metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m487-m488

Tetra­aqua­bis­(3,5-di-4-pyridyl-1,2,4-triazolato-κN)cobalt(II) dihydrate

aSchool of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China
*Correspondence e-mail: pass2009_good@126.com

(Received 26 March 2009; accepted 31 March 2009; online 8 April 2009)

The CoII atom in the title compound, [Co(C12H8N5)2(H2O)4]·2H2O, lies on a center of inversion and is bonded to two N-heterocycles and to four water mol­ecules in a slightly distorted octahedral coordination. The coordinated and lattice water mol­ecules inter­act with the N-heterocycles through O—H⋯N hydrogen bonds, generating a three-dimensional supra­molecular architecture.

Related literature

For magnetic studies of transition metal complexes with 1,2,4-triazole derivatives, see: Haasnoot (2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.]). For the potential applications of complexes containing substituted 1,2,4-triazole ligands with spin-crossover properties in mol­ecular-based memory devices, displays and optical switches, see: Kahn & Martinez (1998[Kahn, O. & Martinez, C. J. (1998). Science, 279, 44-48.]). For 3,5-di(4-pyridine)-1,2,4-triazole, see: Zhang et al. (2006[Zhang, J. P., Lin, Y. Y., Huang, X. C. & Chen, X. M. (2006). Cryst. Growth Des. 6, 519-523.]); Sreenivasulu & Vittal (2004[Sreenivasulu, B. & Vittal, J. J. (2004). Angew. Chem. Int. Ed. 43, 5769-5772.]). For the structure of water, see: Tajkhorshid et al. (2002[Tajkhorshid, E., Nollert, P., Jensen, M., Miercke, L. J. W., Connell, J. O., Stroud, R. M. & Schulten, K. (2002). Science, 296, 525-530.]). For the synthesis, see: Basu & Dutta (1964[Basu, U. P. & Dutta, S. (1964). J. Org. Chem. 30, 3562-3564.]). For a trinuclear water cluster, see: König (1944[König, H. A. Z. (1944). Z. Kristallogr. 105, 279-286.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C12H8N5)2(H2O)4]·2H2O

  • Mr = 611.49

  • Monoclinic, P 21 /c

  • a = 7.3660 (15) Å

  • b = 15.654 (3) Å

  • c = 11.857 (2) Å

  • β = 107.34 (3)°

  • V = 1305.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.842, Tmax = 0.917

  • 11054 measured reflections

  • 2423 independent reflections

  • 2009 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.108

  • S = 1.07

  • 2420 reflections

  • 243 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O1 2.100 (2)
Co1—O2 2.126 (2)
Co1—N1 2.134 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N3ii 0.851 (10) 2.42 (3) 3.070 (4) 134 (3)
O1—H1A⋯N4ii 0.851 (10) 1.966 (12) 2.803 (4) 167 (4)
O1—H1B⋯O3iii 0.852 (10) 1.99 (2) 2.791 (4) 155 (3)
O2—H2A⋯O3 0.851 (10) 1.973 (14) 2.801 (4) 164 (3)
O2—H2B⋯N3iv 0.850 (10) 1.973 (19) 2.792 (4) 161 (5)
O2—H2B⋯N4iv 0.850 (10) 2.60 (4) 3.220 (4) 130 (4)
O3—H3A⋯N2v 0.852 (10) 2.077 (12) 2.926 (4) 174 (4)
O3—H3B⋯N5vi 0.849 (10) 1.950 (14) 2.786 (4) 168 (5)
Symmetry codes: (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) -x, -y+2, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip (2009). publCIF. In preparation.]).

Supporting information


Comment top

Transition metal complexes with 1,2,4-triazole derivatives as ligands are of great interest as they are the subject of magnetic studies (Haasnoot, 2000). Some complexes containing substituted 1,2,4-triazole ligands have spin-crossover properties, which could be used in molecular-based memory devices, displays and optical switches (Kahn & Martinez, 1998). The ligand 3,5-di(4-pyridine)-1,2,4-triazole (L) is of special interest as it contains multi-dentate donor atoms and shows diverse coordination modes.. Especially only a few examples about the coordinaiton chemistry of L are reported. Some unusual coordination modes of L also have been reported forming interesting supramolecular isomerism systems (Zhang et al., 2006). On the other hand, water is quite important for our common life (Tajkhorshid et al., 2002). It has been the focus of intense research interests for their unusual properties in biological system and also plays an important role in biological self-assembly processes (Sreenivasulu & Vittal, 2004).

In this work, we synthesized a new compound [Co(L)2(H2O)4](H2O)2 (I) (L = 3,5-di(4-pyridine)-1,2,4-triazole). 1 is composed of one cobalt(II) cation, two L ligand, four coordinated and two lattice water molecules. The cobalt(II) cation is six-coordinated in the octahedral geometry. The equatorial site of Cobalt cation is occupied by four aqua molecules while the axial site is occupied by two nitrogen atoms of two mono-dentate L ligands. The mono-dentate coordination mode of L is different from previously reported di-, tri- or tetra-dentate coordination modes of L.

O1, O2 from coordination water molecules and O3 from lattice water molecules generate strong intermolecular hydrogen bondings and construct trinuclear water clusters, in which O3 acts as the hydrogen acceptors and O1, O2 act as hydrogen bonding donors. The hydrogen-bonding distances are 2.791 (4) Å (O1—H1B···O3) and 2.801 (4) Å(O2—H2A···O3), respectively. The average O···O distance is 2.796 (4) Å, which is similar to that(2.75 Å) in the structure of ice (König, 1944).

strong N—H···O hydrogen bonds generated from water molecules and nitrogen atoms of pyridine or triazole groups are also observed rusulting in the three-dimensional supramolecular network(Table 2). π-π stacking interactions between two neighboring triazole groups further consolidating the architecture centroid-centroid distance 3.677 (4) Å]

Perspective drawing with the atomic numbering scheme is illustrated in figure 1. Selected geometric parameters (Å, °) for 1 are listed in table 1. Selected hydrogen-bonding geometric parameters (Å, °) for 1 are listed in table 2. The trinuclear water clusters, corresponding N—H···O hydrogen bonds and π-π stacking are shown in figure 2. The three-dimensional supramolecular packing architecture of (I) is shown in figure 3.

Related literature top

For magnetic studies of transition metal complexes with 1,2,4-triazole derivatives, see: Haasnoot (2000). For the potential applications of complexes containing substituted 1,2,4-triazole ligands with spin-crossover properties in molecular-based memory devices, displays and optical switches, see: Kahn & Martinez (1998). For 3,5-di(4-pyridine)-1,2,4-triazole, see: Zhang et al. (2006); Sreenivasulu & Vittal (2004). For water, see: Tajkhorshid et al. (2002). For the synthesis, see: Basu & Dutta (1964). For related literature, see: König (1944).

Experimental top

The ligand was prepared according to the previous literature (Basu & Dutta, (1964)). [Co(L)2(H2O)4](H2O) (1) (L = 3,5-di(4-pyridine)-1,2,4-triazole) was prepared under the hydrotheraml conditions. [Co(ClO4)2].6H2O (0.2 mmol), L (0.2 mmol) and 18 ml water was added to a 25 ml reaction vessel. the reaction vessel was then sealed and subsequently placed in an oven for 140 h at 160°C. well shaped red block crystals were obtained and washed with ethanol.

Refinement top

The carbon-bound H atoms were positioned geometrically and were allowed to ride on their parent C atoms. The water H atoms were located from a difference density map and were refined with distance restraints of O—H = 0.85±0.01 Å.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-labeling scheme of (I).
[Figure 2] Fig. 2. The trinuclear water clusters stabling the packing structure of 1.
Tetraaquabis(3,5-di-4-pyridyl-1,2,4-triazolato-κN)cobalt(II) dihydrate top
Crystal data top
[Co(C12H8N5)2(H2O)4]·2(H2O)F(000) = 634
Mr = 611.49Dx = 1.556 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 556 reflections
a = 7.3660 (15) Åθ = 1.5–25.5°
b = 15.654 (3) ŵ = 0.72 mm1
c = 11.857 (2) ÅT = 293 K
β = 107.34 (3)°Block, red
V = 1305.1 (5) Å30.40 × 0.20 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2423 independent reflections
Radiation source: fine-focus sealed tube2009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 25.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.842, Tmax = 0.917k = 1818
11054 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.2298P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.29 e Å3
2420 reflectionsΔρmin = 0.41 e Å3
243 parameters
Crystal data top
[Co(C12H8N5)2(H2O)4]·2(H2O)V = 1305.1 (5) Å3
Mr = 611.49Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.3660 (15) ŵ = 0.72 mm1
b = 15.654 (3) ÅT = 293 K
c = 11.857 (2) Å0.40 × 0.20 × 0.12 mm
β = 107.34 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2423 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2009 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.917Rint = 0.065
11054 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.29 e Å3
2420 reflectionsΔρmin = 0.41 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3827 (5)0.6826 (2)0.0776 (3)0.0306 (8)
C20.3536 (5)0.7690 (2)0.0713 (3)0.0299 (8)
C30.3919 (4)0.80864 (19)0.0377 (3)0.0218 (7)
C40.4634 (5)0.7565 (2)0.1360 (3)0.0290 (8)
C50.4886 (5)0.6711 (2)0.1224 (3)0.0294 (8)
C60.3518 (5)0.8987 (2)0.0514 (3)0.0229 (7)
C70.2496 (5)1.02433 (19)0.0220 (3)0.0241 (7)
C80.1690 (5)1.1049 (2)0.0324 (3)0.0244 (7)
C90.1117 (5)1.1170 (2)0.1528 (3)0.0330 (9)
C100.0440 (6)1.1952 (2)0.1990 (3)0.0368 (9)
C110.0861 (6)1.2510 (3)0.0181 (4)0.0450 (11)
C120.1540 (6)1.1751 (2)0.0357 (4)0.0403 (10)
Co10.50000.50000.00000.02203 (19)
H10.363 (5)0.657 (2)0.147 (3)0.033 (10)*
H20.313 (5)0.799 (3)0.138 (3)0.046 (12)*
H40.495 (5)0.781 (2)0.209 (3)0.034 (10)*
H50.532 (5)0.637 (2)0.187 (3)0.036 (10)*
H90.118 (5)1.075 (2)0.199 (3)0.028 (10)*
H100.013 (6)1.203 (3)0.278 (4)0.052 (13)*
H110.078 (6)1.299 (3)0.026 (4)0.057 (13)*
H120.188 (6)1.170 (3)0.116 (4)0.051 (12)*
H1A0.261 (5)0.484 (3)0.2116 (18)0.069 (16)*
H2A0.276 (4)0.5057 (16)0.135 (3)0.031 (10)*
H3A0.163 (5)0.571 (2)0.2816 (10)0.041 (12)*
H1B0.143 (3)0.475 (3)0.140 (3)0.077 (17)*
H2B0.416 (6)0.446 (3)0.1861 (19)0.084 (18)*
H3B0.081 (6)0.6269 (11)0.194 (4)0.069 (16)*
N10.4483 (4)0.63277 (16)0.0175 (2)0.0262 (6)
N20.2624 (4)0.95193 (16)0.0378 (2)0.0229 (6)
N30.3929 (4)0.93481 (17)0.1575 (2)0.0295 (7)
N40.3253 (4)1.01645 (17)0.1389 (2)0.0308 (7)
N50.0298 (4)1.26290 (18)0.1346 (3)0.0371 (8)
O10.2504 (3)0.49368 (17)0.1431 (2)0.0334 (6)
O20.3487 (4)0.46767 (16)0.1212 (2)0.0302 (6)
O30.1157 (4)0.57516 (16)0.2069 (2)0.0329 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.047 (2)0.0220 (18)0.0201 (18)0.0038 (16)0.0054 (16)0.0033 (15)
C20.044 (2)0.0184 (17)0.0245 (19)0.0057 (15)0.0057 (16)0.0020 (15)
C30.0241 (18)0.0184 (16)0.0231 (17)0.0017 (13)0.0074 (14)0.0003 (13)
C40.043 (2)0.0239 (18)0.0188 (18)0.0052 (16)0.0075 (16)0.0032 (15)
C50.043 (2)0.0200 (18)0.0232 (19)0.0050 (15)0.0065 (16)0.0043 (14)
C60.0277 (18)0.0182 (16)0.0224 (17)0.0006 (14)0.0066 (14)0.0000 (13)
C70.0297 (18)0.0194 (17)0.0227 (17)0.0001 (13)0.0072 (14)0.0002 (13)
C80.0247 (18)0.0211 (17)0.0269 (18)0.0023 (14)0.0067 (14)0.0009 (14)
C90.044 (2)0.0231 (19)0.028 (2)0.0046 (16)0.0043 (17)0.0031 (16)
C100.044 (2)0.033 (2)0.027 (2)0.0034 (17)0.0023 (18)0.0073 (17)
C110.067 (3)0.024 (2)0.045 (3)0.013 (2)0.017 (2)0.0019 (18)
C120.065 (3)0.027 (2)0.028 (2)0.0129 (18)0.011 (2)0.0002 (16)
Co10.0282 (4)0.0162 (3)0.0206 (3)0.0025 (3)0.0055 (2)0.0004 (3)
N10.0358 (17)0.0170 (14)0.0251 (15)0.0032 (12)0.0081 (12)0.0001 (11)
N20.0283 (15)0.0154 (14)0.0241 (15)0.0011 (11)0.0063 (12)0.0011 (11)
N30.0398 (18)0.0213 (15)0.0255 (16)0.0099 (13)0.0065 (13)0.0017 (12)
N40.0461 (18)0.0213 (16)0.0221 (15)0.0069 (13)0.0057 (13)0.0013 (11)
N50.044 (2)0.0223 (16)0.044 (2)0.0079 (14)0.0115 (16)0.0055 (14)
O10.0312 (14)0.0408 (15)0.0264 (14)0.0029 (13)0.0058 (10)0.0009 (12)
O20.0346 (15)0.0295 (13)0.0296 (14)0.0062 (11)0.0142 (12)0.0021 (11)
O30.0436 (16)0.0239 (14)0.0286 (15)0.0017 (12)0.0067 (12)0.0018 (11)
Geometric parameters (Å, º) top
C1—N11.337 (4)C10—N51.328 (5)
C1—C21.376 (5)C10—H100.90 (4)
C1—H10.89 (4)C11—N51.331 (5)
C2—C31.385 (5)C11—C121.370 (5)
C2—H20.89 (4)C11—H110.93 (4)
C3—C41.392 (5)C12—H120.92 (4)
C3—C61.459 (4)Co1—O1i2.100 (2)
C4—C51.365 (5)Co1—O12.100 (2)
C4—H40.91 (4)Co1—O2i2.126 (2)
C5—N11.332 (4)Co1—O22.126 (2)
C5—H50.91 (4)Co1—N1i2.134 (3)
C6—N31.329 (4)Co1—N12.134 (3)
C6—N21.354 (4)N3—N41.365 (4)
C7—N41.336 (4)O1—H1A0.851 (10)
C7—N21.355 (4)O1—H1B0.852 (10)
C7—C81.459 (4)O2—H2A0.851 (10)
C8—C91.377 (5)O2—H2B0.850 (10)
C8—C121.387 (5)O3—H3A0.852 (10)
C9—C101.373 (5)O3—H3B0.849 (10)
C9—H90.87 (4)
N1—C1—C2123.4 (3)C11—C12—C8119.8 (4)
N1—C1—H1116 (2)C11—C12—H12121 (3)
C2—C1—H1121 (2)C8—C12—H12120 (3)
C1—C2—C3120.0 (3)O1i—Co1—O1180.0
C1—C2—H2119 (3)O1i—Co1—O2i91.47 (10)
C3—C2—H2121 (3)O1—Co1—O2i88.53 (10)
C2—C3—C4116.1 (3)O1i—Co1—O288.53 (10)
C2—C3—C6123.0 (3)O1—Co1—O291.47 (10)
C4—C3—C6120.8 (3)O2i—Co1—O2180.0
C5—C4—C3120.4 (3)O1i—Co1—N1i89.19 (10)
C5—C4—H4122 (2)O1—Co1—N1i90.81 (10)
C3—C4—H4118 (2)O2i—Co1—N1i91.23 (10)
N1—C5—C4123.5 (3)O2—Co1—N1i88.77 (10)
N1—C5—H5116 (2)O1i—Co1—N190.81 (10)
C4—C5—H5120 (2)O1—Co1—N189.19 (10)
N3—C6—N2113.4 (3)O2i—Co1—N188.77 (10)
N3—C6—C3121.3 (3)O2—Co1—N191.23 (10)
N2—C6—C3125.1 (3)N1i—Co1—N1180.0
N4—C7—N2113.1 (3)C5—N1—C1116.7 (3)
N4—C7—C8121.8 (3)C5—N1—Co1122.2 (2)
N2—C7—C8125.0 (3)C1—N1—Co1121.0 (2)
C9—C8—C12116.1 (3)C6—N2—C7101.5 (3)
C9—C8—C7122.5 (3)C6—N3—N4106.0 (2)
C12—C8—C7121.3 (3)C7—N4—N3105.8 (2)
C10—C9—C8120.0 (3)C10—N5—C11115.6 (3)
C10—C9—H9120 (2)Co1—O1—H1A118 (3)
C8—C9—H9120 (2)Co1—O1—H1B126 (3)
N5—C10—C9124.3 (4)H1A—O1—H1B109.1 (17)
N5—C10—H10117 (3)Co1—O2—H2A117 (2)
C9—C10—H10119 (3)Co1—O2—H2B115 (3)
N5—C11—C12124.2 (4)H2A—O2—H2B109.4 (15)
N5—C11—H11115 (3)H3A—O3—H3B106 (4)
C12—C11—H11121 (3)
N1—C1—C2—C30.3 (6)C2—C1—N1—Co1177.5 (3)
C1—C2—C3—C41.4 (5)O1i—Co1—N1—C536.4 (3)
C1—C2—C3—C6175.5 (3)O1—Co1—N1—C5143.6 (3)
C2—C3—C4—C51.3 (5)O2i—Co1—N1—C5127.9 (3)
C6—C3—C4—C5175.6 (3)O2—Co1—N1—C552.1 (3)
C3—C4—C5—N10.1 (6)N1i—Co1—N1—C5122 (27)
C2—C3—C6—N3179.1 (3)O1i—Co1—N1—C1140.0 (3)
C4—C3—C6—N34.2 (5)O1—Co1—N1—C140.0 (3)
C2—C3—C6—N24.7 (5)O2i—Co1—N1—C148.5 (3)
C4—C3—C6—N2172.0 (3)O2—Co1—N1—C1131.5 (3)
N4—C7—C8—C9171.9 (3)N1i—Co1—N1—C155 (27)
N2—C7—C8—C95.8 (5)N3—C6—N2—C70.6 (4)
N4—C7—C8—C125.0 (5)C3—C6—N2—C7175.9 (3)
N2—C7—C8—C12177.3 (3)N4—C7—N2—C60.0 (4)
C12—C8—C9—C100.2 (6)C8—C7—N2—C6177.9 (3)
C7—C8—C9—C10177.4 (3)N2—C6—N3—N40.8 (4)
C8—C9—C10—N50.5 (6)C3—C6—N3—N4175.7 (3)
N5—C11—C12—C80.6 (7)N2—C7—N4—N30.5 (4)
C9—C8—C12—C110.3 (6)C8—C7—N4—N3177.5 (3)
C7—C8—C12—C11176.9 (4)C6—N3—N4—C70.8 (4)
C4—C5—N1—C11.1 (5)C9—C10—N5—C110.2 (6)
C4—C5—N1—Co1177.6 (3)C12—C11—N5—C100.3 (6)
C2—C1—N1—C51.0 (5)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N3ii0.85 (1)2.42 (3)3.070 (4)134 (3)
O1—H1A···N4ii0.85 (1)1.97 (1)2.803 (4)167 (4)
O1—H1B···O3iii0.85 (1)1.99 (2)2.791 (4)155 (3)
O2—H2A···O30.85 (1)1.97 (1)2.801 (4)164 (3)
O2—H2B···N3iv0.85 (1)1.97 (2)2.792 (4)161 (5)
O2—H2B···N4iv0.85 (1)2.60 (4)3.220 (4)130 (4)
O3—H3A···N2v0.85 (1)2.08 (1)2.926 (4)174 (4)
O3—H3B···N5vi0.85 (1)1.95 (1)2.786 (4)168 (5)
Symmetry codes: (ii) x, y+3/2, z1/2; (iii) x, y+1, z; (iv) x+1, y1/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Co(C12H8N5)2(H2O)4]·2(H2O)
Mr611.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.3660 (15), 15.654 (3), 11.857 (2)
β (°) 107.34 (3)
V3)1305.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.40 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.842, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
11054, 2423, 2009
Rint0.065
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.108, 1.07
No. of reflections2420
No. of parameters243
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.41

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
Co1—O1i2.100 (2)Co1—O22.126 (2)
Co1—O12.100 (2)Co1—N1i2.134 (3)
Co1—O2i2.126 (2)Co1—N12.134 (3)
O1i—Co1—O1180.0O2i—Co1—N1i91.23 (10)
O1i—Co1—O2i91.47 (10)O2—Co1—N1i88.77 (10)
O1—Co1—O2i88.53 (10)O1i—Co1—N190.81 (10)
O1i—Co1—O288.53 (10)O1—Co1—N189.19 (10)
O1—Co1—O291.47 (10)O2i—Co1—N188.77 (10)
O2i—Co1—O2180.0O2—Co1—N191.23 (10)
O1i—Co1—N1i89.19 (10)N1i—Co1—N1180.0
O1—Co1—N1i90.81 (10)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N3ii0.851 (10)2.42 (3)3.070 (4)134 (3)
O1—H1A···N4ii0.851 (10)1.966 (12)2.803 (4)167 (4)
O1—H1B···O3iii0.852 (10)1.99 (2)2.791 (4)155 (3)
O2—H2A···O30.851 (10)1.973 (14)2.801 (4)164 (3)
O2—H2B···N3iv0.850 (10)1.973 (19)2.792 (4)161 (5)
O2—H2B···N4iv0.850 (10)2.60 (4)3.220 (4)130 (4)
O3—H3A···N2v0.852 (10)2.077 (12)2.926 (4)174 (4)
O3—H3B···N5vi0.849 (10)1.950 (14)2.786 (4)168 (5)
Symmetry codes: (ii) x, y+3/2, z1/2; (iii) x, y+1, z; (iv) x+1, y1/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x, y+2, z.
 

References

First citationBasu, U. P. & Dutta, S. (1964). J. Org. Chem. 30, 3562–3564.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185.  Web of Science CrossRef CAS Google Scholar
First citationKahn, O. & Martinez, C. J. (1998). Science, 279, 44–48.  Web of Science CrossRef CAS Google Scholar
First citationKönig, H. A. Z. (1944). Z. Kristallogr. 105, 279–286.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreenivasulu, B. & Vittal, J. J. (2004). Angew. Chem. Int. Ed. 43, 5769–5772.  Web of Science CSD CrossRef CAS Google Scholar
First citationTajkhorshid, E., Nollert, P., Jensen, M., Miercke, L. J. W., Connell, J. O., Stroud, R. M. & Schulten, K. (2002). Science, 296, 525–530.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip (2009). publCIF. In preparation.  Google Scholar
First citationZhang, J. P., Lin, Y. Y., Huang, X. C. & Chen, X. M. (2006). Cryst. Growth Des. 6, 519–523.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m487-m488
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds