metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m500-m501

Bis[cis-bis­­(di­phenyl­phosphino)ethene-κ2P,P′]copper(I) tetra­fluoridoborate ethanol solvate

aEskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane 4111, Australia
*Correspondence e-mail: P.Healy@griffith.edu.au

(Received 1 April 2009; accepted 3 April 2009; online 8 April 2009)

In the title compound [Cu(C26H22P2)2]BF4·C2H5OH, a disordered ethanol solvate molecule and the anions are located in well defined channels along the c axis. The four-coordinate Cu(P—P)2 core of the cation adopts approximately D2 point group symmetry with the Cu—P bond lengths spanning a narrow range from 2.272 (1) to 2.285 (1) Å.

Related literature

For the cytotoxic and anti­tumor activity of adducts of the bidentate phosphine ligand Ph2P(CH=CH)PPh2 with copper, silver and gold(I) salts, see: Berners-Price et al. (1985[Berners-Price, S. J., Brevard, C., Pagelot, A. & Sadler, P. J. (1985). Inorg. Chem. 24, 4278-4281.], 1987[Berners-Price, S. J., Johnson, R. K., Mirabelli, C. K., Faucette, L. F., McCabe, F. L. & Sadler, P. J. (1987). Inorg. Chem. 26, 3383-3387.], 1990[Berners-Price, S. J., Girard, G. R., Hill, D. T., Sutton, B. M., Jarrett, P. S., Faucette, L. F., Johnson, R. K., Mirabelli, C. K. & Sadler, P. J. (1990). J. Med. Chem. 33, 1386-1392.]). For the structurally related copper(I) and gold(I) PF6 complexes, see: Berners-Price et al. (1992[Berners-Price, S. J., Colquhoun, L. A., Healy, P. C., Byriel, K. A. & Hanna, J. V. (1992). J. Chem. Soc. Dalton Trans. pp. 3357-3363.]). For the angular distortion of the M(LL)2 core of four-coordinate bis­(bidentate) complexes, see: Dobson et al. (1984[Dobson, J. F., Green, B. E., Healy, P. C., Kennard, C. H. L., Pakawatchai, C. & White, A. H. (1984). Aust. J. Chem. 37, 649-659.]); Healy et al. (2008[Healy, P. C., Loughley, B. T., Bowmaker, G. A. & Hanna, J. V. (2008). Dalton Trans. pp. 3723-3728.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C26H22P2)2]BF4·C2H6O

  • Mr = 989.18

  • Orthorhombic, P 21 21 21

  • a = 14.147 (2) Å

  • b = 16.5719 (11) Å

  • c = 20.9536 (13) Å

  • V = 4912.4 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 223 K

  • 0.32 × 0.32 × 0.25 mm

Data collection
  • Oxford Diffraction GEMINI S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.824, Tmax = 0.859

  • 18204 measured reflections

  • 8649 independent reflections

  • 7257 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 0.99

  • 8649 reflections

  • 580 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3798 Friedel pairs

  • Flack parameter: −0.003 (12)

Table 1
Selected geometric parameters (Å, °)

Cu—P1 2.2775 (10)
Cu—P2 2.2724 (11)
Cu—P3 2.2820 (10)
Cu—P4 2.2851 (10)
P1—Cu—P2 89.76 (4)
P1—Cu—P3 110.05 (3)
P1—Cu—P4 130.20 (3)
P2—Cu—P3 131.21 (3)
P2—Cu—P4 110.94 (3)
P3—Cu—P4 89.97 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯F4 0.8800 2.1200 2.998 (9) 179.00

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Adducts of the bidentate phosphine ligand, Ph2P(CH=CH)PPh2 (dppey), with copper, silver and gold(I) salts form stable bis-chelated ionic complexes [M(dppey)2]X which have been shown to exhibit significant cytotoxic and antitumor activity (Berners-Price et al., 1987; 1985; 1990). In this present study on the synthesis and characterization of copper(I) complexes with this ligand, we have found that addition of aqueous HBF4 to a suspension of dppey and a slight stoichiometric excess of copper(I) oxide in ethanol results in precipitation of well formed crystals which were shown by 1H NMR, ES Mass Spectrometry and single-crystal X-ray structural analysis to be [Cu(dppey)2]BF4.EtOH. The crystal structure of this complex was found to be isomorphous with the copper(I) and gold(I) PF6 complexes (Berners-Price et al., 1992). A view of the of the [Cu(dppey)2]+ cation is shown in Fig. 1, with crystal packing viewed down the c axis shown in Fig. 2.

In this lattice, the anions and disordered solvent occupy well defined channels along the crystallographic c axis, with extensive C—H···F weak bonding interactions between the phenyl and ethene H atoms and the anion fluorides. For the present structure, an O—H···F hydrogen bonding interaction exists between the ethanol hydroxyl proton and the BF4 anion.

In the Cu(P—P)2 core of the cation, the Cu—P bond lengths span a narrow range from 2.272 (1) - 2.285 (1)Å and are similar to values of 2.276 (2) - 2.289 (2)Å reported for the PF6 complex (Berners-Price et al., 1992). The P—Cu—P inter-ligand angles range from 110.08 (4)° to 131.20 (3)° with the P—Cu—P intra-ligand 'bite' angles 89.76 (4) and 89.95 (4)°. In this cation, each ligand adopts a sterically comfortable conformational structure with the phenyl ring planes in each ligand approximately orthogonal to each other, maximizing C—H..π interactions. Charge transfer π···π interactions between phenyl rings of each ligand are likely to contribute to the overall stability of both the cation and the lattice structure.

Angular distortion of the M(L—L)2 core of four-coordinate bis(bidentate) complexes can be conveniently described by the parameters θx, θy and θz which define the orientation of the L—M—L plane of ligand 1 with respect to that of ligand 2 (Dobson et al., 1984; Healy et al., 2008). θx and θy represent rocking motions of the two ligands with respect to each other while θz is a measure of the degree of twist between the two planes. For moieties adopting D2 d point group symmetry θx = θy = θz = 90°. In this present structure, θx = 90.5°, θy = 89.7° and θz = 72.7° with the deviation θz from 90°, representing a lowering of the point group symmetry of the core from D2 d to approximately D2.

Related literature top

For the cytotoxic and antitumor activity of adducts of the bidentate phosphine ligand Ph2P(CH=CH)PPh2 with copper, silver and gold(I) salts, see: Berners-Price et al. (1985, 1987, 1990). For the isomorphous copper(I) and gold(I) PF6 complexes, see: Berners-Price et al. (1992). For the angular distortion of the M(LL)2 core of four-coordinate bis(bidentate) complexes, see: Dobson et al. (1984); Healy et al. (2008).

Experimental top

1 ml of concentrated aqueous HBF4 was added to a suspension of Cu2O (0.02 g, 0.14 mmol) and dppey (0.20 g, 0.50 mmol) in 5 ml e thanol. The resultant mixture was heated with stirring to yield a clear pale green solution. Filtration and cooling to room temperature resulted in formation of a crystalline precipitate. Recrystallization by slow evaporation of an ethanol solution of the complex resulted in well formed crystals suitable for X-ray diffraction studies. NMR: 1H (d6DMSO), δ 1.05 t, J = 6.8 Hz, 3H, CH3), 3.43 (dq, J = 7.2 Hz, 7.2 Hz 2H, CH2), 7.11–7.14 (m, 16H, C6H5 ortho), 7.16–7.20 (m, 16H, C6H5 meta), 7.37–7.41 (m, 8H, C6H5 para), 7.96–8.07(m, 4H, CH). ESMS (m/z): +ve ion, calcd m/z for [Cu(dppey)2]+ 856.46, found 854.95 (100%), -ve ion, calcd m/z for BF4]- 86.82, found 86.51 (100%). M.p. 176–177°C.

Refinement top

H atoms attached to carbons were constrained as riding atoms, with C–H set to 0.94–96 Å. The hydroxyl proton placed at a calculated position along O···F axis and constrained as a riding atom with O–H set to 0.88 Å. Uiso(H) values were set to 1.2Ueq of the parent atom. The carbon atoms disordered ethanol molecule were refined isotropically.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the cation of the title complex with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Lattice structure of the title compound viewed down the crystallographic c axis.
Bis[cis-bis(diphenylphosphino)ethene-κ2P,P']copper(I) tetrafluoridoborate ethanol solvate top
Crystal data top
[Cu(C26H22P2)2]BF4·C2H6OF(000) = 2048
Mr = 989.18Dx = 1.329 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ac 2abCell parameters from 8876 reflections
a = 14.147 (2) Åθ = 2.9–25.0°
b = 16.5719 (11) ŵ = 0.63 mm1
c = 20.9536 (13) ÅT = 223 K
V = 4912.4 (8) Å3Prism, colorless
Z = 40.32 × 0.32 × 0.25 mm
Data collection top
Oxford Diffraction GEMINI S Ultra
diffractometer
8649 independent reflections
Radiation source: Enhance (Mo) X-ray Source7257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.0774 pixels mm-1θmax = 25.1°, θmin = 3.0°
ω and ϕ scansh = 1615
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1912
Tmin = 0.824, Tmax = 0.859l = 2423
18204 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0739P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
8649 reflectionsΔρmax = 0.60 e Å3
580 parametersΔρmin = 0.32 e Å3
0 restraintsAbsolute structure: Flack (1983), 3798 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (12)
Crystal data top
[Cu(C26H22P2)2]BF4·C2H6OV = 4912.4 (8) Å3
Mr = 989.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 14.147 (2) ŵ = 0.63 mm1
b = 16.5719 (11) ÅT = 223 K
c = 20.9536 (13) Å0.32 × 0.32 × 0.25 mm
Data collection top
Oxford Diffraction GEMINI S Ultra
diffractometer
8649 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
7257 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 0.859Rint = 0.031
18204 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.108Δρmax = 0.60 e Å3
S = 0.99Δρmin = 0.32 e Å3
8649 reflectionsAbsolute structure: Flack (1983), 3798 Friedel pairs
580 parametersAbsolute structure parameter: 0.003 (12)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.81847 (3)0.00134 (2)0.36373 (2)0.0308 (1)
P10.69652 (6)0.09021 (6)0.37345 (4)0.0349 (3)
P20.71346 (6)0.10238 (6)0.36133 (4)0.0343 (3)
P30.92358 (6)0.04648 (5)0.28923 (4)0.0306 (3)
P40.94056 (6)0.02611 (5)0.43175 (4)0.0313 (3)
C1110.6711 (3)0.1520 (3)0.30246 (16)0.0448 (13)
C1120.6509 (3)0.1130 (3)0.2451 (2)0.0700 (18)
C1130.6366 (4)0.1602 (5)0.1899 (2)0.092 (3)
C1140.6426 (4)0.2416 (5)0.1922 (3)0.091 (3)
C1150.6611 (4)0.2795 (4)0.2482 (3)0.0820 (19)
C1160.6764 (3)0.2352 (3)0.30327 (17)0.0550 (16)
C1210.6800 (3)0.1617 (2)0.43856 (15)0.0399 (11)
C1220.7587 (4)0.1953 (3)0.4664 (2)0.0647 (17)
C1230.7491 (4)0.2558 (4)0.5120 (3)0.081 (2)
C1240.6629 (5)0.2784 (3)0.53131 (19)0.079 (2)
C1250.5843 (4)0.2465 (3)0.5055 (2)0.0690 (19)
C1260.5919 (3)0.1870 (3)0.45849 (19)0.0520 (14)
C1310.5934 (3)0.0255 (3)0.3763 (2)0.0504 (15)
C2110.7110 (3)0.1674 (3)0.43170 (18)0.0477 (14)
C2120.7035 (3)0.1306 (3)0.4906 (2)0.0687 (18)
C2130.7052 (4)0.1750 (6)0.5461 (2)0.110 (3)
C2140.7143 (4)0.2562 (6)0.5434 (3)0.103 (3)
C2150.7229 (4)0.2954 (4)0.4854 (3)0.093 (3)
C2160.7217 (3)0.2493 (3)0.4287 (2)0.0627 (18)
C2210.7001 (3)0.1710 (2)0.29441 (15)0.0368 (11)
C2220.7789 (3)0.1921 (2)0.25936 (19)0.0493 (12)
C2230.7721 (4)0.2460 (3)0.2086 (2)0.0660 (19)
C2240.6864 (4)0.2789 (3)0.19210 (19)0.0650 (18)
C2250.6083 (4)0.2588 (3)0.2263 (2)0.0620 (17)
C2260.6143 (3)0.2052 (3)0.2770 (2)0.0527 (14)
C2310.5998 (3)0.0527 (3)0.3700 (2)0.0493 (14)
C3110.9274 (3)0.1571 (2)0.28494 (16)0.0360 (11)
C3120.9530 (4)0.2000 (2)0.33843 (19)0.0580 (14)
C3130.9482 (4)0.2831 (3)0.3383 (2)0.0773 (19)
C3140.9186 (4)0.3241 (3)0.2847 (2)0.0647 (16)
C3150.8954 (3)0.2820 (3)0.2316 (2)0.0553 (16)
C3160.8991 (3)0.1984 (2)0.23125 (17)0.0430 (12)
C3210.9378 (2)0.01646 (19)0.20539 (14)0.0334 (10)
C3220.8658 (3)0.0235 (2)0.17519 (17)0.0450 (12)
C3230.8760 (3)0.0481 (3)0.11160 (18)0.0547 (16)
C3240.9573 (3)0.0296 (2)0.07897 (17)0.0530 (14)
C3251.0295 (3)0.0097 (3)0.10925 (17)0.0513 (14)
C3261.0200 (3)0.0335 (2)0.17224 (16)0.0423 (11)
C3311.0380 (2)0.0223 (2)0.32486 (16)0.0387 (11)
C4110.9581 (2)0.1319 (2)0.45297 (17)0.0365 (11)
C4120.9580 (3)0.1879 (3)0.40355 (19)0.0517 (14)
C4130.9655 (4)0.2689 (3)0.4161 (3)0.0680 (19)
C4140.9729 (3)0.2951 (3)0.4785 (3)0.0687 (19)
C4150.9750 (3)0.2406 (3)0.5272 (2)0.0633 (17)
C4160.9684 (3)0.1592 (3)0.51499 (18)0.0500 (14)
C4210.9642 (3)0.0276 (2)0.50622 (15)0.0376 (11)
C4220.8886 (3)0.0501 (3)0.5431 (2)0.0600 (14)
C4230.9031 (4)0.0894 (4)0.6010 (2)0.075 (2)
C4240.9920 (4)0.1067 (3)0.62089 (19)0.0660 (18)
C4251.0681 (4)0.0827 (3)0.5849 (2)0.0670 (17)
C4261.0560 (3)0.0430 (3)0.52687 (18)0.0530 (14)
C4311.0445 (2)0.0075 (3)0.38339 (15)0.0394 (10)
O10.2511 (4)0.0101 (5)0.2593 (3)0.149 (3)
C10.3146 (9)0.0317 (7)0.2194 (5)0.166 (4)*
C20.2957 (11)0.0668 (9)0.1717 (7)0.106 (4)*0.500
C30.3925 (19)0.0228 (16)0.2408 (11)0.195 (9)*0.500
F10.3819 (5)0.0475 (4)0.4200 (5)0.280 (5)
F20.3857 (3)0.0782 (3)0.4354 (3)0.177 (3)
F30.2782 (4)0.0018 (4)0.4846 (3)0.180 (3)
F40.2657 (4)0.0418 (4)0.3960 (3)0.194 (3)
B0.3308 (3)0.0080 (6)0.4313 (4)0.108 (3)
H1120.646800.055900.243300.0840*
H1130.622600.134400.150500.1100*
H1140.633700.272500.154400.1090*
H1150.663700.336800.249700.0980*
H1160.690500.262200.342100.0660*
H1220.819900.177100.454500.0780*
H1230.803700.281000.529300.0970*
H1240.657200.317800.564000.0950*
H1250.523800.264400.519200.0830*
H1260.536600.164000.440300.0620*
H1310.532900.049100.382600.0600*
H2120.697200.073600.492900.0830*
H2130.700000.148700.586200.1320*
H2140.714900.286700.581800.1230*
H2150.729400.352400.483700.1110*
H2160.728400.275200.388400.0760*
H2220.838600.169500.270000.0590*
H2230.827100.260100.185100.0790*
H2240.681900.315300.157200.0780*
H2250.548900.281800.215400.0740*
H2260.558800.191600.300200.0630*
H2310.543800.084300.369800.0590*
H3120.974100.172300.375500.0700*
H3130.965300.312300.375600.0930*
H3140.914700.381400.284900.0780*
H3150.876300.310100.194300.0660*
H3160.882200.169500.193800.0520*
H3220.808800.034600.197400.0540*
H3230.826900.077300.091200.0660*
H3240.963400.044200.035300.0640*
H3251.086400.020800.086900.0620*
H3261.070000.061600.192800.0510*
H3311.094000.031300.300900.0460*
H4120.952600.169800.360700.0620*
H4130.965600.306900.382100.0810*
H4140.976600.351100.487500.0830*
H4150.981000.259000.569900.0760*
H4160.970900.121700.549200.0600*
H4220.826100.038800.529100.0720*
H4230.850500.104100.626600.0900*
H4241.001600.135400.659600.0790*
H4251.130200.093300.600000.0810*
H4261.108900.026900.502100.0630*
H4311.105100.019400.400400.0470*
H10.255600.005600.299100.1610*
H20.257600.112400.181800.1270*0.500
H30.352200.084200.151600.1270*0.500
H40.261900.032000.144000.1270*0.500
H50.390200.019800.285700.2330*0.500
H60.420000.024800.223800.2330*0.500
H70.430900.068200.228600.2330*0.500
H80.310700.011900.177100.1980*0.500
H90.299500.088100.219400.1980*0.500
H100.341800.071800.246200.1980*0.500
H110.360400.006600.207700.1980*0.500
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0238 (2)0.0345 (2)0.0341 (2)0.0010 (2)0.0012 (2)0.0039 (2)
P10.0287 (5)0.0403 (5)0.0356 (5)0.0067 (4)0.0004 (4)0.0073 (4)
P20.0292 (4)0.0369 (5)0.0368 (4)0.0038 (4)0.0044 (4)0.0044 (4)
P30.0292 (4)0.0324 (5)0.0302 (4)0.0011 (4)0.0001 (4)0.0004 (3)
P40.0258 (4)0.0373 (5)0.0309 (4)0.0031 (4)0.0008 (3)0.0004 (3)
C1110.030 (2)0.073 (3)0.0313 (18)0.016 (2)0.0013 (16)0.0042 (17)
C1120.052 (3)0.109 (4)0.049 (2)0.015 (3)0.012 (2)0.019 (3)
C1130.069 (4)0.175 (7)0.033 (2)0.006 (4)0.006 (2)0.007 (3)
C1140.063 (4)0.152 (6)0.059 (3)0.030 (4)0.010 (3)0.035 (4)
C1150.066 (3)0.113 (4)0.067 (3)0.036 (3)0.021 (3)0.035 (3)
C1160.059 (3)0.067 (3)0.039 (2)0.013 (2)0.0067 (19)0.0075 (18)
C1210.052 (2)0.039 (2)0.0286 (17)0.0124 (19)0.0032 (18)0.0014 (14)
C1220.067 (3)0.067 (3)0.060 (3)0.017 (3)0.011 (2)0.025 (2)
C1230.087 (4)0.078 (4)0.078 (4)0.014 (3)0.021 (3)0.034 (3)
C1240.136 (6)0.062 (3)0.040 (2)0.036 (4)0.002 (3)0.016 (2)
C1250.087 (4)0.064 (3)0.056 (3)0.020 (3)0.025 (3)0.010 (2)
C1260.063 (3)0.048 (2)0.045 (2)0.006 (2)0.013 (2)0.0021 (18)
C1310.0241 (18)0.061 (3)0.066 (3)0.0063 (17)0.0036 (17)0.016 (2)
C2110.029 (2)0.068 (3)0.046 (2)0.0127 (19)0.0020 (17)0.013 (2)
C2120.051 (3)0.110 (4)0.045 (2)0.028 (3)0.006 (2)0.004 (2)
C2130.078 (4)0.210 (9)0.041 (3)0.064 (5)0.003 (3)0.028 (4)
C2140.049 (3)0.193 (8)0.066 (4)0.029 (4)0.004 (3)0.071 (5)
C2150.045 (3)0.115 (5)0.119 (5)0.005 (3)0.007 (3)0.072 (4)
C2160.045 (2)0.076 (4)0.067 (3)0.001 (2)0.009 (2)0.024 (2)
C2210.045 (2)0.0310 (19)0.0344 (17)0.0031 (16)0.0002 (17)0.0037 (14)
C2220.054 (2)0.046 (2)0.048 (2)0.006 (2)0.0079 (19)0.0105 (18)
C2230.082 (4)0.063 (3)0.053 (3)0.003 (3)0.025 (2)0.011 (2)
C2240.103 (4)0.047 (3)0.045 (2)0.014 (3)0.003 (3)0.0107 (18)
C2250.074 (3)0.054 (3)0.058 (3)0.021 (2)0.013 (2)0.008 (2)
C2260.051 (2)0.053 (3)0.054 (2)0.011 (2)0.003 (2)0.007 (2)
C2310.034 (2)0.059 (3)0.055 (2)0.0118 (18)0.0073 (18)0.014 (2)
C3110.0338 (19)0.0351 (19)0.0392 (19)0.0023 (16)0.0033 (16)0.0013 (15)
C3120.082 (3)0.040 (2)0.052 (2)0.017 (2)0.016 (2)0.0042 (18)
C3130.098 (4)0.054 (3)0.080 (3)0.018 (3)0.014 (3)0.023 (3)
C3140.080 (3)0.036 (2)0.078 (3)0.008 (2)0.009 (3)0.002 (2)
C3150.068 (3)0.037 (2)0.061 (3)0.000 (2)0.003 (2)0.004 (2)
C3160.051 (2)0.032 (2)0.046 (2)0.0009 (17)0.0049 (17)0.0016 (16)
C3210.0438 (19)0.0275 (19)0.0288 (16)0.0029 (16)0.0019 (15)0.0008 (13)
C3220.048 (2)0.046 (2)0.041 (2)0.0019 (18)0.0024 (17)0.0011 (16)
C3230.072 (3)0.051 (3)0.041 (2)0.001 (2)0.014 (2)0.0109 (19)
C3240.080 (3)0.046 (2)0.033 (2)0.007 (2)0.001 (2)0.0043 (16)
C3250.073 (3)0.040 (2)0.0410 (19)0.003 (2)0.0122 (19)0.0074 (17)
C3260.051 (2)0.037 (2)0.0389 (19)0.0021 (17)0.0036 (16)0.0025 (16)
C3310.0279 (18)0.049 (2)0.0391 (19)0.0044 (16)0.0049 (14)0.0003 (16)
C4110.0272 (18)0.038 (2)0.0442 (19)0.0068 (15)0.0027 (15)0.0047 (15)
C4120.048 (2)0.052 (3)0.055 (2)0.012 (2)0.0040 (19)0.0080 (19)
C4130.068 (3)0.045 (3)0.091 (4)0.015 (2)0.011 (3)0.012 (2)
C4140.049 (3)0.044 (3)0.113 (4)0.008 (2)0.022 (3)0.013 (3)
C4150.060 (3)0.063 (3)0.067 (3)0.015 (2)0.020 (2)0.027 (2)
C4160.056 (3)0.048 (2)0.046 (2)0.014 (2)0.0111 (19)0.0098 (18)
C4210.038 (2)0.044 (2)0.0309 (17)0.0022 (16)0.0035 (14)0.0026 (14)
C4220.045 (2)0.085 (3)0.050 (2)0.012 (2)0.0030 (18)0.025 (2)
C4230.063 (3)0.110 (5)0.053 (3)0.015 (3)0.002 (2)0.027 (3)
C4240.084 (4)0.069 (3)0.045 (2)0.003 (3)0.012 (2)0.019 (2)
C4250.062 (3)0.079 (3)0.060 (3)0.017 (3)0.019 (2)0.010 (2)
C4260.046 (2)0.066 (3)0.047 (2)0.005 (2)0.0038 (18)0.0040 (19)
C4310.0237 (15)0.052 (2)0.0424 (18)0.0074 (18)0.0013 (13)0.0037 (17)
O10.113 (4)0.196 (6)0.139 (4)0.048 (4)0.033 (3)0.065 (4)
F10.168 (6)0.134 (4)0.537 (13)0.075 (4)0.217 (7)0.132 (6)
F20.084 (3)0.161 (5)0.286 (7)0.022 (3)0.072 (4)0.036 (5)
F30.145 (4)0.180 (5)0.215 (5)0.021 (4)0.096 (4)0.071 (5)
F40.133 (4)0.229 (7)0.219 (6)0.014 (4)0.051 (4)0.051 (5)
B0.018 (2)0.157 (7)0.150 (6)0.004 (4)0.006 (3)0.106 (6)
Geometric parameters (Å, º) top
Cu—P12.2775 (10)C2—H91.0600
Cu—P22.2724 (11)C2—H30.9500
Cu—P32.2820 (10)C2—H20.9500
Cu—P42.2851 (10)C3—H60.9500
P1—C1111.841 (4)C3—H50.9400
P1—C1211.822 (3)C3—H101.0900
P1—C1311.812 (5)C3—H110.9600
P2—C2111.827 (4)C3—H70.9600
P2—C2211.815 (3)C311—C3121.376 (5)
P2—C2311.816 (4)C311—C3161.376 (5)
P3—C3111.836 (3)C212—H2120.9500
P3—C3211.837 (3)C312—C3131.379 (6)
P3—C3311.827 (3)C313—C3141.378 (6)
P4—C4111.826 (3)C213—H2130.9500
P4—C4211.827 (3)C314—C3151.354 (6)
P4—C4311.812 (3)C214—H2140.9500
F1—B1.194 (11)C315—C3161.386 (6)
F2—B1.401 (10)C215—H2150.9500
F3—B1.352 (10)C216—H2160.9500
F4—B1.307 (9)C321—C3261.384 (5)
O1—C11.409 (13)C321—C3221.370 (5)
O1—H10.8800C222—H2220.9500
C111—C1161.381 (7)C322—C3231.401 (5)
C111—C1121.394 (6)C323—C3241.373 (6)
C112—C1131.411 (7)C223—H2230.9500
C113—C1141.353 (12)C224—H2240.9500
C114—C1151.356 (9)C324—C3251.368 (6)
C115—C1161.385 (8)C325—C3261.384 (5)
C121—C1261.380 (6)C225—H2250.9500
C121—C1221.375 (7)C226—H2260.9500
C122—C1231.392 (8)C331—C4311.325 (5)
C123—C1241.338 (9)C231—H2310.9500
C124—C1251.345 (8)C411—C4161.384 (5)
C125—C1261.398 (6)C411—C4121.391 (6)
C131—C2311.306 (7)C312—H3120.9500
C1—C21.187 (18)C412—C4131.372 (7)
C1—C31.20 (3)C313—H3130.9500
C211—C2161.367 (7)C413—C4141.382 (9)
C211—C2121.381 (6)C414—C4151.363 (7)
C112—H1120.9500C314—H3140.9500
C212—C2131.376 (8)C415—C4161.376 (7)
C113—H1130.9500C315—H3150.9500
C213—C2141.353 (14)C316—H3160.9500
C214—C2151.383 (10)C421—C4221.371 (6)
C114—H1140.9500C421—C4261.393 (6)
C215—C2161.413 (8)C322—H3220.9500
C115—H1150.9500C422—C4231.392 (7)
C116—H1160.9500C423—C4241.356 (8)
C221—C2221.380 (6)C323—H3230.9500
C221—C2261.388 (6)C324—H3240.9500
C122—H1220.9500C424—C4251.373 (7)
C222—C2231.392 (6)C425—C4261.393 (6)
C223—C2241.374 (8)C325—H3250.9500
C123—H1230.9500C326—H3260.9500
C224—C2251.358 (7)C331—H3310.9500
C124—H1240.9500C412—H4120.9500
C125—H1250.9500C413—H4130.9500
C225—C2261.387 (6)C414—H4140.9500
C126—H1260.9500C415—H4150.9500
C131—H1310.9500C416—H4160.9500
C1—H90.9600C422—H4220.9500
C1—H100.9500C423—H4230.9500
C1—H80.9500C424—H4240.9500
C1—H110.9400C425—H4250.9500
C2—H40.9500C426—H4260.9500
C2—H80.9400C431—H4310.9500
Cu···H1123.6200C326···H413vii2.8900
Cu···H1223.4800C326···H3312.8900
Cu···H2123.4400C426···C124xii3.540 (7)
Cu···H2223.4600C426···C4163.581 (7)
Cu···H3123.6000C331···H3262.8800
Cu···H3223.5400C331···H3122.8500
Cu···H4123.4100C431···F4ix3.245 (6)
Cu···H4223.5200C421···H4162.6300
P1···P23.2106 (15)C422···H1222.9700
P1···P33.7360 (13)C422···H4163.0800
P1···C2312.736 (5)C424···H6vi2.8400
P2···P13.2106 (15)C425···H8vi3.0200
P2···P43.7546 (13)C425···H11vi3.0400
P2···C1312.734 (5)C425···H6vi3.0700
P3···P13.7360 (13)C426···H4163.0200
P3···P43.2284 (13)C426···H4312.9300
P3···C4312.760 (3)C431···H4123.0200
P4···P23.7546 (13)C431···H4262.7100
P4···P33.2284 (13)B···H12.9700
P4···C3312.750 (3)H1···B2.9700
F1···C2313.257 (9)H1···H331i2.3300
F1···C1313.355 (9)H1···F42.1200
F2···C1313.306 (6)H1···H51.9400
F3···C426i3.349 (7)H2···H216iii2.3800
F4···C431i3.245 (6)H3···H71.9800
F4···O12.998 (9)H3···H62.5400
F1···H2312.5900H5···H11.9400
F1···H1312.7800H6···H424viii2.5300
F2···H1262.5700H6···H32.5400
F2···H123ii2.7100H6···C425viii3.0700
F2···H224iii2.7900H6···C424viii2.8400
F2···H1312.4100H7···H31.9800
F3···H215iv2.6000H7···C225iii3.0700
F3···H426i2.4700H8···C425viii3.0200
F4···H12.1200H8···H425viii2.5200
F4···H224iii2.7200H9···C225iii3.0700
F4···H431i2.4900H9···C224iii2.8900
O1···F42.998 (9)H10···C224iii2.8200
O1···C331i3.356 (7)H10···C225iii2.9500
O1···H331i2.4800H11···C425viii3.0400
O1···H115v2.8200H112···C1312.9300
C2···H216iii2.9300H112···Cu3.6200
C115···C3153.333 (7)H113···H416viii2.5100
C116···C1263.556 (6)H114···H415viii2.4100
C116···C3153.529 (6)H115···O1iii2.8200
C116···C3163.546 (6)H116···C1263.0700
C122···C4223.428 (7)H116···C1212.6200
C124···C426ii3.540 (7)H116···C1222.9900
C125···C426ii3.576 (7)H122···Cu3.4800
C125···C425ii3.414 (7)H122···C4222.9700
C126···C1163.556 (6)H122···C3123.1000
C131···F13.355 (9)H123···F2xii2.7100
C131···F23.306 (6)H125···H312ii2.5400
C211···C4113.573 (5)H126···H1312.2600
C211···C4123.560 (6)H126···C1312.7800
C212···C414iv3.547 (6)H126···F22.5700
C213···C414iv3.363 (7)H131···F12.7800
C114···H226iii3.0600H131···H1262.2600
C214···C414iv3.549 (7)H131···F22.4100
C215···C4143.540 (7)H131···C1262.9100
C215···C415iv3.567 (7)H212···Cu3.4400
C216···C4123.534 (6)H212···C2312.9400
C216···C4133.474 (7)H213···H316vi2.5600
C216···C2263.598 (6)H215···F3xi2.6000
C121···H1162.6200H216···H2v2.3800
C122···H4223.0600H216···C2212.6500
C222···C3223.525 (5)H216···C2263.0700
C122···H1162.9900H216···C2v2.9300
C126···H324vi2.9700H222···Cu3.4600
C226···C2163.598 (6)H222···H4122.4900
C126···H1163.0700H224···F4v2.7200
C126···H1312.9100H224···F2v2.7900
C131···H1122.9300H226···C2312.7900
C231···F13.257 (9)H226···H2312.3100
C131···H1262.7800H226···C114v3.0600
C315···C412vii3.545 (6)H231···F12.5900
C315···C1163.529 (6)H231···H2262.3100
C315···C1153.333 (7)H231···C2262.9600
C316···C1163.546 (6)H312···Cu3.6000
C316···C3263.453 (5)H312···C3312.8500
C221···H2162.6500H312···H125xii2.5400
C322···C2223.525 (5)H313···C324vii2.9900
C222···H3222.9500H314···C321vii3.0700
C224···H10v2.8200H314···C326vii2.8300
C224···H9v2.8900H316···H213viii2.5600
C225···H424viii2.9200H316···C3263.0100
C225···H10v2.9500H316···C3212.6700
C225···H7v3.0700H322···Cu3.5400
C225···H9v3.0700H322···C2222.9500
C326···C3163.453 (5)H324···C126viii2.9700
C226···H2312.9600H326···H3312.3400
C226···H2163.0700H326···C3312.8800
C331···O1ix3.356 (7)H331···O1ix2.4800
C231···H2262.7900H331···C3262.8900
C231···H2122.9400H331···H1ix2.3300
C411···C2113.573 (5)H331···H3262.3400
C312···H1223.1000H412···C315x3.0000
C412···C2113.560 (6)H412···Cu3.4100
C412···C315x3.545 (6)H412···C4313.0200
C412···C2163.534 (6)H412···H2222.4900
C413···C2163.474 (7)H413···C316x3.0500
C414···C213xi3.363 (7)H413···C326x2.8900
C414···C2153.540 (7)H413···C325x3.0500
C414···C212xi3.547 (6)H414···C325x3.0700
C414···C214xi3.549 (7)H415···H114vi2.4100
C315···H412vii3.0000H416···C4223.0800
C415···C215xi3.567 (7)H416···C4263.0200
C416···C4263.581 (7)H416···C4212.6300
C316···H413vii3.0500H416···H113vi2.5100
C321···H3162.6700H422···C1223.0600
C321···H314x3.0700H422···Cu3.5200
C422···C1223.428 (7)H424···C225vi2.9200
C324···H313x2.9900H424···H6vi2.5300
C325···H413vii3.0500H425···H8vi2.5200
C425···C125xii3.414 (7)H426···F3ix2.4700
C325···H414vii3.0700H426···H4312.2700
C426···C125xii3.576 (7)H426···C4312.7100
C326···H314x2.8300H431···H4262.2700
C326···H3163.0100H431···C4262.9300
C426···F3ix3.349 (7)H431···F4ix2.4900
P1—Cu—P289.76 (4)H4—C2—H9144.00
P1—Cu—P3110.05 (3)H5—C3—H7109.00
P1—Cu—P4130.20 (3)H5—C3—H1085.00
P2—Cu—P3131.21 (3)H5—C3—H11133.00
P2—Cu—P4110.94 (3)C1—C3—H6110.00
P3—Cu—P489.97 (3)C1—C3—H5110.00
Cu—P1—C111115.80 (14)H10—C3—H1198.00
Cu—P1—C121125.78 (13)C1—C3—H1049.00
Cu—P1—C131103.31 (16)C1—C3—H1150.00
C111—P1—C121102.61 (18)C1—C3—H7109.00
C111—P1—C131101.5 (2)H7—C3—H11118.00
C121—P1—C131104.89 (19)H6—C3—H10158.00
Cu—P2—C211116.16 (14)H5—C3—H6110.00
Cu—P2—C221123.99 (13)H6—C3—H7109.00
Cu—P2—C231103.52 (16)H6—C3—H1160.00
C211—P2—C221104.60 (18)H7—C3—H1079.00
C211—P2—C23199.8 (2)C312—C311—C316119.1 (3)
C221—P2—C231105.6 (2)P3—C311—C312118.9 (3)
Cu—P3—C311112.33 (13)P3—C311—C316121.9 (3)
Cu—P3—C321129.55 (10)C213—C212—H212119.00
Cu—P3—C331103.06 (11)C211—C212—H212119.00
C311—P3—C321102.73 (15)C311—C312—C313120.1 (4)
C311—P3—C331102.29 (17)C212—C213—H213120.00
C321—P3—C331103.56 (14)C312—C313—C314120.6 (4)
Cu—P4—C411116.48 (11)C214—C213—H213120.00
Cu—P4—C421125.03 (13)C215—C214—H214120.00
Cu—P4—C431103.34 (11)C313—C314—C315119.3 (5)
C411—P4—C421103.59 (16)C213—C214—H214120.00
C411—P4—C431100.91 (18)C214—C215—H215121.00
C421—P4—C431104.25 (18)C314—C315—C316120.7 (4)
C1—O1—H1112.00C216—C215—H215120.00
P1—C111—C112118.6 (4)C215—C216—H216120.00
C112—C111—C116119.0 (4)C211—C216—H216120.00
P1—C111—C116122.3 (3)C311—C316—C315120.2 (3)
C111—C112—C113118.6 (5)P3—C321—C326121.1 (2)
C112—C113—C114121.0 (5)C322—C321—C326119.5 (3)
C113—C114—C115120.3 (6)P3—C321—C322119.4 (2)
C114—C115—C116120.4 (6)C221—C222—H222120.00
C111—C116—C115120.7 (4)C223—C222—H222120.00
P1—C121—C122118.5 (3)C321—C322—C323120.2 (4)
P1—C121—C126122.7 (3)C224—C223—H223120.00
C122—C121—C126118.7 (4)C222—C223—H223120.00
C121—C122—C123120.3 (5)C322—C323—C324119.7 (4)
C122—C123—C124119.9 (5)C223—C224—H224120.00
C123—C124—C125121.5 (5)C323—C324—C325120.1 (3)
C124—C125—C126119.8 (5)C225—C224—H224120.00
C121—C126—C125119.8 (4)C224—C225—H225120.00
P1—C131—C231121.9 (3)C324—C325—C326120.4 (4)
C2—C1—C3125.6 (17)C226—C225—H225120.00
O1—C1—C2126.7 (13)C321—C326—C325120.1 (4)
O1—C1—C3107.7 (14)C225—C226—H226120.00
P2—C211—C216123.1 (3)C221—C226—H226119.00
C212—C211—C216119.2 (4)C131—C231—H231119.00
P2—C211—C212117.6 (4)P3—C331—C431121.4 (2)
C211—C212—C213121.2 (5)P2—C231—H231119.00
C113—C112—H112121.00C412—C411—C416118.8 (4)
C111—C112—H112121.00P4—C411—C416123.9 (3)
C212—C213—C214119.9 (5)P4—C411—C412117.4 (3)
C112—C113—H113120.00C311—C312—H312120.00
C114—C113—H113120.00C313—C312—H312120.00
C115—C114—H114120.00C411—C412—C413120.7 (4)
C213—C214—C215120.8 (6)C314—C313—H313120.00
C113—C114—H114120.00C312—C313—H313120.00
C114—C115—H115120.00C412—C413—C414119.7 (5)
C214—C215—C216118.9 (6)C413—C414—C415120.1 (5)
C116—C115—H115120.00C313—C314—H314120.00
C211—C216—C215120.0 (4)C315—C314—H314120.00
C111—C116—H116119.00C316—C315—H315120.00
C115—C116—H116120.00C414—C415—C416120.6 (4)
P2—C221—C222119.1 (3)C314—C315—H315120.00
P2—C221—C226123.4 (3)C315—C316—H316120.00
C222—C221—C226117.6 (3)C411—C416—C415120.2 (4)
C221—C222—C223120.9 (4)C311—C316—H316120.00
C123—C122—H122120.00C422—C421—C426120.2 (3)
C121—C122—H122120.00P4—C421—C426121.7 (3)
C124—C123—H123120.00P4—C421—C422118.1 (3)
C122—C123—H123120.00C321—C322—H322120.00
C222—C223—C224120.5 (5)C421—C422—C423120.2 (4)
C123—C124—H124119.00C323—C322—H322120.00
C125—C124—H124119.00C324—C323—H323120.00
C223—C224—C225119.2 (4)C422—C423—C424120.2 (5)
C124—C125—H125120.00C322—C323—H323120.00
C126—C125—H125120.00C323—C324—H324120.00
C224—C225—C226120.7 (5)C423—C424—C425119.8 (4)
C221—C226—C225121.1 (4)C325—C324—H324120.00
C125—C126—H126120.00C326—C325—H325120.00
C121—C126—H126120.00C324—C325—H325120.00
C231—C131—H131119.00C424—C425—C426121.3 (5)
P1—C131—H131119.00C321—C326—H326120.00
P2—C231—C131121.4 (3)C421—C426—C425118.2 (4)
O1—C1—H11105.00C325—C326—H326120.00
H8—C1—H9109.00P4—C431—C331121.6 (2)
C3—C1—H1060.00P3—C331—H331119.00
C3—C1—H1152.00C431—C331—H331119.00
O1—C1—H10105.00C411—C412—H412120.00
O1—C1—H9110.00C413—C412—H412120.00
O1—C1—H8110.00C414—C413—H413120.00
H10—C1—H11110.00C412—C413—H413120.00
C2—C1—H851.00C413—C414—H414120.00
C2—C1—H958.00C415—C414—H414120.00
C2—C1—H10104.00C416—C415—H415120.00
C2—C1—H11105.00C414—C415—H415120.00
C3—C1—H8111.00C415—C416—H416120.00
C3—C1—H9109.00C411—C416—H416120.00
H8—C1—H10145.00C423—C422—H422120.00
H8—C1—H1164.00C421—C422—H422120.00
H9—C1—H1054.00C422—C423—H423120.00
H9—C1—H11144.00C424—C423—H423120.00
H3—C2—H4110.00C423—C424—H424120.00
H3—C2—H899.00C425—C424—H424120.00
C1—C2—H2109.00C426—C425—H425119.00
H2—C2—H964.00C424—C425—H425119.00
H2—C2—H8150.00C421—C426—H426121.00
C1—C2—H3109.00C425—C426—H426121.00
C1—C2—H4109.00C331—C431—H431119.00
C1—C2—H851.00P4—C431—H431119.00
C1—C2—H950.00F1—B—F2108.4 (5)
H2—C2—H3110.00F1—B—F3113.9 (9)
H2—C2—H4109.00F1—B—F4130.1 (9)
H8—C2—H9101.00F2—B—F3110.7 (7)
H3—C2—H9106.00F2—B—F494.0 (7)
H4—C2—H866.00F3—B—F497.5 (5)
P2—Cu—P1—C111107.91 (16)C211—P2—C231—C131119.5 (4)
P2—Cu—P1—C121121.75 (15)C221—P2—C231—C131132.2 (4)
P2—Cu—P1—C1312.03 (14)Cu—P3—C311—C31260.4 (4)
P3—Cu—P1—C11126.50 (17)Cu—P3—C311—C316115.0 (3)
P3—Cu—P1—C121103.83 (15)C321—P3—C311—C312156.6 (4)
P3—Cu—P1—C131136.44 (14)C321—P3—C311—C31628.0 (4)
P4—Cu—P1—C111134.42 (16)C331—P3—C311—C31249.5 (4)
P4—Cu—P1—C1214.08 (16)C331—P3—C311—C316135.2 (4)
P4—Cu—P1—C131115.65 (14)Cu—P3—C321—C32217.7 (3)
P1—Cu—P2—C211109.30 (16)Cu—P3—C321—C326162.3 (2)
P1—Cu—P2—C221118.66 (15)C311—P3—C321—C322116.1 (3)
P1—Cu—P2—C2311.08 (14)C311—P3—C321—C32663.9 (3)
P3—Cu—P2—C211133.82 (16)C331—P3—C321—C322137.7 (3)
P3—Cu—P2—C2211.78 (16)C331—P3—C321—C32642.3 (3)
P3—Cu—P2—C231117.96 (14)Cu—P3—C331—C4315.3 (4)
P4—Cu—P2—C21124.30 (17)C311—P3—C331—C431111.4 (3)
P4—Cu—P2—C221107.75 (15)C321—P3—C331—C431142.1 (3)
P4—Cu—P2—C231132.52 (14)Cu—P4—C411—C41247.5 (3)
P1—Cu—P3—C31130.44 (14)Cu—P4—C411—C416130.4 (3)
P1—Cu—P3—C32199.97 (13)C421—P4—C411—C412171.2 (3)
P1—Cu—P3—C331139.80 (11)C421—P4—C411—C41610.8 (3)
P2—Cu—P3—C311138.73 (14)C431—P4—C411—C41263.5 (3)
P2—Cu—P3—C3218.32 (15)C431—P4—C411—C416118.6 (3)
P2—Cu—P3—C331111.91 (12)Cu—P4—C421—C42238.9 (4)
P4—Cu—P3—C311102.95 (14)Cu—P4—C421—C426143.6 (3)
P4—Cu—P3—C321126.65 (13)C411—P4—C421—C42298.0 (3)
P4—Cu—P3—C3316.41 (11)C411—P4—C421—C42679.6 (3)
P1—Cu—P4—C411127.31 (13)C431—P4—C421—C422156.8 (3)
P1—Cu—P4—C4214.73 (16)C431—P4—C421—C42625.7 (4)
P1—Cu—P4—C431123.09 (16)Cu—P4—C431—C3315.4 (4)
P2—Cu—P4—C41118.79 (13)C411—P4—C431—C331126.2 (4)
P2—Cu—P4—C421113.25 (15)C421—P4—C431—C331126.6 (4)
P2—Cu—P4—C431128.39 (16)P2—C211—C212—C213177.2 (4)
P3—Cu—P4—C411116.05 (12)C216—C211—C212—C2131.0 (7)
P3—Cu—P4—C421111.91 (15)P2—C211—C216—C215177.4 (4)
P3—Cu—P4—C4316.45 (16)C212—C211—C216—C2151.4 (7)
Cu—P1—C111—C11257.1 (4)C211—C212—C213—C2140.0 (8)
Cu—P1—C111—C116119.4 (3)C212—C213—C214—C2150.6 (9)
C121—P1—C111—C112162.3 (3)C213—C214—C215—C2160.2 (8)
C121—P1—C111—C11621.3 (4)C214—C215—C216—C2110.8 (7)
C131—P1—C111—C11254.0 (4)P2—C221—C222—C223178.5 (3)
C131—P1—C111—C116129.6 (4)C226—C221—C222—C2230.2 (6)
Cu—P1—C121—C12233.8 (4)P2—C221—C226—C225178.5 (3)
Cu—P1—C121—C126150.1 (3)C222—C221—C226—C2250.2 (6)
C111—P1—C121—C122101.5 (3)C221—C222—C223—C2240.5 (6)
C111—P1—C121—C12674.6 (4)C222—C223—C224—C2250.6 (7)
C131—P1—C121—C122152.8 (3)C223—C224—C225—C2260.6 (7)
C131—P1—C121—C12631.1 (4)C224—C225—C226—C2210.4 (7)
Cu—P1—C131—C2313.2 (4)P4—C411—C412—C413176.4 (4)
C111—P1—C131—C231117.1 (4)C416—C411—C412—C4131.7 (6)
C121—P1—C131—C231136.4 (4)P4—C411—C416—C415175.6 (3)
Cu—P2—C211—C21250.4 (4)C412—C411—C416—C4152.3 (6)
Cu—P2—C211—C216125.7 (3)C411—C412—C413—C4140.2 (7)
C221—P2—C211—C212169.1 (3)C412—C413—C414—C4151.6 (7)
C221—P2—C211—C21614.8 (4)C413—C414—C415—C4161.0 (7)
C231—P2—C211—C21260.0 (4)C414—C415—C416—C4111.0 (6)
C231—P2—C211—C216123.9 (4)P4—C421—C422—C423178.4 (4)
Cu—P2—C221—C22234.7 (3)C426—C421—C422—C4230.8 (7)
Cu—P2—C221—C226146.7 (3)P4—C421—C426—C425178.6 (3)
C211—P2—C221—C222101.8 (3)C422—C421—C426—C4251.1 (6)
C211—P2—C221—C22676.9 (4)C421—C422—C423—C4240.9 (8)
C231—P2—C221—C222153.4 (3)C422—C423—C424—C4252.4 (8)
C231—P2—C221—C22627.9 (4)C423—C424—C425—C4262.2 (8)
Cu—P2—C231—C1310.6 (4)C424—C425—C426—C4210.4 (7)
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x1/2, y1/2, z+1; (v) x+1, y1/2, z+1/2; (vi) x+3/2, y, z+1/2; (vii) x+2, y+1/2, z+1/2; (viii) x+3/2, y, z1/2; (ix) x+1, y, z; (x) x+2, y1/2, z+1/2; (xi) x+1/2, y1/2, z+1; (xii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···F40.88002.12002.998 (9)179.00
C131—H131···F20.95002.41003.306 (6)158.00
C331—H331···O1ix0.95002.48003.356 (7)153.00
C426—H426···F3ix0.95002.47003.349 (7)154.00
C431—H431···F4ix0.95002.49003.245 (6)137.00
Symmetry code: (ix) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C26H22P2)2]BF4·C2H6O
Mr989.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)223
a, b, c (Å)14.147 (2), 16.5719 (11), 20.9536 (13)
V3)4912.4 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.32 × 0.32 × 0.25
Data collection
DiffractometerOxford Diffraction GEMINI S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.824, 0.859
No. of measured, independent and
observed [I > 2σ(I)] reflections
18204, 8649, 7257
Rint0.031
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 0.99
No. of reflections8649
No. of parameters580
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.32
Absolute structureFlack (1983), 3798 Friedel pairs
Absolute structure parameter0.003 (12)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Cu—P12.2775 (10)Cu—P32.2820 (10)
Cu—P22.2724 (11)Cu—P42.2851 (10)
P1—Cu—P289.76 (4)P2—Cu—P3131.21 (3)
P1—Cu—P3110.05 (3)P2—Cu—P4110.94 (3)
P1—Cu—P4130.20 (3)P3—Cu—P489.97 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···F40.88002.12002.998 (9)179.00
 

Acknowledgements

Support of this work by Griffith University, the Queensland University of Technology, the Australian Research Council and the Eskitis Institute for Cell and Molecular Therapies is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBerners-Price, S. J., Brevard, C., Pagelot, A. & Sadler, P. J. (1985). Inorg. Chem. 24, 4278–4281.  Google Scholar
First citationBerners-Price, S. J., Colquhoun, L. A., Healy, P. C., Byriel, K. A. & Hanna, J. V. (1992). J. Chem. Soc. Dalton Trans. pp. 3357–3363.  CSD CrossRef Web of Science Google Scholar
First citationBerners-Price, S. J., Girard, G. R., Hill, D. T., Sutton, B. M., Jarrett, P. S., Faucette, L. F., Johnson, R. K., Mirabelli, C. K. & Sadler, P. J. (1990). J. Med. Chem. 33, 1386–1392.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBerners-Price, S. J., Johnson, R. K., Mirabelli, C. K., Faucette, L. F., McCabe, F. L. & Sadler, P. J. (1987). Inorg. Chem. 26, 3383–3387.  CrossRef CAS Web of Science Google Scholar
First citationDobson, J. F., Green, B. E., Healy, P. C., Kennard, C. H. L., Pakawatchai, C. & White, A. H. (1984). Aust. J. Chem. 37, 649–659.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHealy, P. C., Loughley, B. T., Bowmaker, G. A. & Hanna, J. V. (2008). Dalton Trans. pp. 3723–3728.  Web of Science CSD CrossRef PubMed Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m500-m501
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds