organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1100

Di­ethyl 1,4-dioxo-1,2,2a,3,4,10b-hexa­hydro-5H,10H-2,3,4a,10a-tetra­aza­benzo[g]cyclo­penta[cd]azulene-2a,10b-di­carboxylate

aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: qj0312@mails.ccnu.edu.cn

(Received 15 April 2009; accepted 19 April 2009; online 25 April 2009)

In the title compound, C18H20N4O6, the dihedral angle between the two fused five-membered rings in the glycoluril unit is 64.42 (2)°. The crystal structure features inter­molecular N—H⋯O and C—H⋯O interactions. An intramolecular C—H⋯O contact is also present.

Related literature

For the preparation of the title compound, see: Wu et al. (2002a[Wu, A., Chakraborty, A., Witt, D., Lagona, J., Damkaci, F., Ofori, M. A., Chiles, J. K., Fettinger, J. C. & Isaacs, L. (2002a). J. Org. Chem. 67, 5817-5830.]). For crystal engineering studies of glycoluril and its derivatives, see: Chen et al. (2007[Chen, Y., She, N., Meng, X., Yin, G., Wu, A. & Isaacs, L. (2007). Org. Lett. 9, 1899-1902.]); Wang et al. (2006[Wang, Z., Zhou, B., Chen, Y., Yin, G., Li, Y., Wu, A. & Isaacs, L. (2006). J. Org. Chem. 71, 4502-4508.]); Johnson et al. (2002[Johnson, D. W., Palmer, L. C., Hof, F., Iovine, P. M. & Rebek, J. Jr (2002). Chem. Commun. pp. 2228-2229.]); Wu et al. (2002b[Wu, A., Fettinger, J. C. & Isaacs, L. (2002b). Tetrahedron, 58, 9769-9777.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N4O6

  • Mr = 388.38

  • Triclinic, [P \overline 1]

  • a = 8.1394 (5) Å

  • b = 9.4425 (5) Å

  • c = 13.3576 (8) Å

  • α = 93.1550 (10)°

  • β = 96.0560 (10)°

  • γ = 112.3970 (10)°

  • V = 938.80 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 294 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.989

  • 7700 measured reflections

  • 3624 independent reflections

  • 3028 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.144

  • S = 1.05

  • 3624 reflections

  • 261 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O3 0.97 2.52 3.107 (2) 119
C17—H17B⋯O2i 0.97 2.58 3.343 (3) 136
C7—H7B⋯O3ii 0.97 2.59 3.478 (2) 153
N4—H4A⋯O2iii 0.85 (3) 2.05 (3) 2.871 (2) 165 (2)
N3—H3A⋯O5iv 0.87 (3) 2.09 (3) 2.917 (2) 159 (2)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Glycoluril and its derivatives have been widely studied in supramolecular chemistry (Johnson et al., 2002; Wu et al., 2002b). As a continuation of our recent studies in this area (Wang et al., 2006; Chen et al., 2007), we herein report the crystal structure of the title compound (Fig. 1). The dihedral angle between the two fused five-membered rings in the glycoluril unit is 64.42 (2) °. In the crystal structure the molecules are connected via weak intermolecular N—H···O hydrogen bonding (Table 1).

Related literature top

For the preparation of the title compound, see: Wu et al. (2002a). For crystal engineering studies of glycoluril and its derivatives, see: Chen et al. (2007); Wang et al. (2006); Johnson et al. (2002); Wu et al. (2002b).

Experimental top

The title compound was synthesized according to a literature procedure (Wu et al.; 2002a). Crystals of (I) suitable for X-ray diffraction were grown by slow evaporation of a dichloromethane-methanol (1:2) solution of the title compound at room temperature.

Refinement top

All H atoms were positioned with idealized geometry with C—H = 0.93–0.97 Å (methyl H atoms allowed to rotate but not to tip) and were refined isotropic (Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) (methyl C)) using a riding model.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probability level.
Diethyl 1,4-dioxo-1,2,2a,3,4,10b-hexahydro-5H,10H-2,3,4a,10a- tetraazabenzo[g]cyclopenta[cd]azulene-2a,10b-dicarboxylate top
Crystal data top
C18H20N4O6Z = 2
Mr = 388.38F(000) = 408
Triclinic, P1Dx = 1.374 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1394 (5) ÅCell parameters from 3262 reflections
b = 9.4425 (5) Åθ = 2.4–27.5°
c = 13.3576 (8) ŵ = 0.11 mm1
α = 93.155 (1)°T = 294 K
β = 96.056 (1)°Block, colorless
γ = 112.397 (1)°0.20 × 0.20 × 0.10 mm
V = 938.80 (9) Å3
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
3624 independent reflections
Radiation source: fine-focus sealed tube3028 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 108
Tmin = 0.976, Tmax = 0.989k = 1111
7700 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0741P)2 + 0.3055P]
where P = (Fo2 + 2Fc2)/3
3624 reflections(Δ/σ)max = 0.005
261 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H20N4O6γ = 112.397 (1)°
Mr = 388.38V = 938.80 (9) Å3
Triclinic, P1Z = 2
a = 8.1394 (5) ÅMo Kα radiation
b = 9.4425 (5) ŵ = 0.11 mm1
c = 13.3576 (8) ÅT = 294 K
α = 93.155 (1)°0.20 × 0.20 × 0.10 mm
β = 96.056 (1)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
3624 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3028 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.989Rint = 0.020
7700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.28 e Å3
3624 reflectionsΔρmin = 0.20 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7535 (3)0.3332 (2)0.06082 (12)0.0350 (4)
C20.6905 (3)0.1940 (2)0.00001 (15)0.0442 (5)
H20.57140.15120.02980.053*
C30.8025 (3)0.1180 (2)0.01692 (16)0.0516 (5)
H30.75890.02500.05790.062*
C40.9787 (3)0.1811 (2)0.02733 (16)0.0515 (5)
H41.05520.13180.01520.062*
C51.0421 (3)0.3177 (2)0.08982 (15)0.0437 (5)
H51.16070.35810.12070.052*
C60.9321 (2)0.3955 (2)0.10733 (12)0.0352 (4)
C70.6302 (3)0.4178 (2)0.07030 (12)0.0375 (4)
H7A0.67810.51300.03910.045*
H7B0.51410.35560.03210.045*
C81.0095 (2)0.5470 (2)0.17322 (13)0.0359 (4)
H8A1.13230.56660.20060.043*
H8B1.01230.62870.13160.043*
C90.4886 (3)0.3441 (2)0.22434 (14)0.0392 (4)
C100.9584 (3)0.5307 (2)0.35329 (13)0.0395 (4)
C110.7426 (2)0.5735 (2)0.24235 (12)0.0330 (4)
C120.7751 (3)0.7358 (2)0.20982 (13)0.0372 (4)
C130.9500 (4)1.0015 (3)0.2570 (2)0.0691 (7)
H13A1.04811.03060.21680.083*
H13B0.84941.01520.21950.083*
C141.0045 (7)1.0966 (3)0.3520 (3)0.1181 (14)
H14A0.90411.07290.38910.177*
H14B1.04691.20310.33980.177*
H14C1.09881.07740.39060.177*
C150.6771 (3)0.5423 (2)0.34897 (13)0.0379 (4)
C160.6154 (3)0.6578 (2)0.40178 (14)0.0412 (4)
C170.4679 (4)0.8288 (3)0.3831 (2)0.0741 (8)
H17A0.56090.90120.43350.089*
H17B0.36390.77560.41600.089*
C180.4201 (6)0.9114 (4)0.3022 (3)0.1120 (13)
H18A0.52520.96870.27270.168*
H18B0.37180.98080.33000.168*
H18C0.33210.83860.25110.168*
N10.6035 (2)0.45511 (17)0.17377 (10)0.0356 (4)
N20.9101 (2)0.55255 (17)0.25637 (10)0.0345 (4)
N30.5268 (3)0.3968 (2)0.32473 (13)0.0491 (4)
H3A0.456 (3)0.355 (3)0.3683 (19)0.059*
N40.8307 (3)0.5358 (2)0.40898 (13)0.0532 (5)
H4A0.835 (3)0.525 (3)0.472 (2)0.064*
O10.37312 (19)0.22369 (16)0.18597 (12)0.0528 (4)
O21.0959 (2)0.51339 (19)0.38374 (10)0.0531 (4)
O30.7018 (2)0.75960 (17)0.13482 (10)0.0552 (4)
O40.8984 (2)0.84003 (15)0.27670 (11)0.0526 (4)
O50.6376 (3)0.68292 (19)0.49151 (11)0.0644 (5)
O60.5323 (2)0.71765 (18)0.33836 (11)0.0556 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0430 (10)0.0384 (9)0.0271 (8)0.0191 (8)0.0058 (7)0.0050 (7)
C20.0461 (11)0.0437 (10)0.0410 (10)0.0161 (9)0.0054 (8)0.0024 (8)
C30.0708 (15)0.0391 (11)0.0507 (12)0.0266 (11)0.0138 (11)0.0024 (9)
C40.0657 (15)0.0492 (12)0.0557 (12)0.0368 (11)0.0181 (11)0.0113 (10)
C50.0426 (11)0.0528 (11)0.0450 (10)0.0261 (10)0.0106 (9)0.0166 (9)
C60.0391 (10)0.0427 (10)0.0286 (8)0.0197 (8)0.0072 (7)0.0108 (7)
C70.0406 (10)0.0476 (10)0.0266 (8)0.0221 (9)0.0021 (7)0.0009 (7)
C80.0340 (10)0.0443 (10)0.0305 (9)0.0155 (8)0.0059 (7)0.0078 (7)
C90.0373 (10)0.0384 (10)0.0451 (10)0.0186 (9)0.0059 (8)0.0022 (8)
C100.0412 (11)0.0464 (10)0.0293 (9)0.0160 (9)0.0003 (8)0.0062 (8)
C110.0354 (10)0.0382 (9)0.0262 (8)0.0151 (8)0.0042 (7)0.0044 (7)
C120.0419 (10)0.0411 (10)0.0312 (9)0.0186 (9)0.0061 (8)0.0055 (7)
C130.0793 (18)0.0386 (12)0.0763 (17)0.0093 (12)0.0038 (14)0.0123 (11)
C140.170 (4)0.0489 (16)0.107 (3)0.019 (2)0.001 (3)0.0135 (16)
C150.0405 (10)0.0436 (10)0.0296 (9)0.0160 (9)0.0055 (7)0.0056 (7)
C160.0412 (11)0.0415 (10)0.0350 (10)0.0092 (9)0.0087 (8)0.0008 (8)
C170.0743 (18)0.0650 (16)0.096 (2)0.0388 (15)0.0268 (15)0.0014 (14)
C180.123 (3)0.088 (2)0.143 (3)0.070 (2)0.014 (3)0.001 (2)
N10.0346 (8)0.0415 (8)0.0296 (7)0.0153 (7)0.0002 (6)0.0005 (6)
N20.0339 (8)0.0433 (8)0.0263 (7)0.0155 (7)0.0013 (6)0.0051 (6)
N30.0571 (11)0.0412 (9)0.0423 (9)0.0088 (8)0.0185 (8)0.0041 (7)
N40.0579 (12)0.0867 (14)0.0265 (8)0.0393 (11)0.0068 (8)0.0152 (8)
O10.0427 (8)0.0437 (8)0.0624 (9)0.0079 (7)0.0054 (7)0.0045 (7)
O20.0493 (9)0.0791 (11)0.0373 (7)0.0323 (8)0.0003 (6)0.0148 (7)
O30.0773 (11)0.0517 (9)0.0407 (8)0.0328 (8)0.0054 (7)0.0069 (6)
O40.0588 (9)0.0372 (7)0.0505 (8)0.0091 (7)0.0048 (7)0.0069 (6)
O50.0891 (13)0.0677 (10)0.0367 (8)0.0307 (9)0.0136 (8)0.0042 (7)
O60.0633 (10)0.0630 (9)0.0520 (9)0.0378 (8)0.0095 (7)0.0002 (7)
Geometric parameters (Å, º) top
C1—C21.390 (3)C11—C121.548 (2)
C1—C61.401 (3)C11—C151.577 (2)
C1—C71.513 (2)C12—O31.188 (2)
C2—C31.386 (3)C12—O41.317 (2)
C2—H20.9300C13—C141.437 (4)
C3—C41.375 (3)C13—O41.466 (3)
C3—H30.9300C13—H13A0.9700
C4—C51.382 (3)C13—H13B0.9700
C4—H40.9300C14—H14A0.9600
C5—C61.387 (3)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—C81.508 (3)C15—N41.437 (2)
C7—N11.466 (2)C15—N31.441 (3)
C7—H7A0.9700C15—C161.531 (3)
C7—H7B0.9700C16—O51.190 (2)
C8—N21.451 (2)C16—O61.311 (2)
C8—H8A0.9700C17—O61.466 (3)
C8—H8B0.9700C17—C181.471 (4)
C9—O11.208 (2)C17—H17A0.9700
C9—N31.365 (3)C17—H17B0.9700
C9—N11.376 (2)C18—H18A0.9600
C10—O21.223 (2)C18—H18B0.9600
C10—N41.354 (3)C18—H18C0.9600
C10—N21.363 (2)N3—H3A0.87 (3)
C11—N11.440 (2)N4—H4A0.85 (3)
C11—N21.445 (2)
C2—C1—C6119.23 (17)C14—C13—H13A109.9
C2—C1—C7119.00 (17)O4—C13—H13A109.9
C6—C1—C7121.69 (16)C14—C13—H13B109.9
C3—C2—C1121.0 (2)O4—C13—H13B109.9
C3—C2—H2119.5H13A—C13—H13B108.3
C1—C2—H2119.5C13—C14—H14A109.5
C4—C3—C2119.5 (2)C13—C14—H14B109.5
C4—C3—H3120.3H14A—C14—H14B109.5
C2—C3—H3120.3C13—C14—H14C109.5
C3—C4—C5120.1 (2)H14A—C14—H14C109.5
C3—C4—H4120.0H14B—C14—H14C109.5
C5—C4—H4120.0N4—C15—N3114.94 (17)
C4—C5—C6121.16 (19)N4—C15—C16110.13 (16)
C4—C5—H5119.4N3—C15—C16109.09 (16)
C6—C5—H5119.4N4—C15—C11102.62 (15)
C5—C6—C1118.94 (18)N3—C15—C11101.34 (14)
C5—C6—C8119.12 (17)C16—C15—C11118.67 (15)
C1—C6—C8121.91 (16)O5—C16—O6125.5 (2)
N1—C7—C1115.68 (14)O5—C16—C15121.54 (18)
N1—C7—H7A108.4O6—C16—C15112.92 (15)
C1—C7—H7A108.4O6—C17—C18108.6 (3)
N1—C7—H7B108.4O6—C17—H17A110.0
C1—C7—H7B108.4C18—C17—H17A110.0
H7A—C7—H7B107.4O6—C17—H17B110.0
N2—C8—C6113.76 (15)C18—C17—H17B110.0
N2—C8—H8A108.8H17A—C17—H17B108.3
C6—C8—H8A108.8C17—C18—H18A109.5
N2—C8—H8B108.8C17—C18—H18B109.5
C6—C8—H8B108.8H18A—C18—H18B109.5
H8A—C8—H8B107.7C17—C18—H18C109.5
O1—C9—N3126.68 (18)H18A—C18—H18C109.5
O1—C9—N1125.85 (18)H18B—C18—H18C109.5
N3—C9—N1107.45 (16)C9—N1—C11111.93 (14)
O2—C10—N4126.78 (16)C9—N1—C7120.52 (15)
O2—C10—N2125.11 (18)C11—N1—C7121.64 (15)
N4—C10—N2108.09 (16)C10—N2—C11113.25 (15)
N1—C11—N2113.91 (14)C10—N2—C8124.21 (15)
N1—C11—C12111.49 (13)C11—N2—C8122.46 (13)
N2—C11—C12109.92 (14)C9—N3—C15114.32 (16)
N1—C11—C15103.63 (14)C9—N3—H3A122.6 (16)
N2—C11—C15101.80 (13)C15—N3—H3A122.3 (16)
C12—C11—C15115.76 (14)C10—N4—C15113.12 (15)
O3—C12—O4126.43 (17)C10—N4—H4A123.5 (17)
O3—C12—C11124.36 (17)C15—N4—H4A123.0 (17)
O4—C12—C11109.19 (14)C12—O4—C13116.92 (16)
C14—C13—O4108.9 (2)C16—O6—C17116.28 (18)
C6—C1—C2—C31.4 (3)O1—C9—N1—C717.8 (3)
C7—C1—C2—C3175.22 (17)N3—C9—N1—C7163.56 (16)
C1—C2—C3—C40.2 (3)N2—C11—N1—C997.72 (17)
C2—C3—C4—C51.3 (3)C12—C11—N1—C9137.17 (15)
C3—C4—C5—C61.5 (3)C15—C11—N1—C912.01 (18)
C4—C5—C6—C10.3 (3)N2—C11—N1—C755.3 (2)
C4—C5—C6—C8177.86 (17)C12—C11—N1—C769.8 (2)
C2—C1—C6—C51.2 (2)C15—C11—N1—C7165.00 (14)
C7—C1—C6—C5175.36 (16)C1—C7—N1—C978.3 (2)
C2—C1—C6—C8179.26 (16)C1—C7—N1—C1172.4 (2)
C7—C1—C6—C82.7 (2)O2—C10—N2—C11178.59 (18)
C2—C1—C7—N1124.69 (18)N4—C10—N2—C110.2 (2)
C6—C1—C7—N158.8 (2)O2—C10—N2—C84.8 (3)
C5—C6—C8—N2126.25 (17)N4—C10—N2—C8176.82 (17)
C1—C6—C8—N255.7 (2)N1—C11—N2—C10116.92 (17)
N1—C11—C12—O33.8 (3)C12—C11—N2—C10117.15 (16)
N2—C11—C12—O3123.5 (2)C15—C11—N2—C106.07 (19)
C15—C11—C12—O3121.9 (2)N1—C11—N2—C859.8 (2)
N1—C11—C12—O4177.71 (15)C12—C11—N2—C866.1 (2)
N2—C11—C12—O455.00 (19)C15—C11—N2—C8170.64 (15)
C15—C11—C12—O459.6 (2)C6—C8—N2—C1099.2 (2)
N1—C11—C15—N4127.94 (15)C6—C8—N2—C1177.2 (2)
N2—C11—C15—N49.48 (18)O1—C9—N3—C15177.73 (18)
C12—C11—C15—N4109.69 (17)N1—C9—N3—C153.7 (2)
N1—C11—C15—N38.88 (17)N4—C15—N3—C9113.33 (19)
N2—C11—C15—N3109.58 (15)C16—C15—N3—C9122.44 (18)
C12—C11—C15—N3131.26 (16)C11—C15—N3—C93.5 (2)
N1—C11—C15—C16110.44 (17)O2—C10—N4—C15174.2 (2)
N2—C11—C15—C16131.09 (17)N2—C10—N4—C157.4 (2)
C12—C11—C15—C1611.9 (2)N3—C15—N4—C1098.4 (2)
N4—C15—C16—O529.5 (3)C16—C15—N4—C10137.96 (18)
N3—C15—C16—O597.5 (2)C11—C15—N4—C1010.7 (2)
C11—C15—C16—O5147.25 (19)O3—C12—O4—C130.2 (3)
N4—C15—C16—O6153.07 (17)C11—C12—O4—C13178.62 (19)
N3—C15—C16—O679.91 (19)C14—C13—O4—C12150.2 (3)
C11—C15—C16—O635.3 (2)O5—C16—O6—C172.3 (3)
O1—C9—N1—C11171.16 (18)C15—C16—O6—C17179.63 (19)
N3—C9—N1—C1110.2 (2)C18—C17—O6—C16166.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O30.972.523.107 (2)119
C17—H17B···O2i0.972.583.343 (3)136
C7—H7B···O3ii0.972.593.478 (2)153
N4—H4A···O2iii0.85 (3)2.05 (3)2.871 (2)165 (2)
N3—H3A···O5iv0.87 (3)2.09 (3)2.917 (2)159 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H20N4O6
Mr388.38
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.1394 (5), 9.4425 (5), 13.3576 (8)
α, β, γ (°)93.155 (1), 96.056 (1), 112.397 (1)
V3)938.80 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.976, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
7700, 3624, 3028
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.144, 1.05
No. of reflections3624
No. of parameters261
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.20

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O30.972.523.107 (2)118.6
C17—H17B···O2i0.972.583.343 (3)135.9
C7—H7B···O3ii0.972.593.478 (2)152.8
N4—H4A···O2iii0.85 (3)2.05 (3)2.871 (2)165 (2)
N3—H3A···O5iv0.87 (3)2.09 (3)2.917 (2)159 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

The author gratefully acknowledges support from Central China Normal University.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., She, N., Meng, X., Yin, G., Wu, A. & Isaacs, L. (2007). Org. Lett. 9, 1899–1902.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohnson, D. W., Palmer, L. C., Hof, F., Iovine, P. M. & Rebek, J. Jr (2002). Chem. Commun. pp. 2228–2229.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Zhou, B., Chen, Y., Yin, G., Li, Y., Wu, A. & Isaacs, L. (2006). J. Org. Chem. 71, 4502–4508.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, A., Chakraborty, A., Witt, D., Lagona, J., Damkaci, F., Ofori, M. A., Chiles, J. K., Fettinger, J. C. & Isaacs, L. (2002a). J. Org. Chem. 67, 5817–5830.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, A., Fettinger, J. C. & Isaacs, L. (2002b). Tetrahedron, 58, 9769–9777.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1100
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds