metal-organic compounds
Tetraaquabis(3,5-di-4-pyridyl-1,2,4-triazolato-κN)cobalt(II) dihydrate
aSchool of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China
*Correspondence e-mail: pass2009_good@126.com
The CoII atom in the title compound, [Co(C12H8N5)2(H2O)4]·2H2O, lies on a center of inversion and is bonded to two N-heterocycles and to four water molecules in a slightly distorted octahedral coordination. The coordinated and lattice water molecules interact with the N-heterocycles through O—H⋯N hydrogen bonds, generating a three-dimensional supramolecular architecture.
Related literature
For magnetic studies of transition metal complexes with 1,2,4-triazole derivatives, see: Haasnoot (2000). For the potential applications of complexes containing substituted 1,2,4-triazole ligands with spin-crossover properties in molecular-based memory devices, displays and optical switches, see: Kahn & Martinez (1998). For 3,5-di(4-pyridine)-1,2,4-triazole, see: Zhang et al. (2006); Sreenivasulu & Vittal (2004). For the structure of water, see: Tajkhorshid et al. (2002). For the synthesis, see: Basu & Dutta (1964). For a trinuclear water cluster, see: König (1944).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809011982/ng2566sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809011982/ng2566Isup2.hkl
The ligand was prepared according to the previous literature (Basu & Dutta, (1964)). [Co(L)2(H2O)4](H2O) (1) (L = 3,5-di(4-pyridine)-1,2,4-triazole) was prepared under the hydrotheraml conditions. [Co(ClO4)2].6H2O (0.2 mmol), L (0.2 mmol) and 18 ml water was added to a 25 ml reaction vessel. the reaction vessel was then sealed and subsequently placed in an oven for 140 h at 160°C. well shaped red block crystals were obtained and washed with ethanol.
The carbon-bound H atoms were positioned geometrically and were allowed to ride on their parent C atoms. The water H atoms were located from a difference density map and were refined with distance restraints of O—H = 0.85±0.01 Å.
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2009).Fig. 1. The molecular structure and atom-labeling scheme of (I). | |
Fig. 2. The trinuclear water clusters stabling the packing structure of 1. |
[Co(C12H8N5)2(H2O)4]·2(H2O) | F(000) = 634 |
Mr = 611.49 | Dx = 1.556 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 556 reflections |
a = 7.3660 (15) Å | θ = 1.5–25.5° |
b = 15.654 (3) Å | µ = 0.72 mm−1 |
c = 11.857 (2) Å | T = 293 K |
β = 107.34 (3)° | Block, red |
V = 1305.1 (5) Å3 | 0.40 × 0.20 × 0.12 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 2423 independent reflections |
Radiation source: fine-focus sealed tube | 2009 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.065 |
ϕ and ω scans | θmax = 25.5°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→8 |
Tmin = 0.842, Tmax = 0.917 | k = −18→18 |
11054 measured reflections | l = −14→14 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.054 | w = 1/[σ2(Fo2) + (0.0298P)2 + 0.2298P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.108 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.29 e Å−3 |
2420 reflections | Δρmin = −0.41 e Å−3 |
243 parameters |
[Co(C12H8N5)2(H2O)4]·2(H2O) | V = 1305.1 (5) Å3 |
Mr = 611.49 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.3660 (15) Å | µ = 0.72 mm−1 |
b = 15.654 (3) Å | T = 293 K |
c = 11.857 (2) Å | 0.40 × 0.20 × 0.12 mm |
β = 107.34 (3)° |
Bruker SMART CCD area-detector diffractometer | 2423 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2009 reflections with I > 2σ(I) |
Tmin = 0.842, Tmax = 0.917 | Rint = 0.065 |
11054 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.29 e Å−3 |
2420 reflections | Δρmin = −0.41 e Å−3 |
243 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3827 (5) | 0.6826 (2) | −0.0776 (3) | 0.0306 (8) | |
C2 | 0.3536 (5) | 0.7690 (2) | −0.0713 (3) | 0.0299 (8) | |
C3 | 0.3919 (4) | 0.80864 (19) | 0.0377 (3) | 0.0218 (7) | |
C4 | 0.4634 (5) | 0.7565 (2) | 0.1360 (3) | 0.0290 (8) | |
C5 | 0.4886 (5) | 0.6711 (2) | 0.1224 (3) | 0.0294 (8) | |
C6 | 0.3518 (5) | 0.8987 (2) | 0.0514 (3) | 0.0229 (7) | |
C7 | 0.2496 (5) | 1.02433 (19) | 0.0220 (3) | 0.0241 (7) | |
C8 | 0.1690 (5) | 1.1049 (2) | −0.0324 (3) | 0.0244 (7) | |
C9 | 0.1117 (5) | 1.1170 (2) | −0.1528 (3) | 0.0330 (9) | |
C10 | 0.0440 (6) | 1.1952 (2) | −0.1990 (3) | 0.0368 (9) | |
C11 | 0.0861 (6) | 1.2510 (3) | −0.0181 (4) | 0.0450 (11) | |
C12 | 0.1540 (6) | 1.1751 (2) | 0.0357 (4) | 0.0403 (10) | |
Co1 | 0.5000 | 0.5000 | 0.0000 | 0.02203 (19) | |
H1 | 0.363 (5) | 0.657 (2) | −0.147 (3) | 0.033 (10)* | |
H2 | 0.313 (5) | 0.799 (3) | −0.138 (3) | 0.046 (12)* | |
H4 | 0.495 (5) | 0.781 (2) | 0.209 (3) | 0.034 (10)* | |
H5 | 0.532 (5) | 0.637 (2) | 0.187 (3) | 0.036 (10)* | |
H9 | 0.118 (5) | 1.075 (2) | −0.199 (3) | 0.028 (10)* | |
H10 | 0.013 (6) | 1.203 (3) | −0.278 (4) | 0.052 (13)* | |
H11 | 0.078 (6) | 1.299 (3) | 0.026 (4) | 0.057 (13)* | |
H12 | 0.188 (6) | 1.170 (3) | 0.116 (4) | 0.051 (12)* | |
H1A | 0.261 (5) | 0.484 (3) | −0.2116 (18) | 0.069 (16)* | |
H2A | 0.276 (4) | 0.5057 (16) | 0.135 (3) | 0.031 (10)* | |
H3A | 0.163 (5) | 0.571 (2) | 0.2816 (10) | 0.041 (12)* | |
H1B | 0.143 (3) | 0.475 (3) | −0.140 (3) | 0.077 (17)* | |
H2B | 0.416 (6) | 0.446 (3) | 0.1861 (19) | 0.084 (18)* | |
H3B | 0.081 (6) | 0.6269 (11) | 0.194 (4) | 0.069 (16)* | |
N1 | 0.4483 (4) | 0.63277 (16) | 0.0175 (2) | 0.0262 (6) | |
N2 | 0.2624 (4) | 0.95193 (16) | −0.0378 (2) | 0.0229 (6) | |
N3 | 0.3929 (4) | 0.93481 (17) | 0.1575 (2) | 0.0295 (7) | |
N4 | 0.3253 (4) | 1.01645 (17) | 0.1389 (2) | 0.0308 (7) | |
N5 | 0.0298 (4) | 1.26290 (18) | −0.1346 (3) | 0.0371 (8) | |
O1 | 0.2504 (3) | 0.49368 (17) | −0.1431 (2) | 0.0334 (6) | |
O2 | 0.3487 (4) | 0.46767 (16) | 0.1212 (2) | 0.0302 (6) | |
O3 | 0.1157 (4) | 0.57516 (16) | 0.2069 (2) | 0.0329 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.047 (2) | 0.0220 (18) | 0.0201 (18) | 0.0038 (16) | 0.0054 (16) | −0.0033 (15) |
C2 | 0.044 (2) | 0.0184 (17) | 0.0245 (19) | 0.0057 (15) | 0.0057 (16) | 0.0020 (15) |
C3 | 0.0241 (18) | 0.0184 (16) | 0.0231 (17) | 0.0017 (13) | 0.0074 (14) | −0.0003 (13) |
C4 | 0.043 (2) | 0.0239 (18) | 0.0188 (18) | 0.0052 (16) | 0.0075 (16) | −0.0032 (15) |
C5 | 0.043 (2) | 0.0200 (18) | 0.0232 (19) | 0.0050 (15) | 0.0065 (16) | 0.0043 (14) |
C6 | 0.0277 (18) | 0.0182 (16) | 0.0224 (17) | −0.0006 (14) | 0.0066 (14) | 0.0000 (13) |
C7 | 0.0297 (18) | 0.0194 (17) | 0.0227 (17) | −0.0001 (13) | 0.0072 (14) | 0.0002 (13) |
C8 | 0.0247 (18) | 0.0211 (17) | 0.0269 (18) | −0.0023 (14) | 0.0067 (14) | −0.0009 (14) |
C9 | 0.044 (2) | 0.0231 (19) | 0.028 (2) | 0.0046 (16) | 0.0043 (17) | −0.0031 (16) |
C10 | 0.044 (2) | 0.033 (2) | 0.027 (2) | 0.0034 (17) | 0.0023 (18) | 0.0073 (17) |
C11 | 0.067 (3) | 0.024 (2) | 0.045 (3) | 0.013 (2) | 0.017 (2) | −0.0019 (18) |
C12 | 0.065 (3) | 0.027 (2) | 0.028 (2) | 0.0129 (18) | 0.011 (2) | 0.0002 (16) |
Co1 | 0.0282 (4) | 0.0162 (3) | 0.0206 (3) | 0.0025 (3) | 0.0055 (2) | 0.0004 (3) |
N1 | 0.0358 (17) | 0.0170 (14) | 0.0251 (15) | 0.0032 (12) | 0.0081 (12) | −0.0001 (11) |
N2 | 0.0283 (15) | 0.0154 (14) | 0.0241 (15) | 0.0011 (11) | 0.0063 (12) | −0.0011 (11) |
N3 | 0.0398 (18) | 0.0213 (15) | 0.0255 (16) | 0.0099 (13) | 0.0065 (13) | 0.0017 (12) |
N4 | 0.0461 (18) | 0.0213 (16) | 0.0221 (15) | 0.0069 (13) | 0.0057 (13) | −0.0013 (11) |
N5 | 0.044 (2) | 0.0223 (16) | 0.044 (2) | 0.0079 (14) | 0.0115 (16) | 0.0055 (14) |
O1 | 0.0312 (14) | 0.0408 (15) | 0.0264 (14) | −0.0029 (13) | 0.0058 (10) | −0.0009 (12) |
O2 | 0.0346 (15) | 0.0295 (13) | 0.0296 (14) | 0.0062 (11) | 0.0142 (12) | 0.0021 (11) |
O3 | 0.0436 (16) | 0.0239 (14) | 0.0286 (15) | 0.0017 (12) | 0.0067 (12) | 0.0018 (11) |
C1—N1 | 1.337 (4) | C10—N5 | 1.328 (5) |
C1—C2 | 1.376 (5) | C10—H10 | 0.90 (4) |
C1—H1 | 0.89 (4) | C11—N5 | 1.331 (5) |
C2—C3 | 1.385 (5) | C11—C12 | 1.370 (5) |
C2—H2 | 0.89 (4) | C11—H11 | 0.93 (4) |
C3—C4 | 1.392 (5) | C12—H12 | 0.92 (4) |
C3—C6 | 1.459 (4) | Co1—O1i | 2.100 (2) |
C4—C5 | 1.365 (5) | Co1—O1 | 2.100 (2) |
C4—H4 | 0.91 (4) | Co1—O2i | 2.126 (2) |
C5—N1 | 1.332 (4) | Co1—O2 | 2.126 (2) |
C5—H5 | 0.91 (4) | Co1—N1i | 2.134 (3) |
C6—N3 | 1.329 (4) | Co1—N1 | 2.134 (3) |
C6—N2 | 1.354 (4) | N3—N4 | 1.365 (4) |
C7—N4 | 1.336 (4) | O1—H1A | 0.851 (10) |
C7—N2 | 1.355 (4) | O1—H1B | 0.852 (10) |
C7—C8 | 1.459 (4) | O2—H2A | 0.851 (10) |
C8—C9 | 1.377 (5) | O2—H2B | 0.850 (10) |
C8—C12 | 1.387 (5) | O3—H3A | 0.852 (10) |
C9—C10 | 1.373 (5) | O3—H3B | 0.849 (10) |
C9—H9 | 0.87 (4) | ||
N1—C1—C2 | 123.4 (3) | C11—C12—C8 | 119.8 (4) |
N1—C1—H1 | 116 (2) | C11—C12—H12 | 121 (3) |
C2—C1—H1 | 121 (2) | C8—C12—H12 | 120 (3) |
C1—C2—C3 | 120.0 (3) | O1i—Co1—O1 | 180.0 |
C1—C2—H2 | 119 (3) | O1i—Co1—O2i | 91.47 (10) |
C3—C2—H2 | 121 (3) | O1—Co1—O2i | 88.53 (10) |
C2—C3—C4 | 116.1 (3) | O1i—Co1—O2 | 88.53 (10) |
C2—C3—C6 | 123.0 (3) | O1—Co1—O2 | 91.47 (10) |
C4—C3—C6 | 120.8 (3) | O2i—Co1—O2 | 180.0 |
C5—C4—C3 | 120.4 (3) | O1i—Co1—N1i | 89.19 (10) |
C5—C4—H4 | 122 (2) | O1—Co1—N1i | 90.81 (10) |
C3—C4—H4 | 118 (2) | O2i—Co1—N1i | 91.23 (10) |
N1—C5—C4 | 123.5 (3) | O2—Co1—N1i | 88.77 (10) |
N1—C5—H5 | 116 (2) | O1i—Co1—N1 | 90.81 (10) |
C4—C5—H5 | 120 (2) | O1—Co1—N1 | 89.19 (10) |
N3—C6—N2 | 113.4 (3) | O2i—Co1—N1 | 88.77 (10) |
N3—C6—C3 | 121.3 (3) | O2—Co1—N1 | 91.23 (10) |
N2—C6—C3 | 125.1 (3) | N1i—Co1—N1 | 180.0 |
N4—C7—N2 | 113.1 (3) | C5—N1—C1 | 116.7 (3) |
N4—C7—C8 | 121.8 (3) | C5—N1—Co1 | 122.2 (2) |
N2—C7—C8 | 125.0 (3) | C1—N1—Co1 | 121.0 (2) |
C9—C8—C12 | 116.1 (3) | C6—N2—C7 | 101.5 (3) |
C9—C8—C7 | 122.5 (3) | C6—N3—N4 | 106.0 (2) |
C12—C8—C7 | 121.3 (3) | C7—N4—N3 | 105.8 (2) |
C10—C9—C8 | 120.0 (3) | C10—N5—C11 | 115.6 (3) |
C10—C9—H9 | 120 (2) | Co1—O1—H1A | 118 (3) |
C8—C9—H9 | 120 (2) | Co1—O1—H1B | 126 (3) |
N5—C10—C9 | 124.3 (4) | H1A—O1—H1B | 109.1 (17) |
N5—C10—H10 | 117 (3) | Co1—O2—H2A | 117 (2) |
C9—C10—H10 | 119 (3) | Co1—O2—H2B | 115 (3) |
N5—C11—C12 | 124.2 (4) | H2A—O2—H2B | 109.4 (15) |
N5—C11—H11 | 115 (3) | H3A—O3—H3B | 106 (4) |
C12—C11—H11 | 121 (3) | ||
N1—C1—C2—C3 | −0.3 (6) | C2—C1—N1—Co1 | −177.5 (3) |
C1—C2—C3—C4 | 1.4 (5) | O1i—Co1—N1—C5 | −36.4 (3) |
C1—C2—C3—C6 | −175.5 (3) | O1—Co1—N1—C5 | 143.6 (3) |
C2—C3—C4—C5 | −1.3 (5) | O2i—Co1—N1—C5 | −127.9 (3) |
C6—C3—C4—C5 | 175.6 (3) | O2—Co1—N1—C5 | 52.1 (3) |
C3—C4—C5—N1 | 0.1 (6) | N1i—Co1—N1—C5 | −122 (27) |
C2—C3—C6—N3 | −179.1 (3) | O1i—Co1—N1—C1 | 140.0 (3) |
C4—C3—C6—N3 | 4.2 (5) | O1—Co1—N1—C1 | −40.0 (3) |
C2—C3—C6—N2 | 4.7 (5) | O2i—Co1—N1—C1 | 48.5 (3) |
C4—C3—C6—N2 | −172.0 (3) | O2—Co1—N1—C1 | −131.5 (3) |
N4—C7—C8—C9 | 171.9 (3) | N1i—Co1—N1—C1 | 55 (27) |
N2—C7—C8—C9 | −5.8 (5) | N3—C6—N2—C7 | −0.6 (4) |
N4—C7—C8—C12 | −5.0 (5) | C3—C6—N2—C7 | 175.9 (3) |
N2—C7—C8—C12 | 177.3 (3) | N4—C7—N2—C6 | 0.0 (4) |
C12—C8—C9—C10 | −0.2 (6) | C8—C7—N2—C6 | 177.9 (3) |
C7—C8—C9—C10 | −177.4 (3) | N2—C6—N3—N4 | 0.8 (4) |
C8—C9—C10—N5 | 0.5 (6) | C3—C6—N3—N4 | −175.7 (3) |
N5—C11—C12—C8 | 0.6 (7) | N2—C7—N4—N3 | 0.5 (4) |
C9—C8—C12—C11 | −0.3 (6) | C8—C7—N4—N3 | −177.5 (3) |
C7—C8—C12—C11 | 176.9 (4) | C6—N3—N4—C7 | −0.8 (4) |
C4—C5—N1—C1 | 1.1 (5) | C9—C10—N5—C11 | −0.2 (6) |
C4—C5—N1—Co1 | 177.6 (3) | C12—C11—N5—C10 | −0.3 (6) |
C2—C1—N1—C5 | −1.0 (5) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N3ii | 0.85 (1) | 2.42 (3) | 3.070 (4) | 134 (3) |
O1—H1A···N4ii | 0.85 (1) | 1.97 (1) | 2.803 (4) | 167 (4) |
O1—H1B···O3iii | 0.85 (1) | 1.99 (2) | 2.791 (4) | 155 (3) |
O2—H2A···O3 | 0.85 (1) | 1.97 (1) | 2.801 (4) | 164 (3) |
O2—H2B···N3iv | 0.85 (1) | 1.97 (2) | 2.792 (4) | 161 (5) |
O2—H2B···N4iv | 0.85 (1) | 2.60 (4) | 3.220 (4) | 130 (4) |
O3—H3A···N2v | 0.85 (1) | 2.08 (1) | 2.926 (4) | 174 (4) |
O3—H3B···N5vi | 0.85 (1) | 1.95 (1) | 2.786 (4) | 168 (5) |
Symmetry codes: (ii) x, −y+3/2, z−1/2; (iii) −x, −y+1, −z; (iv) −x+1, y−1/2, −z+1/2; (v) x, −y+3/2, z+1/2; (vi) −x, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | [Co(C12H8N5)2(H2O)4]·2(H2O) |
Mr | 611.49 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 7.3660 (15), 15.654 (3), 11.857 (2) |
β (°) | 107.34 (3) |
V (Å3) | 1305.1 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.72 |
Crystal size (mm) | 0.40 × 0.20 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.842, 0.917 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11054, 2423, 2009 |
Rint | 0.065 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.108, 1.07 |
No. of reflections | 2420 |
No. of parameters | 243 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.29, −0.41 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2009).
Co1—O1i | 2.100 (2) | Co1—O2 | 2.126 (2) |
Co1—O1 | 2.100 (2) | Co1—N1i | 2.134 (3) |
Co1—O2i | 2.126 (2) | Co1—N1 | 2.134 (3) |
O1i—Co1—O1 | 180.0 | O2i—Co1—N1i | 91.23 (10) |
O1i—Co1—O2i | 91.47 (10) | O2—Co1—N1i | 88.77 (10) |
O1—Co1—O2i | 88.53 (10) | O1i—Co1—N1 | 90.81 (10) |
O1i—Co1—O2 | 88.53 (10) | O1—Co1—N1 | 89.19 (10) |
O1—Co1—O2 | 91.47 (10) | O2i—Co1—N1 | 88.77 (10) |
O2i—Co1—O2 | 180.0 | O2—Co1—N1 | 91.23 (10) |
O1i—Co1—N1i | 89.19 (10) | N1i—Co1—N1 | 180.0 |
O1—Co1—N1i | 90.81 (10) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N3ii | 0.851 (10) | 2.42 (3) | 3.070 (4) | 134 (3) |
O1—H1A···N4ii | 0.851 (10) | 1.966 (12) | 2.803 (4) | 167 (4) |
O1—H1B···O3iii | 0.852 (10) | 1.99 (2) | 2.791 (4) | 155 (3) |
O2—H2A···O3 | 0.851 (10) | 1.973 (14) | 2.801 (4) | 164 (3) |
O2—H2B···N3iv | 0.850 (10) | 1.973 (19) | 2.792 (4) | 161 (5) |
O2—H2B···N4iv | 0.850 (10) | 2.60 (4) | 3.220 (4) | 130 (4) |
O3—H3A···N2v | 0.852 (10) | 2.077 (12) | 2.926 (4) | 174 (4) |
O3—H3B···N5vi | 0.849 (10) | 1.950 (14) | 2.786 (4) | 168 (5) |
Symmetry codes: (ii) x, −y+3/2, z−1/2; (iii) −x, −y+1, −z; (iv) −x+1, y−1/2, −z+1/2; (v) x, −y+3/2, z+1/2; (vi) −x, −y+2, −z. |
References
Basu, U. P. & Dutta, S. (1964). J. Org. Chem. 30, 3562–3564. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Haasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185. Web of Science CrossRef CAS Google Scholar
Kahn, O. & Martinez, C. J. (1998). Science, 279, 44–48. Web of Science CrossRef CAS Google Scholar
König, H. A. Z. (1944). Z. Kristallogr. 105, 279–286. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sreenivasulu, B. & Vittal, J. J. (2004). Angew. Chem. Int. Ed. 43, 5769–5772. Web of Science CSD CrossRef CAS Google Scholar
Tajkhorshid, E., Nollert, P., Jensen, M., Miercke, L. J. W., Connell, J. O., Stroud, R. M. & Schulten, K. (2002). Science, 296, 525–530. Web of Science CrossRef PubMed CAS Google Scholar
Westrip (2009). publCIF. In preparation. Google Scholar
Zhang, J. P., Lin, Y. Y., Huang, X. C. & Chen, X. M. (2006). Cryst. Growth Des. 6, 519–523. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition metal complexes with 1,2,4-triazole derivatives as ligands are of great interest as they are the subject of magnetic studies (Haasnoot, 2000). Some complexes containing substituted 1,2,4-triazole ligands have spin-crossover properties, which could be used in molecular-based memory devices, displays and optical switches (Kahn & Martinez, 1998). The ligand 3,5-di(4-pyridine)-1,2,4-triazole (L) is of special interest as it contains multi-dentate donor atoms and shows diverse coordination modes.. Especially only a few examples about the coordinaiton chemistry of L are reported. Some unusual coordination modes of L also have been reported forming interesting supramolecular isomerism systems (Zhang et al., 2006). On the other hand, water is quite important for our common life (Tajkhorshid et al., 2002). It has been the focus of intense research interests for their unusual properties in biological system and also plays an important role in biological self-assembly processes (Sreenivasulu & Vittal, 2004).
In this work, we synthesized a new compound [Co(L)2(H2O)4](H2O)2 (I) (L = 3,5-di(4-pyridine)-1,2,4-triazole). 1 is composed of one cobalt(II) cation, two L ligand, four coordinated and two lattice water molecules. The cobalt(II) cation is six-coordinated in the octahedral geometry. The equatorial site of Cobalt cation is occupied by four aqua molecules while the axial site is occupied by two nitrogen atoms of two mono-dentate L ligands. The mono-dentate coordination mode of L is different from previously reported di-, tri- or tetra-dentate coordination modes of L.
O1, O2 from coordination water molecules and O3 from lattice water molecules generate strong intermolecular hydrogen bondings and construct trinuclear water clusters, in which O3 acts as the hydrogen acceptors and O1, O2 act as hydrogen bonding donors. The hydrogen-bonding distances are 2.791 (4) Å (O1—H1B···O3) and 2.801 (4) Å(O2—H2A···O3), respectively. The average O···O distance is 2.796 (4) Å, which is similar to that(2.75 Å) in the structure of ice (König, 1944).
strong N—H···O hydrogen bonds generated from water molecules and nitrogen atoms of pyridine or triazole groups are also observed rusulting in the three-dimensional supramolecular network(Table 2). π-π stacking interactions between two neighboring triazole groups further consolidating the architecture centroid-centroid distance 3.677 (4) Å]
Perspective drawing with the atomic numbering scheme is illustrated in figure 1. Selected geometric parameters (Å, °) for 1 are listed in table 1. Selected hydrogen-bonding geometric parameters (Å, °) for 1 are listed in table 2. The trinuclear water clusters, corresponding N—H···O hydrogen bonds and π-π stacking are shown in figure 2. The three-dimensional supramolecular packing architecture of (I) is shown in figure 3.