organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1004

Piperazinediium dioxamate

aDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, India, cDepartment of Physics, S.M.K. Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, and dDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_spandian@yahoo.com

(Received 16 March 2009; accepted 2 April 2009; online 8 April 2009)

The title compound, C4H12N22+·2C2H2NO3, contains a network of doubly protanated piperazinium cations (lying about centres of inversion) and dioxamate anions. The piperazinium dication adopts a typical chair conformation. The crystal structure is stabilized by cation–to–anion N—H⋯O and anion–to–anion N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Büyükgüngör & Odabaşoğlu (2008[Büyükgüngör, O. & Odabaşoğlu, M. (2008). Acta Cryst. E64, o808.]); Wilkinson & Harrison (2007[Wilkinson, H. S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m26-m28.]). For biological applications of piperazines, see: Berkheij et al. (2005[Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Heimstra, H., Bakker, W. I. I., van den Hoogen Band, A. & van Maarseveen, J. H. (2005). Tetrahedron, 46, 2369-2371.]); Humle & Cherrier (1999[Humle, C. & Cherrier, M. P. (1999). Tetrahedron Lett. 40, 5295-5299.]). For the synthesis of a ligand with two piperazine arms, see: Bharathi et al. (2006[Bharathi, K. S., Rahiman, A. K., Rajesh, K., Sreedaran, S., Aravindan, P. G., Velmurugan, D. & Narayanan, V. (2006). Polyhedron, 25, 2859-2868.]). For the use of piperazine derivatives as buffers, see: Good et al. (1966[Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S. & Singh, R. M. (1966). Biochemistry, 5, 467-477.]). For the piperazine nucleus and its ability to bind to multiple receptors, see: Dinsmore & Beshore (2002[Dinsmore, C. J. & Beshore, D. C. (2002). Tetrahedron, 58, 3297-3312.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12N22+·2C2H2NO3

  • Mr = 264.25

  • Monoclinic, P 21 /c

  • a = 6.4323 (4) Å

  • b = 6.7681 (4) Å

  • c = 13.0032 (7) Å

  • β = 94.488 (2)°

  • V = 564.35 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.969, Tmax = 0.979

  • 9313 measured reflections

  • 2606 independent reflections

  • 2197 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 1.09

  • 2606 reflections

  • 82 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.24 3.0232 (9) 152
N1—H1B⋯O3ii 0.86 2.07 2.8622 (8) 153
N2—H2A⋯O1iii 0.90 2.37 3.0589 (8) 133
N2—H2A⋯O2iii 0.90 1.94 2.7475 (9) 149
N2—H2B⋯O1iv 0.90 1.87 2.7509 (9) 164
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) x, y+1, z; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Piperazines are among the most important building blocks in today's drug discovery. The piperazine nucleus is capable of binding to multiple receptors with high affinity and therefore piperazine has been classified as a privileged structure (Dinsmore et al., 2002). They are found in biologically active compounds across a number of different therapeutic areas (Berkheij et al., 2005) such as antifungal, antibacterial, antimalarial, antipsychotic, antidepressant and antitumour activity against colon, prostate, breast, lung and leukemia tumors (Humle & Cherrier, 1999). Also Piperazine derivatives are widely used as buffers (Good et al., 1966), and can act as complexing reagents with metal ions (Bharathi et al., 2006). Encouraged by the above information, we report the crystal structure of the title compound, piperazinium bis (dioxamate) (I) (Fig. 1).

In the crystal structure of (I), the piperazinium dication lies on a centre of inversion and adopts a typical chair conformation. The bond lengths in (I) are normal and comparable with the corresponding values observed in the related structure (Wilkinson & Harrison, 2007). The dihedral angle between the piperazinium dication and oxamate anion is 9.54 (3)°. The crystal structure (Fig. 2) is stabilized by cation–to–anion N—H···O hydrogen bonds between the N—H atoms of the piperazinium ring and the O atoms of the oxamate (Fig. 2 and Table 1; symmetry code as in Fig. 2). The crystal packing is further stabilized by anion–to–anion N—H···O hydrogen bonds between the N—H atoms and the O atoms from the neighbouring oxamate anions (Fig. 2 and Table 1; symmetry code as in Fig. 2). Thus, the symmetry–related molecules are cross linked by these hydrogen bonds to generate a three–dimensional network.

Related literature top

For related structures, see: Büyükgüngör & Odabaşoğlu (2008); Wilkinson & Harrison (2007). For biological applications, see: Berkheij et al. (2005); Humle & Cherrier (1999). For the synthesis of a ligand with two piperazine arms, see: Bharathi et al. (2006). For the use of piperazine derivatives as a buffer, see: Good et al. (1966). For the piperazine nucleus and its ability to bind to multiple receptors, see: Dinsmore & Beshore (2002).

Experimental top

Piperazinium bis(dioxamate) was prepared by adding aqueous solution (15ml) of piperazine (0.194g; 0.001mol) to the solution (15ml) of oxamic acid (0.089g; 0.001mol). The resulting clear solution was concentrated over water-bath to half the volume and kept for crystallization at room temperature. The transparent single crystals suitable for x-ray diffraction obtained after two days were filtered off, washed with ethanol and air dried.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.86–0.90 Å and C—H = 0.97 Å with Uiso(H)= 1.2Ueq.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. N—H···O hydrogen bonds (dotted lines) in the title compound.[Symmetry code: (i) -x+1, y-1/2, -z+1/2 ; (ii) -x+1, -y, -z; (iii) x, y+1, z; (iv)-x, y+1/2, -z+1/2 (v) -x+1, y+1/2, -z+1/2; (vi) -x, y-1/2, -z+1/2; (vii) x, y-1, z.]
Piperazinediium dioxamate top
Crystal data top
C4H12N22+·2C2H2NO3F(000) = 280
Mr = 264.25Dx = 1.555 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2743 reflections
a = 6.4323 (4) Åθ = 3.1–36.3°
b = 6.7681 (4) ŵ = 0.13 mm1
c = 13.0032 (7) ÅT = 293 K
β = 94.488 (2)°Block, colourless
V = 564.35 (6) Å30.24 × 0.22 × 0.16 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2606 independent reflections
Radiation source: fine-focus sealed tube2197 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.0 pixels mm-1θmax = 36.3°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1110
Tmin = 0.969, Tmax = 0.979l = 209
9313 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.119H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.0606P]
where P = (Fo2 + 2Fc2)/3
2606 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.36 e Å3
3 restraintsΔρmin = 0.34 e Å3
Crystal data top
C4H12N22+·2C2H2NO3V = 564.35 (6) Å3
Mr = 264.25Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.4323 (4) ŵ = 0.13 mm1
b = 6.7681 (4) ÅT = 293 K
c = 13.0032 (7) Å0.24 × 0.22 × 0.16 mm
β = 94.488 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2606 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2197 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.979Rint = 0.021
9313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0413 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.09Δρmax = 0.36 e Å3
2606 reflectionsΔρmin = 0.34 e Å3
82 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.08666 (10)0.95960 (10)0.40409 (4)0.02372 (13)
H2A0.17520.99000.35620.028*
H2B0.01610.85020.38300.028*
C30.06294 (12)1.12524 (12)0.41301 (5)0.02590 (15)
H3A0.14361.14410.34750.031*
H3B0.01321.24620.42970.031*
C40.20790 (11)0.91851 (12)0.50401 (6)0.02572 (15)
H4A0.29381.03200.52400.031*
H4B0.29920.80640.49620.031*
O10.13426 (8)0.15896 (9)0.19612 (4)0.02683 (13)
O20.44704 (10)0.03929 (12)0.30376 (4)0.03431 (16)
O30.28309 (12)0.09059 (12)0.05073 (4)0.03678 (17)
N10.61883 (11)0.06196 (13)0.15969 (5)0.03142 (17)
H1A0.72470.11860.19170.038*
H1B0.61820.03870.09460.038*
C10.27471 (10)0.08954 (10)0.14582 (4)0.02114 (13)
C20.45721 (11)0.01070 (11)0.21043 (5)0.02200 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0244 (3)0.0285 (3)0.0190 (2)0.0053 (2)0.00670 (19)0.0034 (2)
C30.0285 (3)0.0280 (3)0.0214 (3)0.0015 (3)0.0027 (2)0.0021 (2)
C40.0208 (3)0.0312 (4)0.0254 (3)0.0001 (2)0.0034 (2)0.0022 (2)
O10.0230 (2)0.0337 (3)0.0242 (2)0.0066 (2)0.00426 (18)0.00091 (19)
O20.0304 (3)0.0553 (4)0.0179 (2)0.0129 (3)0.0059 (2)0.0084 (2)
O30.0432 (4)0.0502 (4)0.0168 (2)0.0188 (3)0.0017 (2)0.0017 (2)
N10.0291 (3)0.0460 (4)0.0200 (2)0.0156 (3)0.0067 (2)0.0051 (2)
C10.0232 (3)0.0222 (3)0.0181 (2)0.0024 (2)0.0014 (2)0.0006 (2)
C20.0225 (3)0.0261 (3)0.0178 (3)0.0038 (2)0.0039 (2)0.0019 (2)
Geometric parameters (Å, º) top
N2—C31.4879 (11)C4—H4B0.9700
N2—C41.4883 (10)O1—C11.2478 (5)
N2—H2A0.9000O2—C21.2357 (8)
N2—H2B0.9000O3—C11.2419 (5)
C3—C4i1.5095 (10)N1—C21.3205 (9)
C3—H3A0.9700N1—H1A0.8600
C3—H3B0.9700N1—H1B0.8600
C4—C3i1.5095 (10)C1—O31.2419 (5)
C4—H4A0.9700C1—C21.5459 (10)
C3—N2—C4111.75 (6)N2—C4—H4B109.6
C3—N2—H2A109.3C3i—C4—H4B109.6
C4—N2—H2A109.3H4A—C4—H4B108.1
C3—N2—H2B109.3C2—N1—H1A120.0
C4—N2—H2B109.3C2—N1—H1B120.0
H2A—N2—H2B107.9H1A—N1—H1B120.0
N2—C3—C4i110.33 (6)O3—C1—O1127.54 (7)
N2—C3—H3A109.6O3—C1—O1127.54 (7)
C4i—C3—H3A109.6O3—C1—C2116.96 (6)
N2—C3—H3B109.6O3—C1—C2116.96 (6)
C4i—C3—H3B109.6O1—C1—C2115.50 (5)
H3A—C3—H3B108.1O2—C2—N1123.63 (7)
N2—C4—C3i110.48 (6)O2—C2—C1120.41 (6)
N2—C4—H4A109.6N1—C2—C1115.96 (5)
C3i—C4—H4A109.6
C4—N2—C3—C4i56.67 (9)O3—C1—C2—O2170.89 (8)
C3—N2—C4—C3i56.75 (9)O1—C1—C2—O28.52 (11)
O3—O3—C1—O10.00 (4)O3—C1—C2—N18.95 (11)
O3—O3—C1—C20.00 (4)O3—C1—C2—N18.95 (11)
O3—C1—C2—O2170.89 (8)O1—C1—C2—N1171.64 (7)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.862.243.0232 (9)152
N1—H1B···O3iii0.862.072.8622 (8)153
N2—H2A···O1iv0.902.373.0589 (8)133
N2—H2A···O2iv0.901.942.7475 (9)149
N2—H2B···O1v0.901.872.7509 (9)164
Symmetry codes: (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z; (iv) x, y+1, z; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H12N22+·2C2H2NO3
Mr264.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.4323 (4), 6.7681 (4), 13.0032 (7)
β (°) 94.488 (2)
V3)564.35 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.24 × 0.22 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.969, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
9313, 2606, 2197
Rint0.021
(sin θ/λ)max1)0.834
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.09
No. of reflections2606
No. of parameters82
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.34

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.243.0232 (9)151.7
N1—H1B···O3ii0.862.072.8622 (8)152.7
N2—H2A···O1iii0.902.373.0589 (8)133.2
N2—H2A···O2iii0.901.942.7475 (9)149.1
N2—H2B···O1iv0.901.872.7509 (9)164.1
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

SM and ASP thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBerkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Heimstra, H., Bakker, W. I. I., van den Hoogen Band, A. & van Maarseveen, J. H. (2005). Tetrahedron, 46, 2369-2371.  CrossRef CAS Google Scholar
First citationBharathi, K. S., Rahiman, A. K., Rajesh, K., Sreedaran, S., Aravindan, P. G., Velmurugan, D. & Narayanan, V. (2006). Polyhedron, 25, 2859-2868.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationBüyükgüngör, O. & Odabaşoğlu, M. (2008). Acta Cryst. E64, o808.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDinsmore, C. J. & Beshore, D. C. (2002). Tetrahedron, 58, 3297-3312.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGood, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S. & Singh, R. M. (1966). Biochemistry, 5, 467–477.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHumle, C. & Cherrier, M. P. (1999). Tetrahedron Lett. 40, 5295–5299.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilkinson, H. S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m26–m28.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1004
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds