organic compounds
1-(4-Methoxyphenyl)-3-phenyl-1H-pyrazol-5-amine
aDepartment of Chemistry, The University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721, USA
*Correspondence e-mail: gsnichol@email.arizona.edu
The synthesis of the title compound, C16H15N3O, is regiospecific and single-crystal X-ray diffraction provides the only means of unambiguous structural analysis, with the benzene ring bonded to the imine C atom. The phenyl ring and the essentially planar (r.m.s. deviation 0.0354 Å) methoxybenzene group are rotated by 29.41 (5) and 37.01 (5)°, respectively, from the central pyrazole ring. An intermolecular N—H⋯N hydrogen bond links symmetry-related molecules into a C(5) chain, which runs parallel to the b axis.
Related literature
For background to this study, see: Gavrin et al. (2007); Joshi et al. (1979); Michaux & Charlier (2004); Ossipov et al. (2004); Raffa (2001).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL and local programs.
Supporting information
10.1107/S1600536809015463/lh2810sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809015463/lh2810Isup2.hkl
Benzoylacetonitrile (1.45 g, 10 mmol) in 50 ml of absolute ethanol was treated with 2-(4-methoxyphenyl) hydraziniumchloride (1.75 g, 10 mmol) under reflux for 1 day. The solvent was then removed by rotary evaporation and the residue was extracted with a 1:1 mix of dichloromethane and H2O. The organic layer was separated and dried with anhydrous MgSO4, filtered and then the solvent removed by rotary evaporation to leave a vrown residue. This was washed with hexane and recrystallized from dichloromethane. C16H15N3O, (I), yield = 90%. TOF MS EI m/z 264.9839. 1H NMR (CDCl3)δ 3.85 (s, 3H), 5.95 (s, 1H), 7.0 (d,2H), 7.25 (m,1H), 7.4 (t,2H) 7.5(d,2H), 7.8 (d,2H) 13CNMR (CDCl3) δ 55.50, 87.59, 114.61, 125. 522, 126.049, 127.626, 128.391, 131.463,133.551, 145.740, 151.043, 158.971
Amine hydrogen atoms were freely refined. Aryl hydrogen atoms were refined with Uiso(H) = 1.2 Ueq(C) and a fixed C–H distance of 0.93 Å; methyl hydrogen atoms were refined with Uiso(H) = 1.5 Ueq(C) and a fixed C–H distance of 0.96 Å.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.Fig. 1. The molecular structure of (I) with displacement ellipsoids at the 50% probability level. | |
Fig. 2. Part of the crystal structure of (I) showing a hydrogen bonded (dashed lines) chain. |
C16H15N3O | F(000) = 1120 |
Mr = 265.31 | Dx = 1.310 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 2475 reflections |
a = 14.9638 (6) Å | θ = 2.7–28.6° |
b = 6.3639 (2) Å | µ = 0.09 mm−1 |
c = 28.2466 (12) Å | T = 296 K |
V = 2689.87 (18) Å3 | Plate, colourless |
Z = 8 | 0.35 × 0.35 × 0.05 mm |
Bruker Kappa APEXII diffractometer | 2256 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.031 |
Graphite monochromator | θmax = 28.3°, θmin = 2.0° |
ϕ and ω scans | h = −19→16 |
11632 measured reflections | k = −7→6 |
3019 independent reflections | l = −36→37 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.111 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.048P)2 + 0.671P] where P = (Fo2 + 2Fc2)/3 |
3019 reflections | (Δ/σ)max = 0.001 |
190 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
C16H15N3O | V = 2689.87 (18) Å3 |
Mr = 265.31 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 14.9638 (6) Å | µ = 0.09 mm−1 |
b = 6.3639 (2) Å | T = 296 K |
c = 28.2466 (12) Å | 0.35 × 0.35 × 0.05 mm |
Bruker Kappa APEXII diffractometer | 2256 reflections with I > 2σ(I) |
11632 measured reflections | Rint = 0.031 |
3019 independent reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.111 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.20 e Å−3 |
3019 reflections | Δρmin = −0.15 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O | 0.37170 (8) | 0.3584 (2) | 0.56552 (3) | 0.0537 (3) | |
N1 | 0.38199 (8) | 0.10523 (19) | 0.75399 (4) | 0.0327 (3) | |
N2 | 0.37654 (8) | 0.2595 (2) | 0.78830 (4) | 0.0357 (3) | |
N3 | 0.39632 (11) | −0.2693 (2) | 0.74725 (6) | 0.0506 (4) | |
H3NA | 0.3945 (12) | −0.386 (3) | 0.7646 (6) | 0.057 (6)* | |
H3NB | 0.3982 (15) | −0.264 (4) | 0.7192 (8) | 0.083 (8)* | |
C1 | 0.38472 (9) | 0.1542 (2) | 0.82878 (5) | 0.0334 (3) | |
C2 | 0.39560 (10) | −0.0607 (3) | 0.82140 (5) | 0.0401 (4) | |
H2 | 0.4031 | −0.1639 | 0.8444 | 0.048* | |
C3 | 0.39302 (9) | −0.0890 (2) | 0.77325 (5) | 0.0359 (3) | |
C4 | 0.37681 (9) | 0.1656 (2) | 0.70563 (4) | 0.0317 (3) | |
C5 | 0.42957 (9) | 0.0699 (3) | 0.67137 (5) | 0.0391 (4) | |
H5 | 0.4681 | −0.0386 | 0.6797 | 0.047* | |
C6 | 0.42468 (10) | 0.1361 (3) | 0.62484 (5) | 0.0414 (4) | |
H6 | 0.4586 | 0.0688 | 0.6018 | 0.050* | |
C7 | 0.36981 (9) | 0.3015 (3) | 0.61242 (5) | 0.0379 (4) | |
C8 | 0.31728 (9) | 0.3982 (2) | 0.64632 (5) | 0.0374 (3) | |
H8 | 0.2803 | 0.5097 | 0.6381 | 0.045* | |
C9 | 0.32044 (9) | 0.3268 (2) | 0.69274 (4) | 0.0347 (3) | |
H9 | 0.2840 | 0.3887 | 0.7155 | 0.042* | |
C10 | 0.32253 (15) | 0.5386 (4) | 0.55199 (6) | 0.0687 (6) | |
H10A | 0.2604 | 0.5175 | 0.5591 | 0.103* | |
H10B | 0.3296 | 0.5620 | 0.5186 | 0.103* | |
H10C | 0.3442 | 0.6587 | 0.5691 | 0.103* | |
C11 | 0.38252 (9) | 0.2644 (3) | 0.87483 (5) | 0.0354 (3) | |
C12 | 0.33514 (10) | 0.4489 (3) | 0.88095 (5) | 0.0421 (4) | |
H12 | 0.3041 | 0.5073 | 0.8556 | 0.050* | |
C13 | 0.33371 (12) | 0.5473 (3) | 0.92489 (6) | 0.0534 (4) | |
H13 | 0.3018 | 0.6714 | 0.9289 | 0.064* | |
C14 | 0.37933 (12) | 0.4620 (3) | 0.96249 (6) | 0.0567 (5) | |
H14 | 0.3784 | 0.5285 | 0.9918 | 0.068* | |
C15 | 0.42634 (12) | 0.2785 (3) | 0.95670 (5) | 0.0550 (5) | |
H15 | 0.4571 | 0.2207 | 0.9822 | 0.066* | |
C16 | 0.42822 (11) | 0.1790 (3) | 0.91320 (5) | 0.0448 (4) | |
H16 | 0.4601 | 0.0546 | 0.9096 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O | 0.0695 (8) | 0.0595 (9) | 0.0320 (5) | 0.0105 (6) | 0.0029 (5) | 0.0047 (5) |
N1 | 0.0413 (6) | 0.0248 (8) | 0.0320 (5) | −0.0005 (5) | −0.0026 (4) | −0.0017 (4) |
N2 | 0.0451 (7) | 0.0306 (8) | 0.0315 (5) | −0.0003 (5) | −0.0004 (5) | −0.0021 (5) |
N3 | 0.0764 (10) | 0.0275 (9) | 0.0478 (8) | −0.0004 (7) | −0.0067 (7) | −0.0014 (7) |
C1 | 0.0349 (7) | 0.0311 (9) | 0.0342 (6) | −0.0036 (6) | 0.0004 (5) | 0.0033 (6) |
C2 | 0.0495 (8) | 0.0308 (10) | 0.0399 (7) | −0.0004 (7) | −0.0037 (6) | 0.0071 (6) |
C3 | 0.0386 (7) | 0.0260 (9) | 0.0430 (7) | −0.0005 (6) | −0.0046 (5) | 0.0011 (6) |
C4 | 0.0347 (7) | 0.0290 (9) | 0.0315 (6) | −0.0037 (6) | −0.0026 (5) | 0.0003 (5) |
C5 | 0.0389 (7) | 0.0379 (10) | 0.0406 (7) | 0.0068 (6) | −0.0009 (6) | −0.0013 (6) |
C6 | 0.0425 (8) | 0.0448 (11) | 0.0370 (7) | 0.0064 (7) | 0.0045 (6) | −0.0061 (6) |
C7 | 0.0418 (7) | 0.0405 (10) | 0.0315 (6) | −0.0032 (6) | −0.0007 (5) | −0.0002 (6) |
C8 | 0.0427 (8) | 0.0324 (9) | 0.0370 (7) | 0.0053 (6) | −0.0031 (5) | −0.0006 (6) |
C9 | 0.0373 (7) | 0.0327 (9) | 0.0342 (6) | 0.0017 (6) | 0.0012 (5) | −0.0048 (6) |
C10 | 0.0913 (15) | 0.0668 (16) | 0.0481 (10) | 0.0174 (12) | −0.0012 (9) | 0.0197 (9) |
C11 | 0.0380 (7) | 0.0355 (10) | 0.0328 (6) | −0.0062 (6) | 0.0033 (5) | 0.0032 (6) |
C12 | 0.0463 (8) | 0.0394 (10) | 0.0406 (7) | 0.0001 (7) | 0.0015 (6) | 0.0012 (7) |
C13 | 0.0587 (10) | 0.0483 (12) | 0.0532 (9) | 0.0046 (8) | 0.0083 (7) | −0.0089 (8) |
C14 | 0.0659 (11) | 0.0678 (15) | 0.0363 (8) | −0.0051 (10) | 0.0071 (7) | −0.0104 (8) |
C15 | 0.0639 (11) | 0.0683 (15) | 0.0329 (7) | −0.0030 (9) | −0.0023 (7) | 0.0052 (8) |
C16 | 0.0525 (9) | 0.0436 (11) | 0.0382 (7) | 0.0026 (8) | 0.0003 (6) | 0.0046 (7) |
O—C7 | 1.3736 (16) | C7—C8 | 1.3834 (19) |
O—C10 | 1.415 (2) | C8—H8 | 0.9300 |
N1—N2 | 1.3820 (16) | C8—C9 | 1.3885 (18) |
N1—C3 | 1.3607 (19) | C9—H9 | 0.9300 |
N1—C4 | 1.4211 (16) | C10—H10A | 0.9600 |
N2—C1 | 1.3307 (17) | C10—H10B | 0.9600 |
N3—H3NA | 0.89 (2) | C10—H10C | 0.9600 |
N3—H3NB | 0.79 (2) | C11—C12 | 1.382 (2) |
N3—C3 | 1.363 (2) | C11—C16 | 1.392 (2) |
C1—C2 | 1.393 (2) | C12—H12 | 0.9300 |
C1—C11 | 1.4782 (19) | C12—C13 | 1.391 (2) |
C2—H2 | 0.9300 | C13—H13 | 0.9300 |
C2—C3 | 1.373 (2) | C13—C14 | 1.374 (2) |
C4—C5 | 1.3896 (19) | C14—H14 | 0.9300 |
C4—C9 | 1.377 (2) | C14—C15 | 1.373 (3) |
C5—H5 | 0.9300 | C15—H15 | 0.9300 |
C5—C6 | 1.3823 (19) | C15—C16 | 1.383 (2) |
C6—H6 | 0.9300 | C16—H16 | 0.9300 |
C6—C7 | 1.380 (2) | ||
C7—O—C10 | 117.63 (13) | C7—C8—C9 | 119.26 (14) |
N2—N1—C3 | 111.85 (11) | H8—C8—C9 | 120.4 |
N2—N1—C4 | 118.61 (12) | C4—C9—C8 | 120.95 (13) |
C3—N1—C4 | 129.54 (12) | C4—C9—H9 | 119.5 |
N1—N2—C1 | 103.86 (12) | C8—C9—H9 | 119.5 |
H3NA—N3—H3NB | 126 (2) | O—C10—H10A | 109.5 |
H3NA—N3—C3 | 113.9 (12) | O—C10—H10B | 109.5 |
H3NB—N3—C3 | 120.3 (18) | O—C10—H10C | 109.5 |
N2—C1—C2 | 112.11 (12) | H10A—C10—H10B | 109.5 |
N2—C1—C11 | 121.01 (14) | H10A—C10—H10C | 109.5 |
C2—C1—C11 | 126.87 (13) | H10B—C10—H10C | 109.5 |
C1—C2—H2 | 127.1 | C1—C11—C12 | 121.62 (13) |
C1—C2—C3 | 105.89 (13) | C1—C11—C16 | 119.26 (14) |
H2—C2—C3 | 127.1 | C12—C11—C16 | 119.10 (14) |
N1—C3—N3 | 123.63 (13) | C11—C12—H12 | 119.9 |
N1—C3—C2 | 106.28 (13) | C11—C12—C13 | 120.14 (15) |
N3—C3—C2 | 130.03 (15) | H12—C12—C13 | 119.9 |
N1—C4—C5 | 121.32 (13) | C12—C13—H13 | 119.9 |
N1—C4—C9 | 119.27 (12) | C12—C13—C14 | 120.28 (17) |
C5—C4—C9 | 119.38 (12) | H13—C13—C14 | 119.9 |
C4—C5—H5 | 120.1 | C13—C14—H14 | 120.1 |
C4—C5—C6 | 119.90 (14) | C13—C14—C15 | 119.89 (15) |
H5—C5—C6 | 120.1 | H14—C14—C15 | 120.1 |
C5—C6—H6 | 119.8 | C14—C15—H15 | 119.8 |
C5—C6—C7 | 120.38 (13) | C14—C15—C16 | 120.38 (15) |
H6—C6—C7 | 119.8 | H15—C15—C16 | 119.8 |
O—C7—C6 | 115.73 (13) | C11—C16—C15 | 120.20 (16) |
O—C7—C8 | 124.18 (14) | C11—C16—H16 | 119.9 |
C6—C7—C8 | 120.09 (13) | C15—C16—H16 | 119.9 |
C7—C8—H8 | 120.4 | ||
C3—N1—N2—C1 | 0.13 (14) | C10—O—C7—C8 | 5.6 (2) |
C4—N1—N2—C1 | −179.13 (11) | C5—C6—C7—O | 178.30 (14) |
N1—N2—C1—C2 | 0.31 (15) | C5—C6—C7—C8 | −1.9 (2) |
N1—N2—C1—C11 | 179.87 (11) | O—C7—C8—C9 | 179.71 (14) |
N2—C1—C2—C3 | −0.62 (17) | C6—C7—C8—C9 | −0.1 (2) |
C11—C1—C2—C3 | 179.85 (13) | N1—C4—C9—C8 | 176.33 (13) |
N2—N1—C3—N3 | 176.99 (14) | C5—C4—C9—C8 | −1.6 (2) |
N2—N1—C3—C2 | −0.51 (16) | C7—C8—C9—C4 | 1.8 (2) |
C4—N1—C3—N3 | −3.9 (2) | N2—C1—C11—C12 | 29.1 (2) |
C4—N1—C3—C2 | 178.65 (12) | N2—C1—C11—C16 | −151.79 (14) |
C1—C2—C3—N1 | 0.65 (16) | C2—C1—C11—C12 | −151.35 (15) |
C1—C2—C3—N3 | −176.62 (16) | C2—C1—C11—C16 | 27.7 (2) |
N2—N1—C4—C5 | 141.21 (14) | C1—C11—C12—C13 | 179.32 (14) |
N2—N1—C4—C9 | −36.72 (18) | C16—C11—C12—C13 | 0.3 (2) |
C3—N1—C4—C5 | −37.9 (2) | C11—C12—C13—C14 | 0.0 (3) |
C3—N1—C4—C9 | 144.17 (15) | C12—C13—C14—C15 | −0.2 (3) |
N1—C4—C5—C6 | −178.27 (13) | C13—C14—C15—C16 | 0.1 (3) |
C9—C4—C5—C6 | −0.3 (2) | C14—C15—C16—C11 | 0.1 (3) |
C4—C5—C6—C7 | 2.1 (2) | C1—C11—C16—C15 | −179.39 (15) |
C10—O—C7—C6 | −174.60 (16) | C12—C11—C16—C15 | −0.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3NA···N2i | 0.89 (2) | 2.37 (2) | 3.228 (2) | 162.5 (16) |
Symmetry code: (i) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C16H15N3O |
Mr | 265.31 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 296 |
a, b, c (Å) | 14.9638 (6), 6.3639 (2), 28.2466 (12) |
V (Å3) | 2689.87 (18) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.35 × 0.35 × 0.05 |
Data collection | |
Diffractometer | Bruker Kappa APEXII diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11632, 3019, 2256 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.111, 1.02 |
No. of reflections | 3019 |
No. of parameters | 190 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.20, −0.15 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and local programs.
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3NA···N2i | 0.89 (2) | 2.37 (2) | 3.228 (2) | 162.5 (16) |
Symmetry code: (i) x, y−1, z. |
Acknowledgements
This work was supported by the United States Public Health Service, National Institute on Drug Abuse grants DA06284 and DA13449. We thank Professor Bob Downs, Department of Geosciences, University of Arizona, for the data collection.
References
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gavrin, L. K., Lee, A., Provencher, B. A., Massefski, W. W., Huhn, S. D., Ciszewski, G. M., Cole, D. C. & McKew, J. C. (2007). J. Org. Chem., 72, 1043–1046. Web of Science CrossRef PubMed CAS Google Scholar
Joshi, K. C., Pathak, V. N. & Garg, U. (1979). J. Heterocycl. Chem. 16, 1141–1145. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Michaux, C. & Charlier, C. (2004). Mini-Rev. Med. Chem. 4, 603–615. CrossRef CAS Google Scholar
Ossipov, M. H., Lai, J., King, T., Vanderah, T. W., Malan, T. P., Hruby, V. J. & Porreca, F. (2004). J. Neurobiol. 61, 126–148. Web of Science CrossRef PubMed CAS Google Scholar
Raffa, R. B. (2001). J. Clin. Pharm. Ther. 26, 257–264. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
It has been pharmacologically shown that co-administration of opioids with cyclooxygenase (COX) inhibitors is synergistic and reduces development of drug tolerance (Raffa, 2001; Ossipov et al., 2004). The creation of bifunctional molecules having both COX2 inhibitory activity and Opioid mu agonist activity is a promising approach to retain better analgesic properties. We are investigating plausible COX2 pharmacophores that can be obtained for bifunctional design using known organic reactions. Based on the evidence so far (Joshi et al.,1979; Gavrin et al., 2007) we probed whether the reaction between hydrazine derivatives and benzoylacetonitrile will usefully yield pyrazoles as a product substituted with 1,5-vicinal diaryls, which is an important structural feature for COX2 inhibitory activity (Michaux & Charlier, 2004). We observed that the reaction between benzoylacetonitrile with 2-(4-methoxyphenyl)hydraziniumchloride is regiospecific which means it provides solely 1-(4-methoxyphenyl)-3-phenyl-1H-pyrazol-5-amine, (I), which is undesired for our purpose. Furthermore it cannot be correctly identified with one-dimensional nuclear Overhauser effect or two-dimensional heteronuclear multiple bond correlation spectroscopic methods, leaving single-crystal X-ray diffraction as the only possible means of unambiguous identification of the compound.
The molecular structure of (I) is shown in Figure 1. Two regioisomers were possible and here the structure is unambiguous with the phenyl ring (C11-C16) bonded to the imine carbon atom C1. Molecular dimensions are unexceptional. The methoxybenzyl group is essentially planar (r.m.s. deviation of a mean plane fitted through C4 to C10 and O is 0.0354 Å) and is rotated by 37.01 (5)° from the central pyrazole ring. The phenyl ring (C11-C16) is rotated by 29.41 (5)° from the central pyrazole ring. A lone N–H···N hydrogen bond links the molecules into a C(5) chain which runs parallel to the b axis(Figure 2).