organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1111-o1112

(E)-2-{(2-Hy­droxy­naphthalen-1-yl)methyl­ene}hydrazinecarboxamide

aDepartment of Chemistry, Morgan State University, Baltimore, MD 21251, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 26 March 2009; accepted 19 April 2009; online 25 April 2009)

In the title mol­ecule, C12H11N3O2, the dihedral angle between the mean planes of the naphthalene and carboxamide groups is 28.9 (8)°. The hydrazine N atoms are twisted slightly out of the plane of the carboxamide group [C—C—N—N torsion angle = −175.06 (13)°]. The crystal packing is influenced by N—H⋯O hydrogen bonding which includes a bifurcated hydrogen bond between the amide N atom and nearby carboxyl and hydroxyl O atoms. A second bifurcated hydrogen bond occurs between the hydroxyl O atom and nearby amide (inter­molecular) and hydrazine (intra­molecular) N atoms. As a result, mol­ecules are linked into a co-operative hydrogen-bonded network of infinite one-dimensional O—H⋯O—H⋯O—H chains along the (101) plane of the unit cell in a zigzag pattern, the dihedral angle between the mean planes of the naphthalene groups of adjacent mol­ecules in the chain being 86.9 (2)°. A MOPAC PM3 calculation provides support to these observations.

Related literature

For related semicarbazones, see: Noblia et al. (2005[Noblia, P., Vieites, M., Parajon-Costa, B. S., Baran, E. J., Cerecetto, H., Draper, P., Gonzalez, M., Piro, O. E., Castellano, E. E., Azqueta, A., Lopez de Cerain, A., Monge-Vega, A. & Gambino, D. (2005). J. Inorg. Biochem. 99, 443-451.]). For the bioactivity of semicarbazones, see: Beraldo & Gambino (2004[Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem., 4, 31-39.]). For their applications in polymers, see: Khuhawar et al. (2004[Khuhawar, M. Y., Mughal, M. A. & Channar, A. H. (2004). Eur. Polym. J. 40, 805-809.]) and in sensors, see: Oter et al. (2007[Oter, O., Ertekin, K., Kirilmis, C. & Koca, M. (2007). Anal. Chim. Acta, 584, 308-314.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11N3O2

  • Mr = 229.24

  • Monoclinic, P 21 /c

  • a = 16.0886 (4) Å

  • b = 4.72900 (10) Å

  • c = 15.6452 (4) Å

  • β = 114.647 (3)°

  • V = 1081.89 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.82 mm−1

  • T = 200 K

  • 0.57 × 0.22 × 0.12 mm

Data collection
  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.819, Tmax = 0.907

  • 7383 measured reflections

  • 2135 independent reflections

  • 1724 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.124

  • S = 1.03

  • 2135 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.84 1.82 2.5562 (17) 146
N2—H2A⋯O2i 0.88 1.98 2.8290 (17) 161
N3—H3A⋯O1ii 0.88 2.10 2.9762 (18) 171
N3—H3B⋯O2iii 0.88 2.58 3.0618 (18) 116
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: CrysAlisPro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlisPro; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and WebMOPro (Schmidt & Polik, 2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC, Holland, MI, USA. Available from http://www.webmo.net.]).

Supporting information


Comment top

The title compound, C12H11N3O2, is a tridentate semicarbazone ligand and forms complexes with a variety of metals. It coordinates with vanadium which forms complexes with potential antitumor activity (Noblia et al., 2005). Semicarbazones show significant bioactivities including antiprotozoa and anticonvulsant types (Beraldo & Gambino, 2004), and additionally some derivatives have been used as selective fiber optic sensors for copper(II) (Oter et al., 2007) or incorported into polymers (Khuhawar et al., 2004).

The title molecule, C12H11N3O2, consists of a 2–hydroxynaphthalen–1–yl group and a hydrazinecarboxamide group bonded to a methylene carbon atom with the dihedral angle between the mean planes of the naphthalene and carboxamide groups measuring 28.9 (8)° (Fig. 1). The hydrazine nitrogen atoms are twisted slightly out of the plane of the carboxamide group [torsion angles C1–C11–N1–N2 = -175.06 (13)°]. The hydroxyl group is in the plane of the napthalene group [torsion angle = 179.62 (15)°]. Crystal packing is influenced by extensive strong intermolecular N—H···O hydrogen bonding which includes a bifurcated hydrogen bond between the amide nitrogen atom, N1, and a nearby carboxyl oxygen atom (O2) and hydroxyl oxygen atom (O1) (see Fig. 2, Table 1). A second bifurcated hydrogen bond occurs between the hydroxyl oxygen atom (O1) and nearby amide (N3) (intermolecular) and hydrazine (N1) (intramolecular) nitrogen atoms. As a result the molecules are linked into a cooperative hydrogen bond network of infinite one–dimensionsl O—H···O—H···O—H chains along the (1 0 1) plane of the unit cell in a zigzag pattern with the dihedral angle between the mean planes of the naphthalene groups of consecutive molecules in the chain measuring 86.9 (2)° (Fig. 3).

After a MOPAC PM3 calculation [Parameterized Model 3 approximation together with the Hartree–Fock closed–shell (restricted) wavefunction was used and minimizations were teminnated at an r.m.s. gradient of less than 0.01 kJ mol-1 Å-1] of the molecule in the asymmetric unit with WebMO Pro (Schmidt & Polik, 2007), the mean planes between the naphthalene and carboxamide groups changes from 28.9 (8)° to 14.8 (1)°, producing a significantly less twisted, more planar, molecule than that observed in the crystalline environment. It is apparent that the extensive hydrogen bonding scheme described significantly influences the crystal packing in the unit cell highlighted by a network of infinite one–dimensionsl O—H···O—H···O—H chains.

Related literature top

For related semicarbazones, see: Noblia et al. (2005). For the bioactivity of semicarbazones, see: Beraldo & Gambino (2004). For their applications in polymers, see: Khuhawar et al. (2004) and in sensors, see: Oter et al. (2007).

Experimental top

The title compound (I) was synthesized by adding a solution of 2–hydroxy–1–naphthaldehyde (1.72 g, 10 mmol) dissolved in 5 ml of ethanol to a solution of 1.15 g (10.4 mmol) of semicarbazide hydrochloride in 10 ml of water. The mixture was stirred at room temperature. A green precipitate formed. The mixture was stirred for 30 minutes then diluted with 50 ml of water, filtered and dried. Recrystallization from ethanol and slow evaporation of the solvent gave a light yellowish–green solid 1.55 g (68%). m.p. with decomposition > 503 K. 1H NMR (DMSO–d6, 400 MHz) δ (p.p.m.): 11.24 (br. s, 1H), 10.25 (br. s, 1H), 8.87 (s, 1H), 8.38 (d, J = 8.5 Hz, 1H), 7.85 (m, 2H), 7.55 (dt, J = 7.75, 1.4 Hz, 1 H), 7.37(t, J = 7.5 Hz, 1H), 7.17(d, J = 8.85, Hz, 1 H), 6.30 (br s, 2H); 13C NMR (DMSO–d6, 100 MHz) δ (p.p.m.): 156.07, 155.83, 139.86, 131.40, 131.31, 128.67, 127.94, 127.47, 123.26, 121.99, 118.44, 109.79.

Refinement top

The atoms H3A, H3B and H10 were obtained from a difference fourier map. The remaining H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95 Å, and with Uiso(H) = 1.18–1.21 Ueq(C,N,O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and WebMOPro (Schmidt & Polik, 2007).

Figures top
[Figure 1] Fig. 1. The molecular structure of C12H11N3O2, showing the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small cyrcles of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing for C12H11N3O2 viewed down the c axis showing the cooperative hydrogen bond network of infinite one–dimensional O—H···O—H···O—H chains in a zigzag pattern. Dashed lines indicate intermolecular N—H···O and intramolecular O–H···N hydrogen bonds.
[Figure 3] Fig. 3. The molecular packing for C12H11N3O2 viewed down the b axis showing the cooperative hydrogen bond network of infinite one–dimensional O—H···O—H···O—H chains along the (1 0 1) plane of the unit cell in a zigzag pattern. Dashed lines indicate intermolecular N—H···O, and intramolecular O–H···N hydrogen bonds.
(E)-2-{(2-Hydroxynaphthalen-1-yl)methylene}hydrazinecarboxamide top
Crystal data top
C12H11N3O2F(000) = 480
Mr = 229.24Dx = 1.407 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 4156 reflections
a = 16.0886 (4) Åθ = 5.2–73.5°
b = 4.7290 (1) ŵ = 0.82 mm1
c = 15.6452 (4) ÅT = 200 K
β = 114.647 (3)°Needle, pale yellow
V = 1081.89 (5) Å30.57 × 0.22 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R
diffractometer
2135 independent reflections
Radiation source: Fine–focus sealed tube1724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 10.5081 pixels mm-1θmax = 73.5°, θmin = 5.7°
ϕ and ω scansh = 1820
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 45
Tmin = 0.819, Tmax = 0.907l = 1919
7383 measured reflections
Refinement top
Refinement on F2Primary atom site location: Direct
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: Geom
wR(F2) = 0.124H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.3033P]
where P = (Fo2 + 2Fc2)/3
2135 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C12H11N3O2V = 1081.89 (5) Å3
Mr = 229.24Z = 4
Monoclinic, P21/cCu Kα radiation
a = 16.0886 (4) ŵ = 0.82 mm1
b = 4.7290 (1) ÅT = 200 K
c = 15.6452 (4) Å0.57 × 0.22 × 0.12 mm
β = 114.647 (3)°
Data collection top
Oxford Diffraction Gemini R
diffractometer
2135 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1724 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.907Rint = 0.031
7383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
2135 reflectionsΔρmin = 0.26 e Å3
155 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31323 (8)0.7964 (3)0.22177 (8)0.0437 (3)
H1O0.34980.67740.25790.052*
O20.56353 (8)0.0031 (2)0.42849 (8)0.0369 (3)
N10.38963 (8)0.4986 (3)0.37070 (9)0.0317 (3)
N20.44479 (9)0.2745 (3)0.41411 (9)0.0332 (3)
H2A0.43220.16780.45330.040*
N30.54082 (10)0.4022 (3)0.34432 (10)0.0391 (4)
H3A0.58810.37060.33120.047*
H3B0.50760.55570.32310.047*
C10.26235 (9)0.7936 (3)0.34640 (10)0.0280 (3)
C20.25746 (10)0.8928 (4)0.26045 (10)0.0325 (4)
C30.19255 (11)1.0963 (4)0.20808 (11)0.0391 (4)
H3C0.19021.15860.14940.047*
C40.13328 (11)1.2044 (4)0.24071 (12)0.0386 (4)
H4A0.08961.34130.20440.046*
C50.13540 (10)1.1162 (3)0.32839 (11)0.0325 (4)
C60.07427 (11)1.2315 (4)0.36314 (12)0.0408 (4)
H6A0.03121.37070.32740.049*
C70.07638 (12)1.1455 (4)0.44726 (13)0.0438 (4)
H7A0.03451.22250.46940.053*
C80.14048 (12)0.9437 (4)0.50068 (12)0.0414 (4)
H8A0.14190.88490.55930.050*
C90.20126 (10)0.8293 (4)0.46977 (11)0.0348 (4)
H9A0.24470.69420.50770.042*
C100.20044 (9)0.9091 (3)0.38214 (10)0.0287 (3)
C110.32667 (10)0.5704 (3)0.39663 (10)0.0291 (3)
H11A0.32200.47820.44840.035*
C120.51931 (10)0.2162 (3)0.39678 (10)0.0303 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0468 (7)0.0513 (8)0.0418 (6)0.0135 (6)0.0272 (5)0.0132 (5)
O20.0394 (6)0.0298 (6)0.0446 (6)0.0091 (5)0.0208 (5)0.0026 (5)
N10.0305 (6)0.0290 (7)0.0354 (6)0.0038 (5)0.0135 (5)0.0024 (5)
N20.0337 (7)0.0283 (7)0.0408 (7)0.0063 (5)0.0187 (6)0.0074 (5)
N30.0418 (7)0.0330 (8)0.0523 (8)0.0081 (6)0.0293 (6)0.0057 (6)
C10.0251 (7)0.0271 (8)0.0302 (7)0.0010 (6)0.0098 (6)0.0006 (6)
C20.0321 (8)0.0330 (9)0.0334 (7)0.0003 (6)0.0145 (6)0.0011 (6)
C30.0410 (9)0.0404 (10)0.0333 (8)0.0023 (7)0.0129 (7)0.0090 (7)
C40.0319 (8)0.0347 (9)0.0408 (8)0.0056 (7)0.0068 (6)0.0065 (7)
C50.0252 (7)0.0282 (8)0.0400 (8)0.0020 (6)0.0095 (6)0.0039 (6)
C60.0293 (8)0.0355 (9)0.0531 (10)0.0042 (7)0.0127 (7)0.0048 (7)
C70.0355 (8)0.0447 (10)0.0569 (10)0.0011 (7)0.0249 (8)0.0148 (8)
C80.0410 (9)0.0459 (10)0.0426 (9)0.0037 (8)0.0226 (7)0.0081 (8)
C90.0332 (8)0.0363 (9)0.0352 (8)0.0024 (6)0.0146 (6)0.0016 (6)
C100.0247 (7)0.0263 (8)0.0333 (7)0.0036 (6)0.0103 (6)0.0045 (6)
C110.0293 (7)0.0279 (8)0.0296 (7)0.0002 (6)0.0119 (6)0.0002 (6)
C120.0305 (7)0.0289 (8)0.0310 (7)0.0008 (6)0.0125 (6)0.0044 (6)
Geometric parameters (Å, º) top
O1—C21.3534 (19)C3—H3C0.9500
O1—H1O0.8400C4—C51.421 (2)
O2—C121.2386 (18)C4—H4A0.9500
N1—C111.284 (2)C5—C61.416 (2)
N1—N21.3674 (18)C5—C101.424 (2)
N2—C121.3630 (19)C6—C71.364 (3)
N2—H2A0.8800C6—H6A0.9500
N3—C121.343 (2)C7—C81.398 (3)
N3—H3A0.8800C7—H7A0.9500
N3—H3B0.8800C8—C91.370 (2)
C1—C21.395 (2)C8—H8A0.9500
C1—C101.438 (2)C9—C101.417 (2)
C1—C111.457 (2)C9—H9A0.9500
C2—C31.405 (2)C11—H11A0.9500
C3—C41.355 (2)
C2—O1—H1O109.5C4—C5—C10119.23 (14)
C11—N1—N2118.82 (13)C7—C6—C5120.90 (16)
C12—N2—N1120.02 (13)C7—C6—H6A119.6
C12—N2—H2A120.0C5—C6—H6A119.6
N1—N2—H2A120.0C6—C7—C8119.71 (16)
C12—N3—H3A120.0C6—C7—H7A120.1
C12—N3—H3B120.0C8—C7—H7A120.1
H3A—N3—H3B120.0C9—C8—C7121.05 (16)
C2—C1—C10118.52 (13)C9—C8—H8A119.5
C2—C1—C11120.34 (14)C7—C8—H8A119.5
C10—C1—C11121.10 (13)C8—C9—C10121.09 (15)
O1—C2—C1122.44 (14)C8—C9—H9A119.5
O1—C2—C3116.10 (14)C10—C9—H9A119.5
C1—C2—C3121.45 (14)C9—C10—C5117.57 (14)
C4—C3—C2120.48 (15)C9—C10—C1123.14 (14)
C4—C3—H3C119.8C5—C10—C1119.29 (14)
C2—C3—H3C119.8N1—C11—C1119.82 (13)
C3—C4—C5121.03 (15)N1—C11—H11A120.1
C3—C4—H4A119.5C1—C11—H11A120.1
C5—C4—H4A119.5O2—C12—N3122.81 (14)
C6—C5—C4121.10 (15)O2—C12—N2119.71 (14)
C6—C5—C10119.67 (15)N3—C12—N2117.48 (14)
C11—N1—N2—C12171.55 (13)C8—C9—C10—C51.2 (2)
C10—C1—C2—O1179.81 (14)C8—C9—C10—C1179.55 (15)
C11—C1—C2—O12.4 (2)C6—C5—C10—C90.6 (2)
C10—C1—C2—C31.4 (2)C4—C5—C10—C9179.18 (14)
C11—C1—C2—C3176.35 (15)C6—C5—C10—C1179.86 (14)
O1—C2—C3—C4179.62 (15)C4—C5—C10—C10.1 (2)
C1—C2—C3—C40.8 (3)C2—C1—C10—C9178.19 (14)
C2—C3—C4—C50.2 (3)C11—C1—C10—C94.1 (2)
C3—C4—C5—C6179.19 (15)C2—C1—C10—C51.1 (2)
C3—C4—C5—C100.5 (2)C11—C1—C10—C5176.66 (13)
C4—C5—C6—C7179.81 (15)N2—N1—C11—C1175.06 (13)
C10—C5—C6—C70.5 (2)C2—C1—C11—N112.1 (2)
C5—C6—C7—C80.9 (3)C10—C1—C11—N1170.23 (13)
C6—C7—C8—C90.3 (3)N1—N2—C12—O2172.55 (13)
C7—C8—C9—C100.8 (3)N1—N2—C12—N36.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.841.822.5562 (17)146
N2—H2A···O2i0.881.982.8290 (17)161
N3—H3A···O1ii0.882.102.9762 (18)171
N3—H3B···O2iii0.882.583.0618 (18)116
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H11N3O2
Mr229.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)16.0886 (4), 4.7290 (1), 15.6452 (4)
β (°) 114.647 (3)
V3)1081.89 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.82
Crystal size (mm)0.57 × 0.22 × 0.12
Data collection
DiffractometerOxford Diffraction Gemini R
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.819, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
7383, 2135, 1724
Rint0.031
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.03
No. of reflections2135
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.26

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and WebMOPro (Schmidt & Polik, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.841.822.5562 (17)146.2
N2—H2A···O2i0.881.982.8290 (17)161.2
N3—H3A···O1ii0.882.102.9762 (18)171.3
N3—H3B···O2iii0.882.583.0618 (18)115.6
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

Support to YMH and OO was provided by DOE–CETBR grant No. DE–FG02–03ER63580 and NSF–RISE Award No. HRD–0627276. RJB acknowledges the NSF MRI program (grant No. CHE–0619278) for funds to purchase an X–ray diffractometer.

References

First citationBeraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem., 4, 31–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhuhawar, M. Y., Mughal, M. A. & Channar, A. H. (2004). Eur. Polym. J. 40, 805–809.  Web of Science CrossRef CAS Google Scholar
First citationNoblia, P., Vieites, M., Parajon–Costa, B. S., Baran, E. J., Cerecetto, H., Draper, P., Gonzalez, M., Piro, O. E., Castellano, E. E., Azqueta, A., Lopez de Cerain, A., Monge–Vega, A. & Gambino, D. (2005). J. Inorg. Biochem. 99, 443–451.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOter, O., Ertekin, K., Kirilmis, C. & Koca, M. (2007). Anal. Chim. Acta, 584, 308–314.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC, Holland, MI, USA. Available from http://www.webmo.net.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1111-o1112
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds