., Mercuri, M. L., Pilia, L., Serpe, A., Quochi, F., Orrù, R., Cordella, F., Saba, M., Mura, A., Bongiovanni, G. & Deplano, P. (2007). Adv. Func. Mater. 17, 2365–2376.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDay, R. O., Batschelet, W. H. & Archer, R. D. (1980). Inorg. Chem. 19, 2113–2122.  CSD CrossRef CAS Web of Science Google Scholar
First citationGarcía-Granda, S., Beurskens, P. T., Behm, H. J. J. & Gómez-Beltrán, F. (1987). Acta Cryst. C43, 39–41.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationGonzález-Baró, A. C., Piro, O. E., Parajón-Costa, B. S., Baran, E. J. & Castellano, E. E. (1998). Monatsh. Chem. 129, 31–39.  Google Scholar
First citationHorton, G. R. & Wendlandt, W. W. (1963). J. Inorg. Nucl. Chem. 25, 247–252.  CSD CrossRef CAS Web of Science Google Scholar
First citationMiyashita, Y., Ohashi, T., Imai, A., Amir, N., Fujisawa, K. & Okamoto, K.-I. (2005). Sci. Technol. Adv. Mater. 6 660–666.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuganuma, S., Tanada, A., Tomizawa, H., Tanaka, M. & Miki, E. (2001). Inorg. Chim. Acta, 320, 22–30.  Web of Science CSD CrossRef CAS Google Scholar
First citationVan Deun, R., Fias, P., Nockemann, P., Schepers, A., Parac-Vogt, T. N., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2004). Inorg. Chem. 43, 8461–8469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1131
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds