organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1001

1-Acryloyl-2,6-bis­­(4-chloro­phen­yl)-3,5-di­methyl­piperidin-4-one

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: jsp@physics.uni-mysore.ac.in

(Received 16 February 2009; accepted 21 March 2009; online 8 April 2009)

In the crystal structure of the title compound, C22H21Cl2NO2, the piperidinone ring is in a boat conformation.

Related literature

For the bioactivity of piperidin-4-ones, see: Jerom & Spencer (1988[Jerom, B. R. & Spencer, K. H. (1988). Eur. Patent Appl. No. EP 277794.]); Bochringer & Shochne (1961[Bochringer, C. F. & Shochne, G. M. B. H. (1961). British Patent Appl. No. BP866488.]); Mobio et al. (1989[Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421-427.]). For ring-puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthesis, see: Baliah et al., (1983[Baliah, V., Jeyaraman, R. & Chandrashekaran, L. (1983). Chem. Rev. 83, 379-423.]). For a related structure, see: Ompraba et al. (2003[Ompraba, G., Srinivasan, M., Perumal, S., Sekar, K., Choudhury, A. R., Guru Row, T. N. & Rafi, Z. A. (2003). Cryst. Res. Technol. 38, 918-921.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21Cl2NO2

  • Mr = 402.30

  • Monoclinic, P 21 /c

  • a = 10.2410 (8) Å

  • b = 19.5070 (11) Å

  • c = 10.9760 (9) Å

  • β = 112.567 (2)°

  • V = 2024.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.30 × 0.27 × 0.25 mm

Data collection
  • MacScience DIPLabo 32001 diffractometer

  • Absorption correction: none

  • 6713 measured reflections

  • 3542 independent reflections

  • 2800 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.113

  • S = 1.03

  • 3542 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: XPRESS (MacScience, 2002[MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The structural and therapeutic diversity of small heterocyclic molecules has attracted the attention of organic and medicinal chemists. Piperidin-4-ones are emerging prominently as pharmocologically important molecules because of their diverse bioactivities, such as anti-inflammatory (Jerom & Spencer, 1988), tranquilizers (Bochringer et al., 1961) along with bactericidal, fungicidal and herbicidal activities (Mobio et al., 1989). In view of the above, 1-acryloyl-2,6-bis(4-chlorophenyl)-3,5- dimethylpiperidin-4-one, was synthesized and its crystal structure is reported here.

A perspective view of the structure with the atomic numbering scheme is shown in Fig. 1. Ring-puckering analysis (Cremer & Pople, 1975) of the six-membered ring in the molecule indicates that the ring adopts a boat conformation, with a puckering amplitude Q=0.670 (2)Å, θ=85.71 (2)° and ϕ=72.45 (2)°. Atoms C2 and C6 deviate from the plane (Cremer & Pople, 1975) defined by the atoms N1/C/C3/C4/C5/C6 by -0.397 (2)Å and 0.240 (2)Å, respectively. The piperidin ring in the molecule 1-acryloyl-2,6-bis(4-chlorophenyl)-3,5-dimethylpiperidin-4-one has a weighted average torsion angle of 34.35° (compare to 52.3° in 2,6-bis(4-chlorophenyl)-3-phenylpiperidin-4-one, Ompraba et al., 2003). The substituent at C2 has an equatorial conformation as indicated by the dihedral angle of 86.87 (1)° between piperidin ring and phenyl ring and the substituent at C6 between the piperidin and phenyl ring has a dihedral angle of 77.81 (1)°. The methyl groups substituted at C3 and C5 are oriented in -syn-clinal and +anti-periplanar conformation as indicated by the torsion angle value of N1–C2–C3–C7, which is -65.3 (2)° and N1–C6–C5–C9, which is 173.51 (18)°. The torsion angle value of -3.0 (3)° for C6–N1–C17–O18 indicates that O18 is oriented in a -syn-periplanar conformation.

Related literature top

For the bioactivity of piperidin-4-ones, see: Jerom & Spencer (1988); Bochringer et al. (1961); Mobio et al. (1989). For ring-puckering analysis, see: Cremer & Pople (1975). For the synthesis, see: Baliah et al., (1983). For a related structure, see: Ompraba et al. (2003).

Experimental top

To a well stirred solution of 2,6-bis(4-chlorophenyl)-3,5-dimethylpiperidin-4-one (Baliah et al., 1983) (5 mmol) and triethylamine(5 mmol) in 30 ml of benzene, 3-chloropropanoyl chloride (5 mmol) in 20 ml benzene was added drop wise through a funnel for about an hour. The resulting mixture was stirred for about 4 hours under ambient conditions. After the completion of the reaction the mixture was quenched in cold water and the organic layer was extracted into ethyl acetate, washed with 5% sodium bicarbonate solution and dried over anhydrous sodium sulphate. This upon evaporation and recrystallization in alcohol yielded 2,6-bis(4-chlorophenyl)-1-(3-chloropropanoyl)-3,5-dimethylpiperidin-4-one. The crystals were dissolved in ethanol (60 ml), refluxed for half an hour and allowed to crystallize by slow evaporation of ethanol.

Refinement top

H atoms were placed at idealised positions and allowed to ride on their parent atoms with C–H distances in the range 0.93–0.98 Å; Uiso(H) set to either 1.2Ueq or 1.5Ueq of the carrier atom.

Computing details top

Data collection: XPRESS (MacScience, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEPII (Johnson, 1976); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with 50% probability displacement ellipsoids.
1-Acryloyl-2,6-bis(4-chlorophenyl)-3,5-dimethylpiperidin-4-one top
Crystal data top
C22H21Cl2NO2F(000) = 840
Mr = 402.30Dx = 1.320 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6713 reflections
a = 10.2410 (8) Åθ = 3.0–25.0°
b = 19.5070 (11) ŵ = 0.34 mm1
c = 10.9760 (9) ÅT = 293 K
β = 112.567 (2)°Block, colourless
V = 2024.8 (3) Å30.30 × 0.27 × 0.25 mm
Z = 4
Data collection top
MacScience DIPLabo 32001
diffractometer
2800 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.0°, θmin = 3.0°
Detector resolution: 10.0 pixels mm-1h = 1212
ω scansk = 2323
6713 measured reflectionsl = 1313
3542 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.7531P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3542 reflectionsΔρmax = 0.20 e Å3
247 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0072 (15)
Crystal data top
C22H21Cl2NO2V = 2024.8 (3) Å3
Mr = 402.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2410 (8) ŵ = 0.34 mm1
b = 19.5070 (11) ÅT = 293 K
c = 10.9760 (9) Å0.30 × 0.27 × 0.25 mm
β = 112.567 (2)°
Data collection top
MacScience DIPLabo 32001
diffractometer
2800 reflections with I > 2σ(I)
6713 measured reflectionsRint = 0.025
3542 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
3542 reflectionsΔρmin = 0.25 e Å3
247 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl160.26934 (10)0.75475 (4)0.51117 (9)0.1061 (4)
Cl270.37661 (8)0.35272 (4)0.88810 (6)0.0863 (3)
O80.44186 (17)0.35510 (9)0.20478 (18)0.0739 (7)
O180.06985 (15)0.51370 (8)0.12166 (15)0.0631 (6)
N10.09295 (16)0.43755 (8)0.24406 (16)0.0460 (5)
C20.1348 (2)0.36689 (10)0.2923 (2)0.0487 (6)
C30.2196 (2)0.33554 (11)0.2177 (2)0.0524 (7)
C40.3467 (2)0.37817 (11)0.2317 (2)0.0507 (7)
C50.3488 (2)0.45090 (10)0.2808 (2)0.0475 (6)
C60.20081 (19)0.48388 (10)0.23015 (19)0.0449 (6)
C70.1287 (2)0.32667 (14)0.0708 (2)0.0694 (8)
C90.4536 (2)0.49632 (13)0.2509 (3)0.0714 (9)
C100.2080 (2)0.55179 (10)0.29977 (19)0.0466 (6)
C110.2401 (2)0.55513 (11)0.4340 (2)0.0571 (7)
C120.2581 (2)0.61714 (12)0.4992 (2)0.0627 (8)
C130.2426 (2)0.67645 (11)0.4290 (3)0.0631 (8)
C140.2087 (3)0.67519 (12)0.2960 (3)0.0735 (10)
C150.1915 (3)0.61283 (12)0.2318 (2)0.0636 (8)
C170.0434 (2)0.45859 (11)0.1803 (2)0.0512 (7)
C190.1601 (2)0.41532 (13)0.1856 (3)0.0693 (9)
C200.2902 (3)0.43327 (19)0.1270 (3)0.0892 (13)
C210.2020 (2)0.36349 (10)0.4431 (2)0.0490 (6)
C220.3290 (2)0.33092 (11)0.5125 (2)0.0569 (8)
C230.3825 (2)0.32739 (12)0.6491 (2)0.0628 (8)
C240.3089 (3)0.35647 (11)0.7166 (2)0.0594 (8)
C250.1816 (3)0.38854 (13)0.6510 (2)0.0658 (9)
C260.1296 (2)0.39179 (12)0.5151 (2)0.0600 (8)
H20.046900.340500.265900.0580*
H30.252600.290100.255100.0630*
H50.381100.448300.377100.0570*
H60.173500.493500.136000.0540*
H7A0.099200.370900.031200.1040*
H7B0.047000.299600.060800.1040*
H7C0.182900.304000.028200.1040*
H9A0.544500.474500.281900.1070*
H9B0.461100.539700.294500.1070*
H9C0.421300.503500.157400.1070*
H110.249900.514700.481500.0690*
H120.280500.618500.589700.0750*
H140.197300.715900.249000.0880*
H150.168300.612000.141200.0760*
H190.138800.374300.232300.0830*
H20A0.312800.474200.080100.1070*
H20B0.361800.405300.131700.1070*
H220.379200.311100.466700.0680*
H230.468000.305400.694500.0750*
H250.131400.407700.697400.0790*
H260.043600.413600.470400.0720*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl160.1353 (7)0.0604 (4)0.1182 (7)0.0015 (4)0.0437 (6)0.0258 (4)
Cl270.1033 (6)0.0961 (5)0.0559 (4)0.0045 (4)0.0265 (4)0.0072 (3)
O80.0597 (10)0.0782 (11)0.0950 (13)0.0049 (8)0.0422 (9)0.0148 (9)
O180.0510 (9)0.0705 (10)0.0633 (10)0.0131 (7)0.0168 (7)0.0124 (8)
N10.0388 (9)0.0478 (9)0.0506 (9)0.0018 (7)0.0162 (7)0.0009 (7)
C20.0431 (11)0.0457 (10)0.0580 (12)0.0012 (8)0.0202 (9)0.0002 (9)
C30.0541 (12)0.0481 (11)0.0566 (12)0.0027 (9)0.0229 (10)0.0034 (9)
C40.0445 (11)0.0594 (12)0.0490 (11)0.0057 (9)0.0187 (9)0.0014 (9)
C50.0430 (11)0.0511 (11)0.0494 (11)0.0004 (8)0.0187 (9)0.0013 (9)
C60.0415 (10)0.0483 (11)0.0441 (10)0.0007 (8)0.0155 (8)0.0032 (8)
C70.0609 (14)0.0813 (16)0.0628 (14)0.0048 (12)0.0203 (12)0.0189 (12)
C90.0537 (14)0.0697 (15)0.0981 (19)0.0016 (11)0.0374 (13)0.0114 (14)
C100.0421 (10)0.0479 (11)0.0482 (11)0.0011 (8)0.0155 (9)0.0036 (9)
C110.0695 (14)0.0515 (12)0.0513 (12)0.0003 (10)0.0242 (11)0.0054 (9)
C120.0714 (15)0.0634 (14)0.0540 (13)0.0008 (11)0.0247 (11)0.0052 (11)
C130.0644 (14)0.0496 (12)0.0752 (16)0.0025 (10)0.0268 (12)0.0054 (11)
C140.0946 (19)0.0473 (13)0.0759 (17)0.0084 (12)0.0297 (14)0.0120 (12)
C150.0780 (16)0.0575 (13)0.0522 (13)0.0060 (11)0.0214 (11)0.0102 (10)
C170.0438 (11)0.0614 (13)0.0490 (11)0.0031 (9)0.0184 (9)0.0062 (10)
C190.0463 (13)0.0713 (15)0.0906 (18)0.0025 (11)0.0267 (12)0.0075 (13)
C200.0502 (15)0.136 (3)0.0838 (19)0.0066 (15)0.0283 (14)0.0043 (18)
C210.0496 (11)0.0448 (10)0.0566 (12)0.0021 (9)0.0248 (10)0.0051 (9)
C220.0548 (13)0.0563 (12)0.0637 (14)0.0058 (10)0.0273 (11)0.0052 (11)
C230.0582 (13)0.0618 (13)0.0651 (14)0.0022 (11)0.0199 (11)0.0116 (11)
C240.0695 (15)0.0561 (12)0.0547 (13)0.0089 (11)0.0261 (11)0.0063 (10)
C250.0763 (16)0.0662 (15)0.0659 (15)0.0037 (12)0.0396 (13)0.0048 (12)
C260.0577 (13)0.0656 (14)0.0630 (14)0.0114 (10)0.0303 (11)0.0086 (11)
Geometric parameters (Å, º) top
Cl16—C131.741 (3)C22—C231.387 (3)
Cl27—C241.740 (2)C23—C241.367 (4)
O8—C41.209 (3)C24—C251.374 (4)
O18—C171.229 (3)C25—C261.380 (3)
N1—C21.480 (3)C2—H20.9800
N1—C61.480 (3)C3—H30.9800
N1—C171.363 (3)C5—H50.9800
C2—C31.531 (3)C6—H60.9800
C2—C211.531 (3)C7—H7A0.9600
C3—C41.502 (3)C7—H7B0.9600
C3—C71.531 (3)C7—H7C0.9600
C4—C51.515 (3)C9—H9A0.9600
C5—C61.541 (3)C9—H9B0.9600
C5—C91.522 (3)C9—H9C0.9600
C6—C101.517 (3)C11—H110.9300
C10—C111.383 (3)C12—H120.9300
C10—C151.381 (3)C14—H140.9300
C11—C121.381 (3)C15—H150.9300
C12—C131.365 (3)C19—H190.9300
C13—C141.365 (4)C20—H20A0.9300
C14—C151.383 (3)C20—H20B0.9300
C17—C191.482 (3)C22—H220.9300
C19—C201.286 (4)C23—H230.9300
C21—C221.384 (3)C25—H250.9300
C21—C261.389 (3)C26—H260.9300
C2—N1—C6118.73 (16)C21—C2—H2106.00
C2—N1—C17124.27 (17)C2—C3—H3108.00
C6—N1—C17114.92 (16)C4—C3—H3108.00
N1—C2—C3109.06 (16)C7—C3—H3108.00
N1—C2—C21112.06 (16)C4—C5—H5107.00
C3—C2—C21116.68 (18)C6—C5—H5107.00
C2—C3—C4111.79 (17)C9—C5—H5107.00
C2—C3—C7111.59 (18)N1—C6—H6108.00
C4—C3—C7108.85 (17)C5—C6—H6108.00
O8—C4—C3121.2 (2)C10—C6—H6108.00
O8—C4—C5122.2 (2)C3—C7—H7A109.00
C3—C4—C5116.64 (18)C3—C7—H7B109.00
C4—C5—C6112.65 (17)C3—C7—H7C109.00
C4—C5—C9112.55 (19)H7A—C7—H7B109.00
C6—C5—C9110.90 (17)H7A—C7—H7C109.00
N1—C6—C5112.19 (16)H7B—C7—H7C109.00
N1—C6—C10112.04 (17)C5—C9—H9A110.00
C5—C6—C10109.39 (16)C5—C9—H9B109.00
C6—C10—C11121.58 (18)C5—C9—H9C109.00
C6—C10—C15120.58 (18)H9A—C9—H9B109.00
C11—C10—C15117.71 (19)H9A—C9—H9C109.00
C10—C11—C12121.55 (19)H9B—C9—H9C109.00
C11—C12—C13119.1 (2)C10—C11—H11119.00
Cl16—C13—C12119.3 (2)C12—C11—H11119.00
Cl16—C13—C14119.65 (18)C11—C12—H12120.00
C12—C13—C14121.0 (2)C13—C12—H12120.00
C13—C14—C15119.4 (2)C13—C14—H14120.00
C10—C15—C14121.2 (2)C15—C14—H14120.00
O18—C17—N1120.6 (2)C10—C15—H15119.00
O18—C17—C19120.0 (2)C14—C15—H15119.00
N1—C17—C19119.40 (19)C17—C19—H19119.00
C17—C19—C20121.4 (3)C20—C19—H19119.00
C2—C21—C22123.55 (19)C19—C20—H20A120.00
C2—C21—C26118.78 (19)C19—C20—H20B120.00
C22—C21—C26117.61 (19)H20A—C20—H20B120.00
C21—C22—C23121.1 (2)C21—C22—H22119.00
C22—C23—C24119.6 (2)C23—C22—H22120.00
Cl27—C24—C23119.7 (2)C22—C23—H23120.00
Cl27—C24—C25119.3 (2)C24—C23—H23120.00
C23—C24—C25121.0 (2)C24—C25—H25121.00
C24—C25—C26118.8 (2)C26—C25—H25121.00
C21—C26—C25121.9 (2)C21—C26—H26119.00
N1—C2—H2106.00C25—C26—H26119.00
C3—C2—H2106.00
C6—N1—C2—C346.8 (2)C4—C5—C6—C10171.32 (17)
C6—N1—C2—C2183.9 (2)C9—C5—C6—N1173.51 (18)
C17—N1—C2—C3115.9 (2)C9—C5—C6—C1061.5 (2)
C17—N1—C2—C21113.4 (2)N1—C6—C10—C1159.9 (3)
C2—N1—C6—C54.6 (2)N1—C6—C10—C15124.3 (2)
C2—N1—C6—C10128.09 (18)C5—C6—C10—C1165.2 (3)
C17—N1—C6—C5168.89 (17)C5—C6—C10—C15110.6 (2)
C17—N1—C6—C1067.6 (2)C6—C10—C11—C12174.6 (2)
C2—N1—C17—O18166.34 (19)C15—C10—C11—C121.3 (3)
C2—N1—C17—C1915.5 (3)C6—C10—C15—C14174.9 (3)
C6—N1—C17—O183.0 (3)C11—C10—C15—C141.0 (4)
C6—N1—C17—C19178.84 (19)C10—C11—C12—C130.6 (3)
N1—C2—C3—C456.9 (2)C11—C12—C13—Cl16178.46 (18)
N1—C2—C3—C765.3 (2)C11—C12—C13—C140.5 (4)
C21—C2—C3—C471.3 (2)Cl16—C13—C14—C15178.2 (2)
C21—C2—C3—C7166.51 (18)C12—C13—C14—C150.8 (4)
N1—C2—C21—C22130.3 (2)C13—C14—C15—C100.0 (5)
N1—C2—C21—C2652.7 (3)O18—C17—C19—C201.8 (4)
C3—C2—C21—C223.5 (3)N1—C17—C19—C20179.9 (3)
C3—C2—C21—C26179.44 (19)C2—C21—C22—C23177.7 (2)
C2—C3—C4—O8163.9 (2)C26—C21—C22—C230.7 (3)
C2—C3—C4—C516.1 (2)C2—C21—C26—C25177.8 (2)
C7—C3—C4—O872.4 (3)C22—C21—C26—C250.6 (3)
C7—C3—C4—C5107.6 (2)C21—C22—C23—C240.0 (3)
O8—C4—C5—C6144.5 (2)C22—C23—C24—Cl27179.46 (18)
O8—C4—C5—C918.3 (3)C22—C23—C24—C250.8 (4)
C3—C4—C5—C635.4 (2)Cl27—C24—C25—C26179.38 (19)
C3—C4—C5—C9161.70 (19)C23—C24—C25—C260.8 (4)
C4—C5—C6—N146.3 (2)C24—C25—C26—C210.2 (4)

Experimental details

Crystal data
Chemical formulaC22H21Cl2NO2
Mr402.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.2410 (8), 19.5070 (11), 10.9760 (9)
β (°) 112.567 (2)
V3)2024.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.30 × 0.27 × 0.25
Data collection
DiffractometerMacScience DIPLabo 32001
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6713, 3542, 2800
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 1.03
No. of reflections3542
No. of parameters247
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: XPRESS (MacScience, 2002), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and ORTEPII (Johnson, 1976), PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to the DST and the Government of India (project SP/I2/FOO/93) and the University of Mysore for financial assistance.

References

First citationBaliah, V., Jeyaraman, R. & Chandrashekaran, L. (1983). Chem. Rev. 83, 379–423.  CrossRef CAS Web of Science Google Scholar
First citationBochringer, C. F. & Shochne, G. M. B. H. (1961). British Patent Appl. No. BP866488.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJerom, B. R. & Spencer, K. H. (1988). Eur. Patent Appl. No. EP 277794.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.  Google Scholar
First citationMobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421–427.  CAS Google Scholar
First citationOmpraba, G., Srinivasan, M., Perumal, S., Sekar, K., Choudhury, A. R., Guru Row, T. N. & Rafi, Z. A. (2003). Cryst. Res. Technol. 38, 918–921.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1001
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds