metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridine)(2-{1-[2-(di­methyl­amino)ethyl­imino]eth­yl}-4-meth­oxy­phenolato)copper(II) perchlorate

aDepartment of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
*Correspondence e-mail: cchlin@mail.nchu.edu.tw

(Received 24 March 2009; accepted 20 April 2009; online 30 April 2009)

The Cu atom of the title complex, [Cu(C13H19N2O2)(C10H8N2)]ClO4, has a distorted square-pyramidal geometry with all three of the donor atoms from the N,N′,O-tridentate Schiff base ligand in the equatorial positions and the bipyridine N atoms in an equatorial–axial binding mode. The Cu atom is 0.1801 (11) Å above the N3O mean basal plane.

Related literature

For the development of efficient catalytic systems for the coupling of CO2 with heterocycles into polycarbonates, see: Inoue et al. (1969[Inoue, S., Koinuma, H. & Tsuruta, T. (1969). Makromol. Chem. 130, 210-220.]). For the synthesis and catalytic studies of a series of bis­–(salicylaldiminato)zinc complexes, see: Darensbourg et al. (2001[Darensbourg, D. J., Rainey, P. & Yarbrough, J. C. (2001). Inorg. Chem. 40, 986-993.]). For similar complexes, see: Dhar et al. (2006[Dhar, S., Nethaji, M. & Chakravarty, A. R. (2006). Inorg. Chem. 45, 11043-11050.]); Shen et al. (2003[Shen, Y. M., Duan, W. L. & Shi, M. (2003). J. Org. Chem. 68, 1559-1562.]). For the synthesis, see: Hung & Lin (2009[Hung, W.-C. & Lin, C.-C. (2009). Inorg. Chem. 48, 728-734.]); Hung et al. (2008[Hung, W.-C., Hung, H. & Lin, C.-C. (2008). J. Polym. Sci. Part A Polym. Chem. 46, 6466-6476.]); For the chemical activity of complexes, see: Noh et al. (2007[Noh, E. K., Na, S. J. S. S., Kim, S.-W. & Lee, B. Y. (2007). J. Am. Chem. Soc. 129, 8082-8083.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H19N2O2)(C10H8N2)]ClO4

  • Mr = 554.49

  • Monoclinic, P 21 /c

  • a = 10.1588 (10) Å

  • b = 18.2163 (17) Å

  • c = 13.3764 (13) Å

  • β = 92.610 (2)°

  • V = 2472.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 293 K

  • 0.34 × 0.26 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.719, Tmax = 0.860

  • 13946 measured reflections

  • 4859 independent reflections

  • 3488 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 0.98

  • 4859 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Though many bacteria convert CO2 into organic compounds by photosynthesis, utilization of CO2 as a chemical feedstock in industrial and laboratory is rare. Recently, reuse of CO2 has received great attention because of environmental concern. Polycarbonates (PC) have been wildly used in the modern chemical industry. Co–polymerization of CO2 with olefins may benefit from reducing the release of CO2 and generating potential industrial useful PCs. Therefore, there has been increasing interest in the development of efficient catalytic systems for the coupling of CO2 with heterocycles into polycarbonates (Inoue et al., 1969). One of the major successes is the utilization of epoxides and CO2 as starting materials to prepare PCs and/or cyclic carbonates in the presence of a transition metal catalyst. Recently, Darensbourg et al., (2001) disclosed the synthesis, characterization and catalytic studies of a series of bis–(salicylaldiminato)zinc complexes, in which the most active catalyst for co–polymerization of cyclohexene oxide and CO2 giving poly(cyclohexene carbonate) (>99% carbonate linkages, Mn = 41000 g.mol-1, Mw/Mn = 10.3) with a turnover frequency of 6.9 h-1. In addition, Shen et al. (2003) reported that binaphthyldiaminosalen–type Zn, Cu, and Co complexes efficiently catalyzed reactions of epoxides with CO2 to achieve five–membered ring cyclic carbonates in the presence of various catalytic amounts of organic bases. Noh et al., (2007) disclosed catalytic studies of the binary system of [(salen)Co(III)complex] / (quaternary ammonium salt) for co–polymerization of propylene oxide and CO2. Most recently, a series of N,N,O–tridentate Schiff base zinc– and magnesium–complexes have been reported to be effective initiators / catalyst for ROP of lactide (Hung et al., 2008; Hung & Lin, 2009). We report herein the synthesis and crystal structure of [LCu(bipy)]ClO4, where L is title tridentate ligand and bipy is 2,2'–bipyridine, a potential catalyst for CO2 / epoxide coupling co–polymerization.

The solid structure of [LCu(bipy)]+ ion reveals a monomeric CuII complex containing a six–member and a five–member ring coordinated from the tridentate salicylideneiminate ligand and a five–member ring coordinated from the bipyridine ligand. The geometry around Cu atom is penta–coordinated with a slight distorted square pyramidal environment in which all three of the N,N,O–tridentate donor atoms and one of the N atoms of the bipyridine lignad sitting on the equatorial plane, and another N atom of the bipyridine ligand at the axial position. The distances between the Cu atom and O1, N1, N2, N3 and N4 are 1.903 (2), 1.964 (2), 2.076 (2), 2.208 (2) and 2.044 (2) Å, respectively which are all within a normal distance for a Cu—O and Cu—N distance. These bond distances are similar to those found in other Schiff base CuII complexes (Dhar et al., 2006).

Related literature top

For the development of efficient catalytic systems for the coupling of CO2 with heterocycles into polycarbonates, see: Inoue et al. (1969). For the synthesis and catalytic studies of a series of bis–(salicylaldiminato)zinc complexes, see: Darensbourg et al. (2001). For similar complexes, see: Dhar et al. (2006); Shen et al. (2003). For the synthesis, see: Hung & Lin (2009); Hung et al. (2008); For the chemical activity of complexes, see: Noh et al. (2007).

Experimental top

The ligand, 2–{1–[2–(dimethylamino)ethylimino]ethyl}–4–methoxyphenol was prepared according to the method reported previously (Hung et al., 2008). The title complex was synthesized by the following procedures: Cu(OAc)2.H2O (0.197 g, 1.00 mmol) and 2,2'–bipyridine (0.199 g, 1.28 mmol) was stirred in EtOH (15 ml) at room temperature for 0.5 h. The 2–{1–[2–(dimethylamino)ethylimino]ethyl}–4–methoxyphenol (0.298 g, 1.0 mmol) in EtOH (10 ml) was added. The reaction mixture was then stirred for another 1 h, and an 10 ml ethanolic solution of NaClO4 (0.122 g, 1.0 mmol) was added producing green precipitate. The product was isolated by filtration and the resulting precipitate was crystallized from EtOH to yield green crystals.

Refinement top

The methyl H atoms were located and then constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93 Å and 0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure with the atom numbering scheme. The displacement ellipsoids are shown at the 20% probability level. H atoms are presented as a small spheres of arbitrary radius.
(2,2'-Bipyridine)(2-{1-[2-(dimethylamino)ethylimino]ethyl}-4- methoxyphenolato)copper(II) perchlorate top
Crystal data top
[Cu(C13H19N2O2)(C10H8N2)]ClO4F(000) = 1148
Mr = 554.49Dx = 1.489 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4710 reflections
a = 10.1588 (10) Åθ = 2.3–25.6°
b = 18.2163 (17) ŵ = 1.04 mm1
c = 13.3764 (13) ÅT = 293 K
β = 92.610 (2)°Parallelpiped, green
V = 2472.8 (4) Å30.34 × 0.26 × 0.15 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
4859 independent reflections
Radiation source: fine–focus sealed tube3488 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.719, Tmax = 0.860k = 2216
13946 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.06P)2]
where P = (Fo2 + 2Fc2)/3
4859 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu(C13H19N2O2)(C10H8N2)]ClO4V = 2472.8 (4) Å3
Mr = 554.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1588 (10) ŵ = 1.04 mm1
b = 18.2163 (17) ÅT = 293 K
c = 13.3764 (13) Å0.34 × 0.26 × 0.15 mm
β = 92.610 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4859 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3488 reflections with I > 2σ(I)
Tmin = 0.719, Tmax = 0.860Rint = 0.037
13946 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 0.98Δρmax = 0.33 e Å3
4859 reflectionsΔρmin = 0.30 e Å3
319 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.62390 (3)0.172001 (16)0.82971 (2)0.04095 (12)
O10.6832 (2)0.15346 (10)0.96441 (14)0.0532 (5)
O20.9049 (3)0.10697 (14)1.0997 (2)0.1017 (10)
N10.5494 (2)0.07290 (12)0.81586 (16)0.0457 (5)
N20.4979 (2)0.19843 (13)0.70841 (18)0.0528 (6)
N30.8094 (2)0.16361 (12)0.75071 (17)0.0469 (6)
N40.6989 (2)0.27569 (11)0.84447 (15)0.0412 (5)
C10.7293 (3)0.08881 (15)0.9916 (2)0.0455 (6)
C20.8227 (3)0.08568 (17)1.0724 (2)0.0583 (8)
H2A0.84830.12931.10390.070*
C30.8779 (4)0.02114 (19)1.1069 (2)0.0681 (9)
H3A0.93950.02151.16050.082*
C40.8411 (4)0.04469 (18)1.0612 (2)0.0665 (9)
C50.7497 (3)0.04455 (16)0.9842 (2)0.0576 (8)
H5A0.72570.08900.95440.069*
C60.6895 (3)0.02080 (15)0.94751 (19)0.0439 (6)
C70.5849 (3)0.01591 (15)0.8687 (2)0.0447 (7)
C80.5192 (3)0.05759 (16)0.8497 (2)0.0605 (8)
H8A0.51930.08500.91110.079 (10)*
H8B0.56660.08440.80110.102 (13)*
H8C0.43000.05000.82500.098 (13)*
C90.4456 (3)0.06785 (18)0.7363 (2)0.0629 (8)
H9A0.35990.07520.76390.075*
H9B0.44690.01970.70540.075*
C100.4709 (3)0.12658 (16)0.6597 (2)0.0603 (8)
H10A0.54570.11250.62140.072*
H10B0.39470.13090.61370.072*
C110.3779 (4)0.2319 (2)0.7440 (3)0.0901 (13)
H11A0.31970.24410.68790.135*
H11B0.40020.27580.78090.135*
H11C0.33490.19800.78670.135*
C120.5537 (4)0.24885 (18)0.6336 (2)0.0728 (10)
H12A0.48890.25790.58050.109*
H12B0.63010.22670.60660.109*
H12C0.57810.29440.66540.109*
C130.8909 (5)0.1720 (2)1.0445 (3)0.1034 (15)
H13A0.93940.21061.07830.155*
H13B0.92440.16480.97920.155*
H13C0.79940.18521.03800.155*
C140.8536 (3)0.10711 (16)0.6971 (2)0.0578 (8)
H14A0.80760.06300.69760.069*
C150.9634 (3)0.11167 (19)0.6418 (2)0.0630 (9)
H15A0.99030.07180.60450.076*
C161.0329 (3)0.1763 (2)0.6427 (3)0.0689 (9)
H16A1.10760.18090.60550.083*
C170.9908 (3)0.23447 (17)0.6995 (2)0.0572 (8)
H17A1.03790.27830.70210.069*
C180.8784 (3)0.22671 (14)0.75206 (19)0.0415 (6)
C190.8210 (3)0.28739 (14)0.81221 (18)0.0402 (6)
C200.8879 (3)0.35225 (16)0.8336 (2)0.0531 (7)
H20A0.97280.35920.81230.064*
C210.8265 (3)0.40656 (17)0.8872 (2)0.0611 (8)
H21A0.87020.45030.90250.073*
C220.7019 (3)0.39554 (15)0.9173 (2)0.0546 (8)
H22A0.65870.43190.95200.066*
C230.6409 (3)0.32963 (14)0.8954 (2)0.0480 (7)
H23A0.55610.32200.91660.058*
Cl0.25347 (7)0.09143 (4)0.40216 (5)0.05096 (19)
O30.2755 (3)0.16261 (12)0.4419 (2)0.0957 (9)
O40.2085 (3)0.09639 (16)0.30025 (18)0.0956 (9)
O50.1576 (3)0.05517 (15)0.4574 (2)0.0958 (8)
O60.3729 (2)0.05090 (16)0.4085 (2)0.0970 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0450 (2)0.03477 (19)0.04338 (19)0.00436 (14)0.00530 (14)0.00633 (13)
O10.0719 (14)0.0383 (11)0.0488 (11)0.0068 (9)0.0037 (10)0.0082 (8)
O20.157 (3)0.0660 (17)0.0788 (17)0.0307 (17)0.0360 (18)0.0011 (13)
N10.0480 (14)0.0429 (13)0.0461 (12)0.0095 (11)0.0028 (10)0.0070 (11)
N20.0570 (15)0.0454 (14)0.0554 (14)0.0058 (12)0.0036 (12)0.0100 (11)
N30.0431 (13)0.0430 (14)0.0552 (14)0.0014 (10)0.0088 (11)0.0067 (10)
N40.0466 (13)0.0356 (12)0.0416 (12)0.0007 (10)0.0033 (10)0.0018 (9)
C10.0533 (17)0.0415 (16)0.0424 (14)0.0072 (13)0.0103 (12)0.0023 (12)
C20.071 (2)0.0517 (19)0.0519 (17)0.0082 (16)0.0031 (15)0.0078 (14)
C30.082 (2)0.070 (2)0.0515 (18)0.0007 (19)0.0059 (17)0.0052 (16)
C40.089 (3)0.057 (2)0.0532 (18)0.0107 (18)0.0023 (18)0.0003 (15)
C50.080 (2)0.0413 (17)0.0515 (17)0.0015 (15)0.0065 (16)0.0040 (13)
C60.0526 (16)0.0415 (15)0.0383 (14)0.0049 (13)0.0089 (12)0.0015 (11)
C70.0517 (16)0.0389 (15)0.0451 (15)0.0108 (13)0.0191 (13)0.0092 (12)
C80.074 (2)0.0480 (18)0.0608 (19)0.0214 (16)0.0146 (17)0.0062 (15)
C90.061 (2)0.060 (2)0.066 (2)0.0155 (16)0.0089 (16)0.0077 (16)
C100.070 (2)0.0530 (19)0.0569 (18)0.0031 (16)0.0116 (16)0.0116 (14)
C110.063 (2)0.103 (3)0.103 (3)0.028 (2)0.010 (2)0.035 (2)
C120.099 (3)0.055 (2)0.063 (2)0.0052 (19)0.0126 (19)0.0072 (16)
C130.149 (4)0.068 (3)0.092 (3)0.037 (3)0.011 (3)0.005 (2)
C140.0549 (18)0.0486 (18)0.070 (2)0.0049 (14)0.0082 (15)0.0145 (15)
C150.060 (2)0.066 (2)0.063 (2)0.0147 (17)0.0092 (16)0.0190 (16)
C160.0503 (19)0.091 (3)0.067 (2)0.0089 (18)0.0195 (16)0.0087 (18)
C170.0470 (17)0.059 (2)0.0658 (19)0.0041 (14)0.0093 (15)0.0006 (15)
C180.0399 (14)0.0445 (15)0.0398 (14)0.0019 (12)0.0011 (11)0.0024 (11)
C190.0429 (15)0.0402 (15)0.0371 (13)0.0018 (12)0.0026 (11)0.0038 (11)
C200.0515 (18)0.0513 (18)0.0566 (17)0.0134 (14)0.0023 (14)0.0014 (14)
C210.076 (2)0.0430 (17)0.0639 (19)0.0151 (16)0.0035 (17)0.0052 (14)
C220.077 (2)0.0381 (16)0.0488 (17)0.0009 (15)0.0025 (15)0.0054 (12)
C230.0541 (17)0.0423 (16)0.0480 (16)0.0021 (13)0.0060 (13)0.0046 (12)
Cl0.0475 (4)0.0508 (4)0.0552 (4)0.0010 (3)0.0103 (3)0.0000 (3)
O30.138 (3)0.0527 (15)0.097 (2)0.0073 (15)0.0050 (18)0.0065 (13)
O40.0810 (17)0.146 (3)0.0593 (15)0.0118 (17)0.0038 (13)0.0072 (15)
O50.0868 (18)0.0864 (19)0.118 (2)0.0077 (15)0.0486 (16)0.0223 (15)
O60.0599 (15)0.113 (2)0.118 (2)0.0323 (15)0.0115 (14)0.0019 (17)
Geometric parameters (Å, º) top
Cu—O11.9037 (19)C9—H9B0.9700
Cu—N11.963 (2)C10—H10A0.9700
Cu—N42.043 (2)C10—H10B0.9700
Cu—N22.077 (2)C11—H11A0.9600
Cu—N32.207 (2)C11—H11B0.9600
O1—C11.313 (3)C11—H11C0.9600
O2—C41.393 (4)C12—H12A0.9600
O2—C131.400 (4)C12—H12B0.9600
N1—C71.298 (3)C12—H12C0.9600
N1—C91.466 (3)C13—H13A0.9600
N2—C111.462 (4)C13—H13B0.9600
N2—C101.482 (4)C13—H13C0.9600
N2—C121.490 (4)C14—C151.369 (4)
N3—C141.343 (3)C14—H14A0.9300
N3—C181.346 (3)C15—C161.372 (4)
N4—C191.348 (3)C15—H15A0.9300
N4—C231.347 (3)C16—C171.383 (4)
C1—C21.407 (4)C16—H16A0.9300
C1—C61.423 (4)C17—C181.375 (4)
C2—C31.373 (4)C17—H17A0.9300
C2—H2A0.9300C18—C191.501 (4)
C3—C41.389 (4)C19—C201.386 (4)
C3—H3A0.9300C20—C211.387 (4)
C4—C51.355 (4)C20—H20A0.9300
C5—C61.416 (4)C21—C221.360 (4)
C5—H5A0.9300C21—H21A0.9300
C6—C71.465 (4)C22—C231.376 (4)
C7—C81.512 (4)C22—H22A0.9300
C8—H8A0.9600C23—H23A0.9300
C8—H8B0.9600Cl—O51.413 (2)
C8—H8C0.9600Cl—O31.416 (2)
C9—C101.512 (4)Cl—O61.419 (2)
C9—H9A0.9700Cl—O41.421 (2)
O1—Cu—N191.73 (9)N2—C10—C9111.1 (3)
O1—Cu—N488.40 (8)N2—C10—H10A109.4
N1—Cu—N4179.21 (9)C9—C10—H10A109.4
O1—Cu—N2159.65 (9)N2—C10—H10B109.4
N1—Cu—N285.30 (9)C9—C10—H10B109.4
N4—Cu—N294.31 (9)H10A—C10—H10B108.0
O1—Cu—N3101.58 (9)N2—C11—H11A109.5
N1—Cu—N3103.01 (9)N2—C11—H11B109.5
N4—Cu—N377.72 (8)H11A—C11—H11B109.5
N2—Cu—N398.71 (9)N2—C11—H11C109.5
C1—O1—Cu121.01 (16)H11A—C11—H11C109.5
C4—O2—C13117.4 (3)H11B—C11—H11C109.5
C7—N1—C9121.2 (2)N2—C12—H12A109.5
C7—N1—Cu125.99 (18)N2—C12—H12B109.5
C9—N1—Cu112.81 (18)H12A—C12—H12B109.5
C11—N2—C10111.8 (3)N2—C12—H12C109.5
C11—N2—C12108.1 (3)H12A—C12—H12C109.5
C10—N2—C12108.5 (2)H12B—C12—H12C109.5
C11—N2—Cu109.6 (2)O2—C13—H13A109.5
C10—N2—Cu103.51 (18)O2—C13—H13B109.5
C12—N2—Cu115.31 (19)H13A—C13—H13B109.5
C14—N3—C18118.4 (2)O2—C13—H13C109.5
C14—N3—Cu128.5 (2)H13A—C13—H13C109.5
C18—N3—Cu112.95 (17)H13B—C13—H13C109.5
C19—N4—C23118.5 (2)N3—C14—C15122.8 (3)
C19—N4—Cu117.37 (17)N3—C14—H14A118.6
C23—N4—Cu123.61 (19)C15—C14—H14A118.6
O1—C1—C2118.0 (2)C14—C15—C16118.6 (3)
O1—C1—C6125.1 (3)C14—C15—H15A120.7
C2—C1—C6116.9 (3)C16—C15—H15A120.7
C3—C2—C1122.9 (3)C15—C16—C17119.3 (3)
C3—C2—H2A118.5C15—C16—H16A120.3
C1—C2—H2A118.5C17—C16—H16A120.3
C2—C3—C4119.6 (3)C18—C17—C16119.1 (3)
C2—C3—H3A120.2C18—C17—H17A120.4
C4—C3—H3A120.2C16—C17—H17A120.4
C5—C4—C3119.6 (3)N3—C18—C17121.7 (2)
C5—C4—O2125.0 (3)N3—C18—C19114.9 (2)
C3—C4—O2115.4 (3)C17—C18—C19123.4 (3)
C4—C5—C6122.4 (3)N4—C19—C20121.2 (2)
C4—C5—H5A118.8N4—C19—C18116.2 (2)
C6—C5—H5A118.8C20—C19—C18122.6 (2)
C5—C6—C1118.5 (3)C21—C20—C19119.1 (3)
C5—C6—C7119.1 (2)C21—C20—H20A120.4
C1—C6—C7122.3 (2)C19—C20—H20A120.4
N1—C7—C6121.2 (2)C22—C21—C20119.6 (3)
N1—C7—C8120.5 (3)C22—C21—H21A120.2
C6—C7—C8118.3 (3)C20—C21—H21A120.2
C7—C8—H8A109.5C21—C22—C23118.8 (3)
C7—C8—H8B109.5C21—C22—H22A120.6
H8A—C8—H8B109.5C23—C22—H22A120.6
C7—C8—H8C109.5N4—C23—C22122.8 (3)
H8A—C8—H8C109.5N4—C23—H23A118.6
H8B—C8—H8C109.5C22—C23—H23A118.6
N1—C9—C10108.0 (2)O5—Cl—O3109.42 (18)
N1—C9—H9A110.1O5—Cl—O6109.47 (17)
C10—C9—H9A110.1O3—Cl—O6109.50 (18)
N1—C9—H9B110.1O5—Cl—O4109.41 (17)
C10—C9—H9B110.1O3—Cl—O4109.93 (18)
H9A—C9—H9B108.4O6—Cl—O4109.10 (17)

Experimental details

Crystal data
Chemical formula[Cu(C13H19N2O2)(C10H8N2)]ClO4
Mr554.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.1588 (10), 18.2163 (17), 13.3764 (13)
β (°) 92.610 (2)
V3)2472.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.34 × 0.26 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.719, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
13946, 4859, 3488
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 0.98
No. of reflections4859
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.30

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support from the National Science Council of the Republic of China is gratefully appreciated. Helpful comments from the reviewers are also greatly appreciated.

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDarensbourg, D. J., Rainey, P. & Yarbrough, J. C. (2001). Inorg. Chem. 40, 986–993.  Web of Science CSD CrossRef CAS Google Scholar
First citationDhar, S., Nethaji, M. & Chakravarty, A. R. (2006). Inorg. Chem. 45, 11043–11050.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHung, W.-C., Hung, H. & Lin, C.-C. (2008). J. Polym. Sci. Part A Polym. Chem. 46, 6466–6476.  Web of Science CrossRef CAS Google Scholar
First citationHung, W.-C. & Lin, C.-C. (2009). Inorg. Chem. 48, 728–734.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationInoue, S., Koinuma, H. & Tsuruta, T. (1969). Makromol. Chem. 130, 210–220.  CrossRef CAS Google Scholar
First citationNoh, E. K., Na, S. J. S. S., Kim, S.-W. & Lee, B. Y. (2007). J. Am. Chem. Soc. 129, 8082–8083.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Y. M., Duan, W. L. & Shi, M. (2003). J. Org. Chem. 68, 1559–1562.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds