organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1055

Di-4-pyridyl di­sulfide–isophthalic acid (1/1)

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Institute of Solid Materials Chemistry, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: zhengyueqing@nbu.edu.cn

(Received 1 April 2009; accepted 9 April 2009; online 18 April 2009)

In the title 1:1 cocrystal, C10H8N2S2·C8H6O4, the asymmetric unit contains an isophthalic acid mol­ecule and a 4,4′-dipyridyl disulfide mol­ecule. The two carboxyl groups of isophthalic acid inter­act with neighbouring 4,4′-dipyridyl disulfide mol­ecules through O—H⋯N hydrogen bonds, forming a one-dimensional zigzag chain. Neighbouring chains are linked to each other via ππ stacking inter­actions between the pyridyl rings of adjacent 4,4′-dipyridyl disulfide mol­ecules [centroid-centroid distance = 3.7346 (6) Å], resulting in a layered motif. The dihedral angle between pyridine rings of 84.13 (7)° and the C—S—S—C torsion angle of 91.95 (1)° confirm the gauche conformation of 4,4′-dipyridyl disulfide.

Related literature

For ligands with two 4-pyridyl donors, see: Biradha et al. (2006[Biradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169-4179.]); Sun et al. (2006[Sun, C. Y., Li, L. C. & Jin, L. P. (2006). Polyhedron, 25, 3017-3024.]); He et al. (2008[He, H. Y., Dai, F. N., Tong, X., Ke, Y. X. & Sun, D. F. (2008). Cryst. Growth Des. 8, 4191-4193.]); Suen et al. (2005[Suen, M. C., Wang, Y. H., Hsu, Y. F., Yeh, C. W., Chen, J. D. & Wang, J. C. (2005). Polyhedron, 24, 2913-2920.]). For related structures, see: Ranjbar et al. (2007[Ranjbar, Z. R., Morsali, A. & Zhu, L. G. (2007). J. Mol. Struct. 826,, 32-35.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2S2·C8H6O4

  • Mr = 386.43

  • Monoclinic, P 21 /c

  • a = 5.9616 (12) Å

  • b = 10.024 (2) Å

  • c = 29.797 (6) Å

  • β = 93.71 (3)°

  • V = 1776.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 295 K

  • 0.29 × 0.20 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.920, Tmax = 0.964

  • 16923 measured reflections

  • 4039 independent reflections

  • 2330 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.135

  • S = 1.08

  • 4039 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2C⋯N1i 0.99 1.64 2.629 (3) 175
O4—H4C⋯N2ii 0.81 1.85 2.651 (3) 176
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The ligands having two 4-pyridyl donors, e.g., 4,4'-bipyridine (Biradha et al.,2006), 1,2-bis(4-pyridyl)ethane (Sun et al., 2006) and 1,3-bis(4-pyridyl)-propane (He et al., 2008) have been intensively employed for the construction of coordination polymers. Compared with the above examples, di-4-pyridyl disulfide is seldom used for research. It shows a twisted strcture, with a C—S—S—C torsion angle of approximately 90°. More importantly, the ligand has axial chirality, which generates M- and P- enantiomers as shown in Fig. 3. It means that the use of this ligand possibly can produce the complex with a non-centrosymmetric space group (Suen et al., 2005). As we know, some special properties, e.g., triboluminescence, second harmonic generation and ferroelectricity are only found in these materials. For this consideration, we mixed this ligand and carboxylate ligand hoping to gain coordination polymer with special properties. However, a crystal suitable for X-ray diffraction was obtained during the synthesis unexpectedly. In this paper we report the crstal structure of the title cocrystal.

The asymmetric unit of the title cocrystal consisits of one isophthalic acid molecule and one P- form di-4-pyridyl disulfide molecule (Fig. 1). The two carboxylic groups of the isophthalic acid are hydrogen bonded with the corresponding di-4-pyridyl disulfide molecules (O2—H2C···N1i and O4—H4C···N2ii (Table 1)) generating a one-dimensional zigzag chain along the c axis. The neighbouring chains are further linked to each other via ππ packing interactions between the pyridyl rings of adjacent di-4-pyridyl disulfide molecules resulting in a two-dimensional layered structure (Fig. 2). The centroid-centroid distance is 3.7346 (6) Å, the C—S—S—C torsion angle is 91.95 (1)°, and the pyridyl ring planes form a dihedral angle of 84.13 (7)°. The crystal structures of closesly related cocrystals have been reported (Ranjbar et al., 2007).

Related literature top

For ligands with two 4-pyridyl donors, see: Biradha et al. (2006); Sun et al. (2006); He et al. (2008); Suen et al. (2005). For related structures, see: Ranjbar et al. (2007);

Experimental top

Dropwise addition of Na2CO3 (0.5 ml 1.0 M) to an aqueous solution of Zn(NO3)2.6H2O (0.0808 g, 0.25 mmol)in 4 ml H2O produced white precipitate, which was then centrifuged and washed with distilled water six times. The collected precipitate was subsequently moved to a stirred suspension of isophthalic acid ( 0.0817 g, 0.5 mmol) in a mixed solvent composed of EtOH (10 ml) and H2O (20 ml), and further stirred at 353 K for 1 h, followed by the addition of an ethanolic solution of 0.1120 g (0.5 mmol) di-4-pyridyl disulfide in 5 ml EtOH. The resulting mixture was further stirred at 343 K for 30 min and filtered off. Slow evaporation of the colorless filtrate at room temperature for one week gave colorless block crystals (yield: 0.05 g).

Refinement top

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title cocrystal, displacement ellipsoids are drawn at the 45% probability level.
[Figure 2] Fig. 2. The crystal packing diagram, showing the ππ stacking and hydrogen bonds as dash lines.
[Figure 3] Fig. 3. The M- and P-enantiomers of di-4-pyridyl disulfide.
Di-4-pyridyl disulfide–isophthalic acid (1/1) top
Crystal data top
C10H8N2S2·C8H6O4F(000) = 800
Mr = 386.43Dx = 1.445 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16923 reflections
a = 5.9616 (12) Åθ = 3.4–27.4°
b = 10.024 (2) ŵ = 0.33 mm1
c = 29.797 (6) ÅT = 295 K
β = 93.71 (3)°Platelet, colorless
V = 1776.9 (6) Å30.29 × 0.20 × 0.11 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4039 independent reflections
Radiation source: fine-focus sealed tube2330 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 0 pixels mm-1θmax = 27.4°, θmin = 3.4°
ω scansh = 77
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1212
Tmin = 0.920, Tmax = 0.964l = 3838
16923 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.8478P]
where P = (Fo2 + 2Fc2)/3
4039 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C10H8N2S2·C8H6O4V = 1776.9 (6) Å3
Mr = 386.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.9616 (12) ŵ = 0.33 mm1
b = 10.024 (2) ÅT = 295 K
c = 29.797 (6) Å0.29 × 0.20 × 0.11 mm
β = 93.71 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4039 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2330 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.964Rint = 0.048
16923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.08Δρmax = 0.30 e Å3
4039 reflectionsΔρmin = 0.41 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1566 (4)0.1783 (3)0.32831 (8)0.0472 (6)
C20.1371 (5)0.0516 (3)0.31039 (10)0.0570 (7)
H2A0.24190.01420.31870.068*
C30.0411 (5)0.0247 (3)0.27995 (10)0.0616 (8)
H3A0.05450.06110.26820.074*
N10.1955 (4)0.1147 (2)0.26642 (7)0.0541 (6)
C40.1742 (5)0.2369 (3)0.28378 (9)0.0542 (7)
H4A0.28060.30110.27480.065*
C50.0019 (5)0.2723 (3)0.31427 (9)0.0526 (7)
H5A0.00790.35890.32540.063*
S10.36292 (14)0.23223 (8)0.36981 (3)0.0629 (2)
S20.59614 (12)0.08517 (9)0.37425 (3)0.0664 (3)
C60.5151 (4)0.0234 (3)0.41697 (8)0.0467 (6)
C70.6649 (4)0.1247 (3)0.42909 (9)0.0543 (7)
H7A0.79770.13350.41460.065*
C80.6162 (5)0.2124 (3)0.46265 (10)0.0588 (8)
H8A0.71950.27910.47080.071*
N20.4262 (4)0.2055 (3)0.48407 (7)0.0571 (6)
C90.2814 (5)0.1082 (3)0.47191 (9)0.0558 (7)
H9A0.14830.10310.48650.067*
C100.3170 (4)0.0152 (3)0.43917 (9)0.0520 (7)
H10A0.21190.05130.43210.062*
O10.6473 (5)0.7527 (3)0.28620 (9)0.0996 (9)
O20.5074 (3)0.5519 (2)0.29642 (6)0.0634 (6)
H2C0.39670.57420.27150.095*
C110.6474 (5)0.6489 (3)0.30626 (9)0.0528 (7)
C120.8127 (4)0.6179 (3)0.34480 (8)0.0452 (6)
C131.0212 (5)0.6802 (3)0.34736 (9)0.0541 (7)
H13A1.05530.74260.32570.065*
C141.1780 (5)0.6495 (3)0.38191 (10)0.0603 (8)
H14A1.31790.69090.38330.072*
C151.1292 (4)0.5580 (3)0.41451 (9)0.0574 (8)
H15A1.23680.53680.43740.069*
C160.9196 (4)0.4977 (3)0.41308 (8)0.0467 (6)
C170.7617 (4)0.5277 (3)0.37792 (8)0.0451 (6)
H17A0.62140.48680.37670.054*
C180.8684 (5)0.3991 (3)0.44862 (9)0.0566 (7)
O31.0115 (4)0.3410 (3)0.47123 (9)0.0996 (9)
O40.6531 (3)0.3815 (2)0.45246 (7)0.0695 (6)
H4C0.62750.33130.47260.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0550 (16)0.0416 (15)0.0445 (14)0.0047 (12)0.0007 (12)0.0048 (12)
C20.0646 (18)0.0438 (17)0.0606 (17)0.0055 (14)0.0107 (14)0.0019 (13)
C30.078 (2)0.0459 (17)0.0589 (17)0.0006 (16)0.0134 (16)0.0092 (14)
N10.0640 (15)0.0536 (15)0.0433 (12)0.0002 (12)0.0078 (11)0.0003 (11)
C40.0624 (17)0.0485 (17)0.0509 (15)0.0066 (14)0.0027 (14)0.0038 (13)
C50.0681 (18)0.0391 (15)0.0502 (15)0.0009 (14)0.0005 (14)0.0019 (12)
S10.0717 (5)0.0503 (5)0.0638 (5)0.0141 (4)0.0174 (4)0.0058 (4)
S20.0482 (4)0.0838 (6)0.0672 (5)0.0068 (4)0.0036 (3)0.0218 (4)
C60.0386 (13)0.0557 (17)0.0447 (13)0.0022 (12)0.0055 (11)0.0001 (12)
C70.0433 (15)0.0660 (19)0.0527 (16)0.0059 (14)0.0033 (12)0.0024 (14)
C80.0587 (17)0.0601 (19)0.0552 (16)0.0083 (15)0.0144 (14)0.0001 (15)
N20.0612 (15)0.0606 (16)0.0477 (13)0.0051 (13)0.0106 (11)0.0067 (11)
C90.0489 (15)0.067 (2)0.0510 (15)0.0048 (15)0.0008 (13)0.0040 (14)
C100.0434 (14)0.0571 (18)0.0551 (15)0.0022 (13)0.0007 (12)0.0064 (14)
O10.118 (2)0.0680 (17)0.1053 (19)0.0274 (15)0.0499 (16)0.0421 (15)
O20.0698 (13)0.0577 (13)0.0589 (12)0.0097 (11)0.0244 (10)0.0090 (10)
C110.0612 (17)0.0465 (17)0.0495 (15)0.0013 (14)0.0059 (13)0.0043 (13)
C120.0509 (15)0.0405 (15)0.0435 (13)0.0004 (12)0.0026 (12)0.0027 (11)
C130.0570 (17)0.0544 (18)0.0507 (15)0.0046 (14)0.0011 (13)0.0000 (13)
C140.0458 (15)0.071 (2)0.0634 (18)0.0101 (15)0.0001 (14)0.0047 (16)
C150.0455 (15)0.072 (2)0.0526 (16)0.0031 (15)0.0103 (13)0.0050 (15)
C160.0452 (14)0.0530 (17)0.0408 (13)0.0033 (12)0.0054 (11)0.0026 (12)
C170.0446 (14)0.0447 (15)0.0449 (13)0.0002 (12)0.0044 (11)0.0011 (12)
C180.0541 (16)0.069 (2)0.0454 (15)0.0018 (15)0.0095 (13)0.0063 (14)
O30.0644 (14)0.135 (2)0.0961 (18)0.0153 (16)0.0159 (13)0.0616 (18)
O40.0580 (12)0.0864 (16)0.0624 (12)0.0072 (11)0.0107 (10)0.0307 (11)
Geometric parameters (Å, º) top
C1—C51.380 (4)C9—H9A0.9300
C1—C21.380 (4)C10—H10A0.9300
C1—S11.771 (3)O1—C111.200 (3)
C2—C31.378 (4)O2—C111.302 (3)
C2—H2A0.9300O2—H2C0.9857
C3—N11.333 (4)C11—C121.497 (4)
C3—H3A0.9300C12—C171.387 (4)
N1—C41.333 (4)C12—C131.388 (4)
C4—C51.373 (4)C13—C141.379 (4)
C4—H4A0.9300C13—H13A0.9300
C5—H5A0.9300C14—C151.381 (4)
S1—S22.0248 (13)C14—H14A0.9300
S2—C61.766 (3)C15—C161.386 (4)
C6—C71.385 (4)C15—H15A0.9300
C6—C101.393 (3)C16—C171.395 (3)
C7—C81.376 (4)C16—C181.495 (4)
C7—H7A0.9300C17—H17A0.9300
C8—N21.338 (4)C18—O31.203 (3)
C8—H8A0.9300C18—O41.308 (3)
N2—C91.337 (4)O4—H4C0.8043
C9—C101.376 (4)
C5—C1—C2118.2 (3)C10—C9—H9A118.0
C5—C1—S1115.7 (2)C9—C10—C6118.1 (3)
C2—C1—S1126.0 (2)C9—C10—H10A120.9
C3—C2—C1118.5 (3)C6—C10—H10A120.9
C3—C2—H2A120.8C11—O2—H2C112.9
C1—C2—H2A120.8O1—C11—O2123.7 (3)
N1—C3—C2123.7 (3)O1—C11—C12122.7 (3)
N1—C3—H3A118.2O2—C11—C12113.5 (2)
C2—C3—H3A118.2C17—C12—C13119.4 (2)
C3—N1—C4117.3 (2)C17—C12—C11121.2 (2)
N1—C4—C5122.8 (3)C13—C12—C11119.5 (2)
N1—C4—H4A118.6C14—C13—C12120.1 (3)
C5—C4—H4A118.6C14—C13—H13A119.9
C4—C5—C1119.5 (3)C12—C13—H13A119.9
C4—C5—H5A120.2C13—C14—C15120.6 (3)
C1—C5—H5A120.2C13—C14—H14A119.7
C1—S1—S2105.44 (10)C15—C14—H14A119.7
C6—S2—S1106.08 (10)C14—C15—C16119.9 (3)
C7—C6—C10118.1 (3)C14—C15—H15A120.0
C7—C6—S2116.0 (2)C16—C15—H15A120.0
C10—C6—S2125.9 (2)C15—C16—C17119.5 (3)
C8—C7—C6119.7 (3)C15—C16—C18119.4 (2)
C8—C7—H7A120.2C17—C16—C18121.0 (2)
C6—C7—H7A120.2C12—C17—C16120.4 (2)
N2—C8—C7122.6 (3)C12—C17—H17A119.8
N2—C8—H8A118.7C16—C17—H17A119.8
C7—C8—H8A118.7O3—C18—O4123.4 (3)
C9—N2—C8117.4 (2)O3—C18—C16123.2 (3)
N2—C9—C10124.0 (3)O4—C18—C16113.4 (2)
N2—C9—H9A118.0C18—O4—H4C112.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2C···N1i0.991.642.629 (3)175
O4—H4C···N2ii0.811.852.651 (3)176
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H8N2S2·C8H6O4
Mr386.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)5.9616 (12), 10.024 (2), 29.797 (6)
β (°) 93.71 (3)
V3)1776.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.29 × 0.20 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.920, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
16923, 4039, 2330
Rint0.048
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.135, 1.08
No. of reflections4039
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.41

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2C···N1i0.991.642.629 (3)175
O4—H4C···N2ii0.811.852.651 (3)176
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University and supported by the Expert Project for Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Zhejiang Provincial Natural Science Foundation (grant No. Z203067) and the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061).

References

First citationBiradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169–4179.  Web of Science CrossRef Google Scholar
First citationHe, H. Y., Dai, F. N., Tong, X., Ke, Y. X. & Sun, D. F. (2008). Cryst. Growth Des. 8, 4191–4193.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRanjbar, Z. R., Morsali, A. & Zhu, L. G. (2007). J. Mol. Struct. 826,, 32–35.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuen, M. C., Wang, Y. H., Hsu, Y. F., Yeh, C. W., Chen, J. D. & Wang, J. C. (2005). Polyhedron, 24, 2913–2920.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, C. Y., Li, L. C. & Jin, L. P. (2006). Polyhedron, 25, 3017–3024.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1055
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds