metal-organic compounds
(2,2′-Bipyridine)(2-{1-[2-(dimethylamino)ethylimino]ethyl}-4-methoxyphenolato)copper(II) perchlorate
aDepartment of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, Republic of China
*Correspondence e-mail: cchlin@mail.nchu.edu.tw
The Cu atom of the title complex, [Cu(C13H19N2O2)(C10H8N2)]ClO4, has a distorted square-pyramidal geometry with all three of the donor atoms from the N,N′,O-tridentate Schiff base ligand in the equatorial positions and the bipyridine N atoms in an equatorial–axial binding mode. The Cu atom is 0.1801 (11) Å above the N3O mean basal plane.
Related literature
For the development of efficient catalytic systems for the coupling of CO2 with heterocycles into polycarbonates, see: Inoue et al. (1969). For the synthesis and catalytic studies of a series of bis–(salicylaldiminato)zinc complexes, see: Darensbourg et al. (2001). For similar complexes, see: Dhar et al. (2006); Shen et al. (2003). For the synthesis, see: Hung & Lin (2009); Hung et al. (2008); For the chemical activity of complexes, see: Noh et al. (2007).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1999); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809014573/rk2135sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809014573/rk2135Isup2.hkl
The ligand, 2–{1–[2–(dimethylamino)ethylimino]ethyl}–4–methoxyphenol was prepared according to the method reported previously (Hung et al., 2008). The title complex was synthesized by the following procedures: Cu(OAc)2.H2O (0.197 g, 1.00 mmol) and 2,2'–bipyridine (0.199 g, 1.28 mmol) was stirred in EtOH (15 ml) at room temperature for 0.5 h. The 2–{1–[2–(dimethylamino)ethylimino]ethyl}–4–methoxyphenol (0.298 g, 1.0 mmol) in EtOH (10 ml) was added. The reaction mixture was then stirred for another 1 h, and an 10 ml ethanolic solution of NaClO4 (0.122 g, 1.0 mmol) was added producing green precipitate. The product was isolated by filtration and the resulting precipitate was crystallized from EtOH to yield green crystals.
The methyl H atoms were located and then constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93 Å and 0.97 Å and Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 1999); cell
SMART (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C13H19N2O2)(C10H8N2)]ClO4 | F(000) = 1148 |
Mr = 554.49 | Dx = 1.489 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4710 reflections |
a = 10.1588 (10) Å | θ = 2.3–25.6° |
b = 18.2163 (17) Å | µ = 1.04 mm−1 |
c = 13.3764 (13) Å | T = 293 K |
β = 92.610 (2)° | Parallelpiped, green |
V = 2472.8 (4) Å3 | 0.34 × 0.26 × 0.15 mm |
Z = 4 |
Bruker SMART 1000 CCD diffractometer | 4859 independent reflections |
Radiation source: fine–focus sealed tube | 3488 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ϕ and ω scans | θmax = 26.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→12 |
Tmin = 0.719, Tmax = 0.860 | k = −22→16 |
13946 measured reflections | l = −16→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.06P)2] where P = (Fo2 + 2Fc2)/3 |
4859 reflections | (Δ/σ)max = 0.001 |
319 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
[Cu(C13H19N2O2)(C10H8N2)]ClO4 | V = 2472.8 (4) Å3 |
Mr = 554.49 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.1588 (10) Å | µ = 1.04 mm−1 |
b = 18.2163 (17) Å | T = 293 K |
c = 13.3764 (13) Å | 0.34 × 0.26 × 0.15 mm |
β = 92.610 (2)° |
Bruker SMART 1000 CCD diffractometer | 4859 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3488 reflections with I > 2σ(I) |
Tmin = 0.719, Tmax = 0.860 | Rint = 0.037 |
13946 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.33 e Å−3 |
4859 reflections | Δρmin = −0.30 e Å−3 |
319 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.62390 (3) | 0.172001 (16) | 0.82971 (2) | 0.04095 (12) | |
O1 | 0.6832 (2) | 0.15346 (10) | 0.96441 (14) | 0.0532 (5) | |
O2 | 0.9049 (3) | −0.10697 (14) | 1.0997 (2) | 0.1017 (10) | |
N1 | 0.5494 (2) | 0.07290 (12) | 0.81586 (16) | 0.0457 (5) | |
N2 | 0.4979 (2) | 0.19843 (13) | 0.70841 (18) | 0.0528 (6) | |
N3 | 0.8094 (2) | 0.16361 (12) | 0.75071 (17) | 0.0469 (6) | |
N4 | 0.6989 (2) | 0.27569 (11) | 0.84447 (15) | 0.0412 (5) | |
C1 | 0.7293 (3) | 0.08881 (15) | 0.9916 (2) | 0.0455 (6) | |
C2 | 0.8227 (3) | 0.08568 (17) | 1.0724 (2) | 0.0583 (8) | |
H2A | 0.8483 | 0.1293 | 1.1039 | 0.070* | |
C3 | 0.8779 (4) | 0.02114 (19) | 1.1069 (2) | 0.0681 (9) | |
H3A | 0.9395 | 0.0215 | 1.1605 | 0.082* | |
C4 | 0.8411 (4) | −0.04469 (18) | 1.0612 (2) | 0.0665 (9) | |
C5 | 0.7497 (3) | −0.04455 (16) | 0.9842 (2) | 0.0576 (8) | |
H5A | 0.7257 | −0.0890 | 0.9544 | 0.069* | |
C6 | 0.6895 (3) | 0.02080 (15) | 0.94751 (19) | 0.0439 (6) | |
C7 | 0.5849 (3) | 0.01591 (15) | 0.8687 (2) | 0.0447 (7) | |
C8 | 0.5192 (3) | −0.05759 (16) | 0.8497 (2) | 0.0605 (8) | |
H8A | 0.5193 | −0.0850 | 0.9111 | 0.079 (10)* | |
H8B | 0.5666 | −0.0844 | 0.8011 | 0.102 (13)* | |
H8C | 0.4300 | −0.0500 | 0.8250 | 0.098 (13)* | |
C9 | 0.4456 (3) | 0.06785 (18) | 0.7363 (2) | 0.0629 (8) | |
H9A | 0.3599 | 0.0752 | 0.7639 | 0.075* | |
H9B | 0.4469 | 0.0197 | 0.7054 | 0.075* | |
C10 | 0.4709 (3) | 0.12658 (16) | 0.6597 (2) | 0.0603 (8) | |
H10A | 0.5457 | 0.1125 | 0.6214 | 0.072* | |
H10B | 0.3947 | 0.1309 | 0.6137 | 0.072* | |
C11 | 0.3779 (4) | 0.2319 (2) | 0.7440 (3) | 0.0901 (13) | |
H11A | 0.3197 | 0.2441 | 0.6879 | 0.135* | |
H11B | 0.4002 | 0.2758 | 0.7809 | 0.135* | |
H11C | 0.3349 | 0.1980 | 0.7867 | 0.135* | |
C12 | 0.5537 (4) | 0.24885 (18) | 0.6336 (2) | 0.0728 (10) | |
H12A | 0.4889 | 0.2579 | 0.5805 | 0.109* | |
H12B | 0.6301 | 0.2267 | 0.6066 | 0.109* | |
H12C | 0.5781 | 0.2944 | 0.6654 | 0.109* | |
C13 | 0.8909 (5) | −0.1720 (2) | 1.0445 (3) | 0.1034 (15) | |
H13A | 0.9394 | −0.2106 | 1.0783 | 0.155* | |
H13B | 0.9244 | −0.1648 | 0.9792 | 0.155* | |
H13C | 0.7994 | −0.1852 | 1.0380 | 0.155* | |
C14 | 0.8536 (3) | 0.10711 (16) | 0.6971 (2) | 0.0578 (8) | |
H14A | 0.8076 | 0.0630 | 0.6976 | 0.069* | |
C15 | 0.9634 (3) | 0.11167 (19) | 0.6418 (2) | 0.0630 (9) | |
H15A | 0.9903 | 0.0718 | 0.6045 | 0.076* | |
C16 | 1.0329 (3) | 0.1763 (2) | 0.6427 (3) | 0.0689 (9) | |
H16A | 1.1076 | 0.1809 | 0.6055 | 0.083* | |
C17 | 0.9908 (3) | 0.23447 (17) | 0.6995 (2) | 0.0572 (8) | |
H17A | 1.0379 | 0.2783 | 0.7021 | 0.069* | |
C18 | 0.8784 (3) | 0.22671 (14) | 0.75206 (19) | 0.0415 (6) | |
C19 | 0.8210 (3) | 0.28739 (14) | 0.81221 (18) | 0.0402 (6) | |
C20 | 0.8879 (3) | 0.35225 (16) | 0.8336 (2) | 0.0531 (7) | |
H20A | 0.9728 | 0.3592 | 0.8123 | 0.064* | |
C21 | 0.8265 (3) | 0.40656 (17) | 0.8872 (2) | 0.0611 (8) | |
H21A | 0.8702 | 0.4503 | 0.9025 | 0.073* | |
C22 | 0.7019 (3) | 0.39554 (15) | 0.9173 (2) | 0.0546 (8) | |
H22A | 0.6587 | 0.4319 | 0.9520 | 0.066* | |
C23 | 0.6409 (3) | 0.32963 (14) | 0.8954 (2) | 0.0480 (7) | |
H23A | 0.5561 | 0.3220 | 0.9166 | 0.058* | |
Cl | 0.25347 (7) | 0.09143 (4) | 0.40216 (5) | 0.05096 (19) | |
O3 | 0.2755 (3) | 0.16261 (12) | 0.4419 (2) | 0.0957 (9) | |
O4 | 0.2085 (3) | 0.09639 (16) | 0.30025 (18) | 0.0956 (9) | |
O5 | 0.1576 (3) | 0.05517 (15) | 0.4574 (2) | 0.0958 (8) | |
O6 | 0.3729 (2) | 0.05090 (16) | 0.4085 (2) | 0.0970 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0450 (2) | 0.03477 (19) | 0.04338 (19) | −0.00436 (14) | 0.00530 (14) | −0.00633 (13) |
O1 | 0.0719 (14) | 0.0383 (11) | 0.0488 (11) | −0.0068 (9) | −0.0037 (10) | −0.0082 (8) |
O2 | 0.157 (3) | 0.0660 (17) | 0.0788 (17) | 0.0307 (17) | −0.0360 (18) | 0.0011 (13) |
N1 | 0.0480 (14) | 0.0429 (13) | 0.0461 (12) | −0.0095 (11) | 0.0028 (10) | −0.0070 (11) |
N2 | 0.0570 (15) | 0.0454 (14) | 0.0554 (14) | 0.0058 (12) | −0.0036 (12) | −0.0100 (11) |
N3 | 0.0431 (13) | 0.0430 (14) | 0.0552 (14) | 0.0014 (10) | 0.0088 (11) | −0.0067 (10) |
N4 | 0.0466 (13) | 0.0356 (12) | 0.0416 (12) | −0.0007 (10) | 0.0033 (10) | −0.0018 (9) |
C1 | 0.0533 (17) | 0.0415 (16) | 0.0424 (14) | −0.0072 (13) | 0.0103 (12) | −0.0023 (12) |
C2 | 0.071 (2) | 0.0517 (19) | 0.0519 (17) | −0.0082 (16) | −0.0031 (15) | −0.0078 (14) |
C3 | 0.082 (2) | 0.070 (2) | 0.0515 (18) | −0.0007 (19) | −0.0059 (17) | −0.0052 (16) |
C4 | 0.089 (3) | 0.057 (2) | 0.0532 (18) | 0.0107 (18) | 0.0023 (18) | −0.0003 (15) |
C5 | 0.080 (2) | 0.0413 (17) | 0.0515 (17) | −0.0015 (15) | 0.0065 (16) | −0.0040 (13) |
C6 | 0.0526 (16) | 0.0415 (15) | 0.0383 (14) | −0.0049 (13) | 0.0089 (12) | −0.0015 (11) |
C7 | 0.0517 (16) | 0.0389 (15) | 0.0451 (15) | −0.0108 (13) | 0.0191 (13) | −0.0092 (12) |
C8 | 0.074 (2) | 0.0480 (18) | 0.0608 (19) | −0.0214 (16) | 0.0146 (17) | −0.0062 (15) |
C9 | 0.061 (2) | 0.060 (2) | 0.066 (2) | −0.0155 (16) | −0.0089 (16) | −0.0077 (16) |
C10 | 0.070 (2) | 0.0530 (19) | 0.0569 (18) | 0.0031 (16) | −0.0116 (16) | −0.0116 (14) |
C11 | 0.063 (2) | 0.103 (3) | 0.103 (3) | 0.028 (2) | −0.010 (2) | −0.035 (2) |
C12 | 0.099 (3) | 0.055 (2) | 0.063 (2) | 0.0052 (19) | −0.0126 (19) | 0.0072 (16) |
C13 | 0.149 (4) | 0.068 (3) | 0.092 (3) | 0.037 (3) | −0.011 (3) | 0.005 (2) |
C14 | 0.0549 (18) | 0.0486 (18) | 0.070 (2) | 0.0049 (14) | 0.0082 (15) | −0.0145 (15) |
C15 | 0.060 (2) | 0.066 (2) | 0.063 (2) | 0.0147 (17) | 0.0092 (16) | −0.0190 (16) |
C16 | 0.0503 (19) | 0.091 (3) | 0.067 (2) | 0.0089 (18) | 0.0195 (16) | −0.0087 (18) |
C17 | 0.0470 (17) | 0.059 (2) | 0.0658 (19) | −0.0041 (14) | 0.0093 (15) | 0.0006 (15) |
C18 | 0.0399 (14) | 0.0445 (15) | 0.0398 (14) | 0.0019 (12) | −0.0011 (11) | 0.0024 (11) |
C19 | 0.0429 (15) | 0.0402 (15) | 0.0371 (13) | −0.0018 (12) | −0.0026 (11) | 0.0038 (11) |
C20 | 0.0515 (18) | 0.0513 (18) | 0.0566 (17) | −0.0134 (14) | 0.0023 (14) | −0.0014 (14) |
C21 | 0.076 (2) | 0.0430 (17) | 0.0639 (19) | −0.0151 (16) | −0.0035 (17) | −0.0052 (14) |
C22 | 0.077 (2) | 0.0381 (16) | 0.0488 (17) | 0.0009 (15) | 0.0025 (15) | −0.0054 (12) |
C23 | 0.0541 (17) | 0.0423 (16) | 0.0480 (16) | 0.0021 (13) | 0.0060 (13) | −0.0046 (12) |
Cl | 0.0475 (4) | 0.0508 (4) | 0.0552 (4) | 0.0010 (3) | 0.0103 (3) | 0.0000 (3) |
O3 | 0.138 (3) | 0.0527 (15) | 0.097 (2) | −0.0073 (15) | 0.0050 (18) | −0.0065 (13) |
O4 | 0.0810 (17) | 0.146 (3) | 0.0593 (15) | 0.0118 (17) | −0.0038 (13) | −0.0072 (15) |
O5 | 0.0868 (18) | 0.0864 (19) | 0.118 (2) | −0.0077 (15) | 0.0486 (16) | 0.0223 (15) |
O6 | 0.0599 (15) | 0.113 (2) | 0.118 (2) | 0.0323 (15) | 0.0115 (14) | 0.0019 (17) |
Cu—O1 | 1.9037 (19) | C9—H9B | 0.9700 |
Cu—N1 | 1.963 (2) | C10—H10A | 0.9700 |
Cu—N4 | 2.043 (2) | C10—H10B | 0.9700 |
Cu—N2 | 2.077 (2) | C11—H11A | 0.9600 |
Cu—N3 | 2.207 (2) | C11—H11B | 0.9600 |
O1—C1 | 1.313 (3) | C11—H11C | 0.9600 |
O2—C4 | 1.393 (4) | C12—H12A | 0.9600 |
O2—C13 | 1.400 (4) | C12—H12B | 0.9600 |
N1—C7 | 1.298 (3) | C12—H12C | 0.9600 |
N1—C9 | 1.466 (3) | C13—H13A | 0.9600 |
N2—C11 | 1.462 (4) | C13—H13B | 0.9600 |
N2—C10 | 1.482 (4) | C13—H13C | 0.9600 |
N2—C12 | 1.490 (4) | C14—C15 | 1.369 (4) |
N3—C14 | 1.343 (3) | C14—H14A | 0.9300 |
N3—C18 | 1.346 (3) | C15—C16 | 1.372 (4) |
N4—C19 | 1.348 (3) | C15—H15A | 0.9300 |
N4—C23 | 1.347 (3) | C16—C17 | 1.383 (4) |
C1—C2 | 1.407 (4) | C16—H16A | 0.9300 |
C1—C6 | 1.423 (4) | C17—C18 | 1.375 (4) |
C2—C3 | 1.373 (4) | C17—H17A | 0.9300 |
C2—H2A | 0.9300 | C18—C19 | 1.501 (4) |
C3—C4 | 1.389 (4) | C19—C20 | 1.386 (4) |
C3—H3A | 0.9300 | C20—C21 | 1.387 (4) |
C4—C5 | 1.355 (4) | C20—H20A | 0.9300 |
C5—C6 | 1.416 (4) | C21—C22 | 1.360 (4) |
C5—H5A | 0.9300 | C21—H21A | 0.9300 |
C6—C7 | 1.465 (4) | C22—C23 | 1.376 (4) |
C7—C8 | 1.512 (4) | C22—H22A | 0.9300 |
C8—H8A | 0.9600 | C23—H23A | 0.9300 |
C8—H8B | 0.9600 | Cl—O5 | 1.413 (2) |
C8—H8C | 0.9600 | Cl—O3 | 1.416 (2) |
C9—C10 | 1.512 (4) | Cl—O6 | 1.419 (2) |
C9—H9A | 0.9700 | Cl—O4 | 1.421 (2) |
O1—Cu—N1 | 91.73 (9) | N2—C10—C9 | 111.1 (3) |
O1—Cu—N4 | 88.40 (8) | N2—C10—H10A | 109.4 |
N1—Cu—N4 | 179.21 (9) | C9—C10—H10A | 109.4 |
O1—Cu—N2 | 159.65 (9) | N2—C10—H10B | 109.4 |
N1—Cu—N2 | 85.30 (9) | C9—C10—H10B | 109.4 |
N4—Cu—N2 | 94.31 (9) | H10A—C10—H10B | 108.0 |
O1—Cu—N3 | 101.58 (9) | N2—C11—H11A | 109.5 |
N1—Cu—N3 | 103.01 (9) | N2—C11—H11B | 109.5 |
N4—Cu—N3 | 77.72 (8) | H11A—C11—H11B | 109.5 |
N2—Cu—N3 | 98.71 (9) | N2—C11—H11C | 109.5 |
C1—O1—Cu | 121.01 (16) | H11A—C11—H11C | 109.5 |
C4—O2—C13 | 117.4 (3) | H11B—C11—H11C | 109.5 |
C7—N1—C9 | 121.2 (2) | N2—C12—H12A | 109.5 |
C7—N1—Cu | 125.99 (18) | N2—C12—H12B | 109.5 |
C9—N1—Cu | 112.81 (18) | H12A—C12—H12B | 109.5 |
C11—N2—C10 | 111.8 (3) | N2—C12—H12C | 109.5 |
C11—N2—C12 | 108.1 (3) | H12A—C12—H12C | 109.5 |
C10—N2—C12 | 108.5 (2) | H12B—C12—H12C | 109.5 |
C11—N2—Cu | 109.6 (2) | O2—C13—H13A | 109.5 |
C10—N2—Cu | 103.51 (18) | O2—C13—H13B | 109.5 |
C12—N2—Cu | 115.31 (19) | H13A—C13—H13B | 109.5 |
C14—N3—C18 | 118.4 (2) | O2—C13—H13C | 109.5 |
C14—N3—Cu | 128.5 (2) | H13A—C13—H13C | 109.5 |
C18—N3—Cu | 112.95 (17) | H13B—C13—H13C | 109.5 |
C19—N4—C23 | 118.5 (2) | N3—C14—C15 | 122.8 (3) |
C19—N4—Cu | 117.37 (17) | N3—C14—H14A | 118.6 |
C23—N4—Cu | 123.61 (19) | C15—C14—H14A | 118.6 |
O1—C1—C2 | 118.0 (2) | C14—C15—C16 | 118.6 (3) |
O1—C1—C6 | 125.1 (3) | C14—C15—H15A | 120.7 |
C2—C1—C6 | 116.9 (3) | C16—C15—H15A | 120.7 |
C3—C2—C1 | 122.9 (3) | C15—C16—C17 | 119.3 (3) |
C3—C2—H2A | 118.5 | C15—C16—H16A | 120.3 |
C1—C2—H2A | 118.5 | C17—C16—H16A | 120.3 |
C2—C3—C4 | 119.6 (3) | C18—C17—C16 | 119.1 (3) |
C2—C3—H3A | 120.2 | C18—C17—H17A | 120.4 |
C4—C3—H3A | 120.2 | C16—C17—H17A | 120.4 |
C5—C4—C3 | 119.6 (3) | N3—C18—C17 | 121.7 (2) |
C5—C4—O2 | 125.0 (3) | N3—C18—C19 | 114.9 (2) |
C3—C4—O2 | 115.4 (3) | C17—C18—C19 | 123.4 (3) |
C4—C5—C6 | 122.4 (3) | N4—C19—C20 | 121.2 (2) |
C4—C5—H5A | 118.8 | N4—C19—C18 | 116.2 (2) |
C6—C5—H5A | 118.8 | C20—C19—C18 | 122.6 (2) |
C5—C6—C1 | 118.5 (3) | C21—C20—C19 | 119.1 (3) |
C5—C6—C7 | 119.1 (2) | C21—C20—H20A | 120.4 |
C1—C6—C7 | 122.3 (2) | C19—C20—H20A | 120.4 |
N1—C7—C6 | 121.2 (2) | C22—C21—C20 | 119.6 (3) |
N1—C7—C8 | 120.5 (3) | C22—C21—H21A | 120.2 |
C6—C7—C8 | 118.3 (3) | C20—C21—H21A | 120.2 |
C7—C8—H8A | 109.5 | C21—C22—C23 | 118.8 (3) |
C7—C8—H8B | 109.5 | C21—C22—H22A | 120.6 |
H8A—C8—H8B | 109.5 | C23—C22—H22A | 120.6 |
C7—C8—H8C | 109.5 | N4—C23—C22 | 122.8 (3) |
H8A—C8—H8C | 109.5 | N4—C23—H23A | 118.6 |
H8B—C8—H8C | 109.5 | C22—C23—H23A | 118.6 |
N1—C9—C10 | 108.0 (2) | O5—Cl—O3 | 109.42 (18) |
N1—C9—H9A | 110.1 | O5—Cl—O6 | 109.47 (17) |
C10—C9—H9A | 110.1 | O3—Cl—O6 | 109.50 (18) |
N1—C9—H9B | 110.1 | O5—Cl—O4 | 109.41 (17) |
C10—C9—H9B | 110.1 | O3—Cl—O4 | 109.93 (18) |
H9A—C9—H9B | 108.4 | O6—Cl—O4 | 109.10 (17) |
Experimental details
Crystal data | |
Chemical formula | [Cu(C13H19N2O2)(C10H8N2)]ClO4 |
Mr | 554.49 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 10.1588 (10), 18.2163 (17), 13.3764 (13) |
β (°) | 92.610 (2) |
V (Å3) | 2472.8 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.04 |
Crystal size (mm) | 0.34 × 0.26 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.719, 0.860 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13946, 4859, 3488 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.105, 0.98 |
No. of reflections | 4859 |
No. of parameters | 319 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.30 |
Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
Financial support from the National Science Council of the Republic of China is gratefully appreciated. Helpful comments from the reviewers are also greatly appreciated.
References
Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Darensbourg, D. J., Rainey, P. & Yarbrough, J. C. (2001). Inorg. Chem. 40, 986–993. Web of Science CSD CrossRef CAS Google Scholar
Dhar, S., Nethaji, M. & Chakravarty, A. R. (2006). Inorg. Chem. 45, 11043–11050. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hung, W.-C., Hung, H. & Lin, C.-C. (2008). J. Polym. Sci. Part A Polym. Chem. 46, 6466–6476. Web of Science CrossRef CAS Google Scholar
Hung, W.-C. & Lin, C.-C. (2009). Inorg. Chem. 48, 728–734. Web of Science CSD CrossRef PubMed CAS Google Scholar
Inoue, S., Koinuma, H. & Tsuruta, T. (1969). Makromol. Chem. 130, 210–220. CrossRef CAS Google Scholar
Noh, E. K., Na, S. J. S. S., Kim, S.-W. & Lee, B. Y. (2007). J. Am. Chem. Soc. 129, 8082–8083. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shen, Y. M., Duan, W. L. & Shi, M. (2003). J. Org. Chem. 68, 1559–1562. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Though many bacteria convert CO2 into organic compounds by photosynthesis, utilization of CO2 as a chemical feedstock in industrial and laboratory is rare. Recently, reuse of CO2 has received great attention because of environmental concern. Polycarbonates (PC) have been wildly used in the modern chemical industry. Co–polymerization of CO2 with olefins may benefit from reducing the release of CO2 and generating potential industrial useful PCs. Therefore, there has been increasing interest in the development of efficient catalytic systems for the coupling of CO2 with heterocycles into polycarbonates (Inoue et al., 1969). One of the major successes is the utilization of epoxides and CO2 as starting materials to prepare PCs and/or cyclic carbonates in the presence of a transition metal catalyst. Recently, Darensbourg et al., (2001) disclosed the synthesis, characterization and catalytic studies of a series of bis–(salicylaldiminato)zinc complexes, in which the most active catalyst for co–polymerization of cyclohexene oxide and CO2 giving poly(cyclohexene carbonate) (>99% carbonate linkages, Mn = 41000 g.mol-1, Mw/Mn = 10.3) with a turnover frequency of 6.9 h-1. In addition, Shen et al. (2003) reported that binaphthyldiaminosalen–type Zn, Cu, and Co complexes efficiently catalyzed reactions of epoxides with CO2 to achieve five–membered ring cyclic carbonates in the presence of various catalytic amounts of organic bases. Noh et al., (2007) disclosed catalytic studies of the binary system of [(salen)Co(III)complex] / (quaternary ammonium salt) for co–polymerization of propylene oxide and CO2. Most recently, a series of N,N,O–tridentate Schiff base zinc– and magnesium–complexes have been reported to be effective initiators / catalyst for ROP of lactide (Hung et al., 2008; Hung & Lin, 2009). We report herein the synthesis and crystal structure of [LCu(bipy)]ClO4, where L is title tridentate ligand and bipy is 2,2'–bipyridine, a potential catalyst for CO2 / epoxide coupling co–polymerization.
The solid structure of [LCu(bipy)]+ ion reveals a monomeric CuII complex containing a six–member and a five–member ring coordinated from the tridentate salicylideneiminate ligand and a five–member ring coordinated from the bipyridine ligand. The geometry around Cu atom is penta–coordinated with a slight distorted square pyramidal environment in which all three of the N,N,O–tridentate donor atoms and one of the N atoms of the bipyridine lignad sitting on the equatorial plane, and another N atom of the bipyridine ligand at the axial position. The distances between the Cu atom and O1, N1, N2, N3 and N4 are 1.903 (2), 1.964 (2), 2.076 (2), 2.208 (2) and 2.044 (2) Å, respectively which are all within a normal distance for a Cu—O and Cu—N distance. These bond distances are similar to those found in other Schiff base CuII complexes (Dhar et al., 2006).