organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3-Oxo-1,3-di­hydro­isobenzo­furan-1-yl)­phthalazin-1(2H)-one

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: dh@scnu.edu.cn

(Received 18 December 2008; accepted 31 March 2009; online 8 April 2009)

The reaction of 2-carboxy­benzaldehyde and hydrazine hydrate unexpectedly yielded the title compound, C16H10N2O3, which comprises one phthalide ring, one phthalazine system and a chiral centre. The phthalide unit is almost perpendicular to the phthalazine system, forming a dihedral angle of 87.1 (3)°. The packing is governed by weak C—H⋯O hydrogen-bonding inter­actions, forming layers parallel to the ab plane.

Related literature

For general background to non-covalent inter­actions, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Roesky & Andruh (2003[Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91-119.]). For related compounds, see: Nelson et al. (1982[Nelson, S. M., Esho, F. S. & Drew, M. G. B. (1982). J. Chem. Soc. Dalton Trans. pp. 407-415.]); Li et al. (2002[Li, J., Zhang, F. X. & Shi, Q. Z. (2002). Chin. J. Inorg. Chem. 6, 643-645.]); Özbey et al. (1998[Özbey, S., Ide, S. & Kendi, E. (1998). J. Mol. Struct. 442, 23-30.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10N2O3

  • Mr = 278.26

  • Triclinic, [P \overline 1]

  • a = 7.2356 (2) Å

  • b = 8.0369 (2) Å

  • c = 11.1686 (4) Å

  • α = 80.047 (2)°

  • β = 86.093 (2)°

  • γ = 88.6550 (10)°

  • V = 638.17 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: none

  • 6746 measured reflections

  • 2295 independent reflections

  • 1626 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.02

  • 2295 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O3i 0.93 2.41 3.2935 (19) 158
C4—H4⋯O1ii 0.93 2.54 3.215 (2) 130
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrogen bonding as an important type of non-covalent interaction plays a great role in supramolecular chemistry and material sciences (Bernstein et al., 1995). Hydrogen bonding between solvent molecules and heterocycle compounds containing O or N donors has been confirmed to be a useful and powerful organizing force to form supramolecules (Roesky & Andruh, 2003). It has been reported (Nelson et al., 1982) that the reaction of 2,6-diacetylpyridine and 1,2-phenylenediamine can form benzimidazole groups via oxidative dehydrogenation. Recently, in the reaction of 5-bromo-2-hydroxybenzaldehyde and 1,2-phenylenediamine in the presence of anhydrous ethanol solution a benzimidazole derivate have also been isolated (Li et al., 2002). In this paper, we chose 2-carboxybenzaldehyde and hydrazinehydrate as reagents and unexpectedly isolated the heterocyclic title compound.

The molecular structure of the title compound is shown in Fig. 1. The phthalazine system is almost planar with the N1—C9—C10—C11 and C14—C15—C16—N2 torsion angles of -175.9 (2) and 178.0 (2)°, respectively. The phthalide ring system is also almost planar, the O2—C8—C6—C5 torsion angle being -176.7 (2)°. The C8—N1 bond length (1.449 (2) Å) indicates single bond character, and the corresponding bond angles demonstrate the sp3 character of the C8 atom (chiral centre). The C16—N2 bond length (1.287 (2) Å) in the phthalazine ring has double bond character and is shorter than that found in the azomethine group of a related compound (Özbey et al., 1998). The phthalide ring system is almost perpendicular to the phthalazine ring system, the dihedral angle they form being 87.1 (3)°. In the crystal structure, the molecules are linked via weak C—H···O hydrogen bonding interactions forming layers parallel to the ab plane (Table 1, Fig. 2).

Related literature top

For general background to non-covalent interactions, see: Bernstein et al. (1995); Roesky & Andruh (2003). For related compounds, see: Nelson et al. (1982); Li et al. (2002); Özbey et al. (1998).

Experimental top

2-Carboxybenzaldehyde (0.30 g, 2 mmol) and hydrazinehydrate (0.050 g, 1 mmol) were added to methanol (20 ml), and the mixture was refluxed for 3 h at 80°C. The resulting yellow precipitate was filtered and recrystallized from a MeOH/DMSO (5:1 v/v) solution. Colourless lamellar crystals were obtained on slow evaporation of the solvents at room temperature.

Refinement top

All H atoms were placed in calculated positions and were refined using a riding model, with (C—H = 0.93-0.96 Å, O—H = 0.82 Å), and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C, O) for methyl and hydroxy H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-numbering scheme. Displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. View of a supramolecular network of the title structure. Intemolecular hydrogen bonds are shown as dashed lines.
2-(3-Oxo-1,3-dihydroisobenzofuran-1-yl)phthalazin-1(2H)-one top
Crystal data top
C16H10N2O3Z = 2
Mr = 278.26F(000) = 288
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2356 (2) ÅCell parameters from 2295 reflections
b = 8.0369 (2) Åθ = 2.6–25.2°
c = 11.1686 (4) ŵ = 0.10 mm1
α = 80.047 (2)°T = 296 K
β = 86.093 (2)°Block, colourless
γ = 88.655 (1)°0.20 × 0.18 × 0.15 mm
V = 638.17 (3) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
1626 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.2°, θmin = 2.6°
ω scansh = 88
6746 measured reflectionsk = 99
2295 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.0851P]
where P = (Fo2 + 2Fc2)/3
2295 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C16H10N2O3γ = 88.655 (1)°
Mr = 278.26V = 638.17 (3) Å3
Triclinic, P1Z = 2
a = 7.2356 (2) ÅMo Kα radiation
b = 8.0369 (2) ŵ = 0.10 mm1
c = 11.1686 (4) ÅT = 296 K
α = 80.047 (2)°0.20 × 0.18 × 0.15 mm
β = 86.093 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
1626 reflections with I > 2σ(I)
6746 measured reflectionsRint = 0.030
2295 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
2295 reflectionsΔρmin = 0.17 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2297 (2)1.0612 (2)0.05051 (17)0.0452 (4)
C20.2968 (2)1.0522 (3)0.06731 (17)0.0527 (5)
H20.33321.14890.12150.063*
C30.3079 (2)0.8959 (3)0.10149 (17)0.0546 (5)
H30.35140.88630.18030.065*
C40.2552 (3)0.7527 (3)0.02004 (18)0.0558 (5)
H40.26500.64800.04480.067*
C50.1881 (2)0.7618 (2)0.09758 (17)0.0504 (5)
H50.15270.66520.15210.061*
C60.1756 (2)0.9188 (2)0.13127 (15)0.0433 (4)
C70.2067 (3)1.2059 (3)0.1138 (2)0.0609 (5)
C80.1105 (2)0.9693 (2)0.24995 (17)0.0522 (5)
H80.02240.94730.26550.063*
C90.1102 (2)0.7947 (2)0.45282 (17)0.0502 (5)
C100.2253 (2)0.7052 (2)0.54673 (16)0.0457 (4)
C110.1443 (3)0.6004 (2)0.64863 (18)0.0569 (5)
H110.01670.58610.65740.068*
C120.2554 (3)0.5188 (3)0.73568 (19)0.0630 (5)
H120.20240.44830.80360.076*
C130.4459 (3)0.5403 (3)0.72353 (19)0.0635 (6)
H130.51910.48500.78380.076*
C140.5268 (3)0.6416 (3)0.62413 (19)0.0588 (5)
H140.65460.65520.61670.071*
C150.4170 (2)0.7251 (2)0.53311 (16)0.0463 (4)
C160.4925 (2)0.8287 (3)0.42442 (17)0.0550 (5)
H160.62020.84290.41620.066*
N10.20803 (18)0.8852 (2)0.35304 (13)0.0496 (4)
N20.39749 (19)0.9039 (2)0.33708 (14)0.0548 (4)
O10.2366 (2)1.35289 (19)0.07887 (16)0.0893 (5)
O20.14034 (19)1.14869 (17)0.23133 (13)0.0666 (4)
O30.05902 (16)0.7908 (2)0.45814 (13)0.0764 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0396 (9)0.0427 (11)0.0528 (11)0.0040 (7)0.0141 (8)0.0033 (8)
C20.0451 (10)0.0558 (13)0.0519 (12)0.0009 (8)0.0109 (8)0.0087 (9)
C30.0503 (11)0.0639 (14)0.0491 (11)0.0075 (9)0.0068 (9)0.0081 (10)
C40.0593 (12)0.0505 (12)0.0596 (13)0.0046 (9)0.0110 (9)0.0128 (10)
C50.0481 (10)0.0456 (12)0.0549 (12)0.0036 (8)0.0090 (8)0.0020 (9)
C60.0337 (8)0.0470 (11)0.0483 (11)0.0026 (7)0.0097 (7)0.0034 (8)
C70.0630 (13)0.0509 (14)0.0694 (15)0.0109 (10)0.0240 (11)0.0056 (11)
C80.0421 (10)0.0608 (13)0.0534 (11)0.0081 (8)0.0099 (8)0.0074 (9)
C90.0356 (9)0.0667 (13)0.0490 (11)0.0013 (8)0.0035 (8)0.0116 (9)
C100.0389 (9)0.0547 (11)0.0452 (10)0.0042 (8)0.0039 (8)0.0131 (9)
C110.0470 (10)0.0650 (13)0.0577 (12)0.0014 (9)0.0024 (9)0.0079 (10)
C120.0674 (13)0.0620 (14)0.0570 (13)0.0014 (10)0.0053 (10)0.0029 (10)
C130.0685 (13)0.0649 (14)0.0577 (13)0.0123 (10)0.0199 (10)0.0078 (11)
C140.0436 (10)0.0724 (14)0.0624 (13)0.0080 (9)0.0150 (9)0.0134 (11)
C150.0385 (9)0.0541 (11)0.0490 (11)0.0045 (8)0.0075 (8)0.0157 (9)
C160.0314 (9)0.0761 (14)0.0574 (12)0.0005 (8)0.0052 (8)0.0105 (10)
N10.0320 (7)0.0707 (11)0.0447 (9)0.0051 (7)0.0048 (6)0.0061 (7)
N20.0331 (8)0.0770 (12)0.0527 (10)0.0007 (7)0.0038 (7)0.0068 (8)
O10.1198 (14)0.0428 (10)0.1065 (13)0.0052 (8)0.0350 (10)0.0064 (9)
O20.0757 (9)0.0616 (10)0.0661 (10)0.0228 (7)0.0169 (7)0.0194 (7)
O30.0307 (7)0.1177 (13)0.0730 (10)0.0009 (7)0.0059 (6)0.0066 (9)
Geometric parameters (Å, º) top
C1—C61.376 (2)C9—O31.223 (2)
C1—C21.384 (3)C9—N11.382 (2)
C1—C71.463 (3)C9—C101.464 (2)
C2—C31.374 (3)C10—C151.395 (2)
C2—H20.9300C10—C111.396 (3)
C3—C41.381 (3)C11—C121.372 (3)
C3—H30.9300C11—H110.9300
C4—C51.382 (3)C12—C131.388 (3)
C4—H40.9300C12—H120.9300
C5—C61.377 (3)C13—C141.364 (3)
C5—H50.9300C13—H130.9300
C6—C81.495 (2)C14—C151.401 (2)
C7—O11.198 (2)C14—H140.9300
C7—O21.371 (3)C15—C161.431 (3)
C8—O21.440 (2)C16—N21.287 (2)
C8—N11.449 (2)C16—H160.9300
C8—H80.9800N1—N21.3786 (18)
C6—C1—C2121.43 (18)O3—C9—C10124.45 (17)
C6—C1—C7108.00 (17)N1—C9—C10114.62 (15)
C2—C1—C7130.55 (18)C15—C10—C11120.32 (16)
C3—C2—C1117.82 (18)C15—C10—C9119.31 (16)
C3—C2—H2121.1C11—C10—C9120.37 (16)
C1—C2—H2121.1C12—C11—C10119.18 (18)
C2—C3—C4120.73 (19)C12—C11—H11120.4
C2—C3—H3119.6C10—C11—H11120.4
C4—C3—H3119.6C11—C12—C13120.7 (2)
C3—C4—C5121.39 (19)C11—C12—H12119.6
C3—C4—H4119.3C13—C12—H12119.6
C5—C4—H4119.3C14—C13—C12120.66 (19)
C6—C5—C4117.77 (17)C14—C13—H13119.7
C6—C5—H5121.1C12—C13—H13119.7
C4—C5—H5121.1C13—C14—C15119.88 (18)
C1—C6—C5120.86 (17)C13—C14—H14120.1
C1—C6—C8108.75 (16)C15—C14—H14120.1
C5—C6—C8130.38 (17)C10—C15—C14119.22 (18)
O1—C7—O2120.9 (2)C10—C15—C16117.71 (16)
O1—C7—C1130.7 (2)C14—C15—C16123.06 (17)
O2—C7—C1108.36 (18)N2—C16—C15125.13 (16)
O2—C8—N1110.25 (14)N2—C16—H16117.4
O2—C8—C6104.41 (14)C15—C16—H16117.4
N1—C8—C6114.15 (14)N2—N1—C9126.76 (14)
O2—C8—H8109.3N2—N1—C8113.34 (14)
N1—C8—H8109.3C9—N1—C8119.88 (14)
C6—C8—H8109.3C16—N2—N1116.35 (15)
O3—C9—N1120.92 (17)C7—O2—C8110.40 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O3i0.932.413.2935 (19)158
C4—H4···O1ii0.932.543.215 (2)130
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H10N2O3
Mr278.26
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.2356 (2), 8.0369 (2), 11.1686 (4)
α, β, γ (°)80.047 (2), 86.093 (2), 88.655 (1)
V3)638.17 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6746, 2295, 1626
Rint0.030
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.110, 1.02
No. of reflections2295
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O3i0.932.413.2935 (19)158.2
C4—H4···O1ii0.932.543.215 (2)130.2
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z.
 

Acknowledgements

The authors acknowledge South China Normal University for supporting this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J., Zhang, F. X. & Shi, Q. Z. (2002). Chin. J. Inorg. Chem. 6, 643–645.  Google Scholar
First citationNelson, S. M., Esho, F. S. & Drew, M. G. B. (1982). J. Chem. Soc. Dalton Trans. pp. 407–415.  CSD CrossRef Web of Science Google Scholar
First citationÖzbey, S., Ide, S. & Kendi, E. (1998). J. Mol. Struct. 442, 23–30.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91–119.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds