organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1165

2-(3-Meth­oxy­phen­yl)butane­di­nitrile

aCollege of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, People's Republic of China
*Correspondence e-mail: xwwei@mail.ahnu.edu.cn

(Received 8 April 2009; accepted 23 April 2009; online 30 April 2009)

In the title compound, C11H10N2O, the dicyano­ethyl­ene portion has an anti conformation. The crystal structure features non-classical C—H⋯N and C—H⋯O inter­actions.

Related literature

For the synthesis, see: Johnson et al. (1962[Johnson, F., Panella, J. P. & Carlson, A. A. (1962). J. Org. Chem. 28, 2241-2243.]). The title compound is an inter­mediate in the synthesis of drugs (Obniska et al., 2005[Obniska, J., Jurczyk, S., Zejc, A., Kamiński, K., Tatarczyńska, E. & Stachowicz, K. (2005). Pharmacol. Rep. 57, 170-175.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10N2O

  • Mr = 186.21

  • Monoclinic, P 21 /c

  • a = 5.5263 (8) Å

  • b = 16.105 (2) Å

  • c = 11.0332 (16) Å

  • β = 97.179 (2)°

  • V = 974.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.4 × 0.2 × 0.1 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: none

  • 8042 measured reflections

  • 2210 independent reflections

  • 1963 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.128

  • S = 1.04

  • 2210 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯N1i 0.98 2.61 3.4864 (17) 150
C10—H10A⋯O1ii 0.97 2.38 3.2470 (15) 149
C10—H10B⋯N2iii 0.97 2.60 3.4823 (18) 151
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an important intermediate in drugs synthesis (Obniska et al., 2005). In this paper, we report the structure of the title compound (I). In (I), the succinonitrite moiety adopts an anti conformation. Six atoms of succinonitrite moiety, (N1/C9/C8/N2/C11/C10), almost lie on one plane, the maximum deviations from the mean plane of the succinonitrite being 0.0275 (8) Å. This mean plane is almost perpendicular to the phenyl mean plane with a dihedral angle of 87.55 (6) Å. The crystal packing is stabilized by two intermolecular non-classic C—H···N hydrogen bonds and one intermolecular non-classic C—H···O hydrogen bond.

Related literature top

For the synthesis, see: Johnson et al. (1962). The title compound is an intermediate in the synthesis of drugs; see: Obniska et al. (2005).

Experimental top

The compound (I) was obtained by reaction of (Z)-ethyl-2-cyano-3-(4-methoxyphenyl)acrylate and NaCN in ethanol-water mixture according to the reported method (Johnson et al., 1962). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

All non-hydrogen atoms were refined anisotropically. H atoms bonded to C atoms were introduced at calculated positions and refined using a riding model with C—H distances of 0.93–0.97 Å. In all cases, the H-atom Uiso(H) is 1.2 times Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) viewed down the a axis. Dotted lines show the C—H···N and C—H···O hydrogen bonds.
2-(3-Methoxyphenyl)butanedinitrile top
Crystal data top
C11H10N2OF(000) = 392
Mr = 186.21Dx = 1.270 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5752 reflections
a = 5.5263 (8) Åθ = 2.3–27.4°
b = 16.105 (2) ŵ = 0.08 mm1
c = 11.0332 (16) ÅT = 298 K
β = 97.179 (2)°Block, colorless
V = 974.3 (2) Å30.4 × 0.2 × 0.1 mm
Z = 4
Data collection top
Bruker SMART area-detector
diffractometer
1963 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
ϕ and ω scansh = 77
8042 measured reflectionsk = 2020
2210 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0729P)2 + 0.1612P]
where P = (Fo2 + 2Fc2)/3
2210 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C11H10N2OV = 974.3 (2) Å3
Mr = 186.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.5263 (8) ŵ = 0.08 mm1
b = 16.105 (2) ÅT = 298 K
c = 11.0332 (16) Å0.4 × 0.2 × 0.1 mm
β = 97.179 (2)°
Data collection top
Bruker SMART area-detector
diffractometer
1963 reflections with I > 2σ(I)
8042 measured reflectionsRint = 0.022
2210 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
2210 reflectionsΔρmin = 0.22 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C60.6739 (2)0.85144 (7)0.67253 (10)0.0379 (3)
C70.5211 (2)0.80066 (7)0.73097 (11)0.0406 (3)
H70.41770.82370.78220.049*
C50.8292 (3)0.81733 (9)0.59747 (12)0.0518 (3)
H50.93210.85120.55880.062*
C20.5237 (2)0.71565 (7)0.71258 (11)0.0439 (3)
C30.6789 (3)0.68150 (8)0.63618 (14)0.0551 (4)
H30.67990.62450.62310.066*
C40.8306 (3)0.73211 (9)0.58018 (15)0.0622 (4)
H40.93580.70900.52990.075*
C80.6709 (2)0.94492 (7)0.69077 (10)0.0384 (3)
H80.78910.96980.64230.046*
C100.7385 (2)0.97151 (7)0.82538 (11)0.0414 (3)
H10A0.73111.03150.83110.050*
H10B0.62090.94850.87440.050*
C90.4279 (2)0.97888 (7)0.64751 (11)0.0435 (3)
O10.37911 (19)0.66090 (5)0.76429 (10)0.0605 (3)
C10.2421 (3)0.69035 (10)0.85616 (15)0.0638 (4)
H1A0.35050.71410.92180.096*
H1B0.15450.64500.88670.096*
H1C0.12860.73180.82210.096*
N10.2393 (2)1.00418 (8)0.61421 (12)0.0604 (3)
C110.9826 (2)0.94328 (7)0.87350 (10)0.0415 (3)
N21.1722 (2)0.92210 (8)0.91331 (11)0.0581 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C60.0380 (6)0.0381 (6)0.0376 (5)0.0021 (4)0.0054 (4)0.0030 (4)
C70.0415 (6)0.0363 (6)0.0462 (6)0.0003 (4)0.0139 (5)0.0042 (4)
C50.0540 (8)0.0522 (7)0.0537 (7)0.0070 (6)0.0239 (6)0.0074 (5)
C20.0443 (6)0.0368 (6)0.0518 (6)0.0028 (5)0.0112 (5)0.0029 (5)
C30.0617 (8)0.0384 (6)0.0679 (8)0.0001 (5)0.0188 (6)0.0143 (6)
C40.0668 (9)0.0565 (8)0.0696 (9)0.0002 (7)0.0339 (7)0.0175 (7)
C80.0364 (6)0.0373 (6)0.0417 (6)0.0028 (4)0.0053 (4)0.0024 (4)
C100.0399 (6)0.0366 (5)0.0467 (6)0.0036 (4)0.0019 (5)0.0048 (4)
C90.0436 (7)0.0397 (6)0.0460 (6)0.0049 (5)0.0007 (5)0.0055 (5)
O10.0694 (7)0.0352 (5)0.0829 (7)0.0077 (4)0.0339 (5)0.0025 (4)
C10.0727 (10)0.0539 (8)0.0708 (9)0.0093 (7)0.0331 (8)0.0033 (7)
N10.0479 (7)0.0619 (7)0.0679 (8)0.0001 (5)0.0065 (5)0.0126 (6)
C110.0429 (6)0.0402 (6)0.0413 (6)0.0009 (5)0.0050 (5)0.0025 (4)
N20.0469 (6)0.0739 (8)0.0525 (6)0.0129 (5)0.0023 (5)0.0037 (5)
Geometric parameters (Å, º) top
C6—C51.3791 (16)C8—C91.4730 (16)
C6—C71.3903 (15)C8—C101.5460 (16)
C6—C81.5193 (15)C8—H80.9800
C7—C21.3843 (16)C10—C111.4593 (16)
C7—H70.9300C10—H10A0.9700
C5—C41.386 (2)C10—H10B0.9700
C5—H50.9300C9—N11.1365 (16)
C2—O11.3623 (15)O1—C11.4205 (17)
C2—C31.3890 (17)C1—H1A0.9600
C3—C41.371 (2)C1—H1B0.9600
C3—H30.9300C1—H1C0.9600
C4—H40.9300C11—N21.1368 (16)
C5—C6—C7120.25 (11)C6—C8—C10113.36 (9)
C5—C6—C8119.48 (10)C9—C8—H8108.3
C7—C6—C8120.28 (9)C6—C8—H8108.3
C2—C7—C6119.71 (10)C10—C8—H8108.3
C2—C7—H7120.1C11—C10—C8111.38 (9)
C6—C7—H7120.1C11—C10—H10A109.4
C6—C5—C4119.46 (12)C8—C10—H10A109.4
C6—C5—H5120.3C11—C10—H10B109.4
C4—C5—H5120.3C8—C10—H10B109.4
O1—C2—C7124.16 (11)H10A—C10—H10B108.0
O1—C2—C3115.90 (11)N1—C9—C8179.20 (13)
C7—C2—C3119.94 (11)C2—O1—C1118.40 (10)
C4—C3—C2119.79 (11)O1—C1—H1A109.5
C4—C3—H3120.1O1—C1—H1B109.5
C2—C3—H3120.1H1A—C1—H1B109.5
C3—C4—C5120.84 (12)O1—C1—H1C109.5
C3—C4—H4119.6H1A—C1—H1C109.5
C5—C4—H4119.6H1B—C1—H1C109.5
C9—C8—C6110.45 (9)N2—C11—C10178.53 (13)
C9—C8—C10108.02 (9)
C5—C6—C7—C20.64 (18)C6—C5—C4—C30.3 (2)
C8—C6—C7—C2179.32 (11)C5—C6—C8—C9118.72 (12)
C7—C6—C5—C40.4 (2)C7—C6—C8—C961.25 (14)
C8—C6—C5—C4179.55 (13)C5—C6—C8—C10119.90 (12)
C6—C7—C2—O1179.11 (11)C7—C6—C8—C1060.14 (14)
C6—C7—C2—C30.13 (19)C9—C8—C10—C11177.45 (10)
O1—C2—C3—C4179.91 (14)C6—C8—C10—C1159.81 (13)
C7—C2—C3—C40.6 (2)C7—C2—O1—C19.4 (2)
C2—C3—C4—C50.8 (2)C3—C2—O1—C1171.30 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N1i0.982.613.4864 (17)150
C10—H10A···O1ii0.972.383.2470 (15)149
C10—H10B···N2iii0.972.603.4823 (18)151
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+3/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC11H10N2O
Mr186.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)5.5263 (8), 16.105 (2), 11.0332 (16)
β (°) 97.179 (2)
V3)974.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.4 × 0.2 × 0.1
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8042, 2210, 1963
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.128, 1.04
No. of reflections2210
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
C2—O11.3623 (15)C9—N11.1365 (16)
C8—C91.4730 (16)O1—C11.4205 (17)
C8—C101.5460 (16)C11—N21.1368 (16)
C10—C111.4593 (16)
C6—C8—C10113.36 (9)C2—O1—C1118.40 (10)
C11—C10—C8111.38 (9)N2—C11—C10178.53 (13)
N1—C9—C8179.20 (13)
C9—C8—C10—C11177.45 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N1i0.982.613.4864 (17)149.7
C10—H10A···O1ii0.972.383.2470 (15)148.7
C10—H10B···N2iii0.972.603.4823 (18)150.8
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+3/2; (iii) x1, y, z.
 

Acknowledgements

This work was supported by the Science and Technology Fund of Anhui Province for Outstanding Youth (No. 08040106906), the National Natural Science Foundation (No. 20671002) of China, the State Education Ministry (EYTP, SRF for ROCS, SRFDP 20070370001) and the Education Department (No. 2006KJ006TD) of Anhui Province.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, F., Panella, J. P. & Carlson, A. A. (1962). J. Org. Chem. 28, 2241–2243.  CrossRef Web of Science Google Scholar
First citationObniska, J., Jurczyk, S., Zejc, A., Kamiński, K., Tatarczyńska, E. & Stachowicz, K. (2005). Pharmacol. Rep. 57, 170–175.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1165
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds