organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1177-o1178

3-Methyl-4-(3-methyl­phen­yl)-5-(2-pyridyl)-4H-1,2,4-triazole

aCollege of Chemistry and Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhudr@njut.edu.cn

(Received 4 April 2009; accepted 27 April 2009; online 30 April 2009)

In the mol­ecule of the title compound, C15H14N4, the triazole ring is oriented at dihedral angles of 30.8 (2) and 67.4 (2)° with respect to the pyridine and benzene rings, respectively. The crystal structure is stabilized by C—H⋯N hydrogen-bonding inter­actions, forming chains of mol­ecules along [[\overline{1}]01].

Related literature

For general background to the chemistry of 1,2,4-triazole derivatives, see: Haasnoot (2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.]); Klingele et al. (2005[Klingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2005). Eur. J. Inorg. Chem. pp. 573-589.]); Moliner et al. (2001[Moliner, N., Gaspar, A. B., Muñoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem. 40, 3986-3991.]). For the applications of iron(II)–triazole complexes in electronics, see: Kröber et al. (1993[Kröber, J., Codjovi, E., Kahn, O., Grolière, F. & Jay, C. (1993). J. Am. Chem. Soc. 115, 9810-9811.]); Kahn & Martinez (1998[Kahn, O. & Martinez, C. J. (1998). Science, 279, 44-48.]); Zhu et al. (2002[Zhu, D., Xu, Y., Yu, Z., Guo, Z., Sang, H., Liu, T. & You, X. (2002). Chem. Mater. 14, 838-843.]). For the synthesis of the title compound, see: Grimmel et al. (1946[Grimmel, H. W., Guenther, A. & Morgan, J. F. (1946). J. Am. Chem. Soc. 68, 539-542.]); Klingsberg et al. (1958[Klingsberg, E. (1958). J. Org. Chem. 23, 1086-1087.]). For the synthesis and structures of related triazole ligands and complexes, see: Wang et al. (2005[Wang, Z.-X., Lan, Y., Yuan, L.-T. & Liu, C.-Y. (2005). Acta Cryst. E61, o2033-o2034.]); Liu et al. (2005[Liu, C.-Y., Wang, Z.-X., Zhou, A.-Y., Yuan, L.-T. & Lan, Y. (2005). Acta Cryst. E61, o3925-o3926.]); Zhu et al. (2000[Zhu, D.-R., Xu, Y., Zhang, Y., Wang, T.-W. & You, X.-Z. (2000). Acta Cryst. C56, 895-896.], 2004[Zhu, D., Wang, T., Zhong, S. & You, X. (2004). Chin. J. Inorg. Chem. 20, 508-512.], 2005[Zhu, D., Wang, Z., Song, J., Li, Y. & Lan, D. (2005). Chin. J. Inorg. Chem. 21, 128-132.]); Zhang et al. (2004[Zhang, S.-P., Liu, H.-J., Shao, S.-C., Zhang, Y., Shun, D.-G., Yang, S. & Zhu, H.-L. (2004). Acta Cryst. E60, o1113-o1114.], 2005[Zhang, S.-P., You, Z.-L., Shao, S.-C. & Zhu, H.-L. (2005). Acta Cryst. E61, o27-o28.]); Schneider et al. (2007[Schneider, C. J., Cashion, J. D., Moubaraki, B., Neville, S. M., Batten, S. R., Turner, D. R. & Murray, S. K. (2007). Polyhedron, 26, 1764-1772. ]); Wu et al. (2007[Wu, P., Wang, Z., Zhou, B. & Huang, L. (2007). Acta Cryst. E63, m3060.]); Matouzenko et al. (2004[Matouzenko, G. S., Bousseksou, A., Borshch, S. A., Perrin, M., Zein, S., Salmon, L., Molnar, G. & Lecocq, S. (2004). Inorg. Chem. 43, 227-236.]); Nakano et al. (2004[Nakano, K., Suemura, N., Kawata, S., Fuyuhiro, A., Yagi, T., Nasu, S., Morimoto, S. & Kaizaki, S. (2004). Dalton Trans. pp. 982-988.]); Qi et al. (2008[Qi, L., Xie, D., Wu, Y., Shen, X. & Zhu, D. (2008). Chin. J. Inorg. Chem. 24, 868-872.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N4

  • Mr = 250.30

  • Monoclinic, P 21 /n

  • a = 9.568 (1) Å

  • b = 10.519 (2) Å

  • c = 13.555 (2) Å

  • β = 96.64 (3)°

  • V = 1355.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.50 × 0.50 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.981

  • 10962 measured reflections

  • 2386 independent reflections

  • 1937 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.163

  • S = 1.30

  • 2386 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯N1i 0.93 2.56 3.377 (3) 147
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, 1,2,4-triazole derivatives have attracted much attention (Haasnoot 2000; Klingele et al., 2005; Moliner et al., 2001), mainly because of the fact that these molecules can act as flexible bridging ligands and spacers between transition metal ions. For instance, some iron(II) triazole complexes have spin-crossover properties which can be used in molecular electronics (Kröber et al., 1993), as information storage (Kahn & Martinez, 1998) and switching materials (Zhu et al., 2002). Recently, some substituted 1,2,4-triazoles (Wang et al., 2005; Liu et al., 2005; Zhu et al., 2000; Zhang et al., 2004; Zhang et al., 2005) and their metal complexes (Schneider et al., 2007; Wu et al., 2007; Zhu et al., 2004; Matouzenko et al., 2004; Zhu et al., 2005; Nakano et al., 2004; Qi et al., 2008;) have been prepared by us and other groups. We report herein the crystal structure of the title compound, in order to elucidate its molecular conformation.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The dihedral angle formed by the 1,2,4-triazole ring with the pyridyl and methylphenyl ring is 30.8 (2)° and 67.4 (2)°, respectively. The N3—C5—C6—N4 torsion angle including the N4 atom of the 1,2,4-triazole ring and the N3 atom of the pyridyl ring is 32.0 (3)°. In the crystal packing, chains of molecules running parallel to the [10 1] direction are formed through intermolecular C—H···N hydrogen bonds (Table 1).

Related literature top

For general background to the chemistry of 1,2,4-triazole derivatives, see: Haasnoot (2000); Klingele et al. (2005); Moliner et al. (2001). For the applications of iron(II)–triazole complexes in electronics, see: Kröber et al. (1993); Kahn & Martinez (1998); Zhu et al. (2002). For the synthesis of the title compound, see: Grimmel et al. (1946); Klingsberg et al. (1958). For the synthesis and structures of related triazole ligands and complexes, see: Wang et al. (2005); Liu et al. (2005); Zhu et al. (2000, 2004, 2005); Zhang et al. (2004, 2005); Schneider et al. (2007); Wu et al. (2007); Matouzenko et al. (2004); Nakano et al. (2004); Qi et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compoud was synthesized by the reaction of 3,3'-dimethylphenylphosphazoanilide and N'-acetyl- N-(2-pyridoyl)hydrazine in o-dichlorobenzene at 463–473 K according to the literature method (Grimmel, et al. 1946; Klingsberg, et al. 1958). Single crystals suitable for X-ray analysis were obtained by recrystallization from an aqeous ethanol solution at room temperature (yield 60%).

Refinement top

All H atoms were located in a difference Fourier map and allowed to ride on their parent atoms, with C—H = 0.93-0.96Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic labelling. Displacement ellipsoids are shown at the 30% probability level
3-Methyl-4-(3-methylphenyl)-5-(2-pyridyl)-4H-1,2,4-triazole top
Crystal data top
C15H14N4F(000) = 528
Mr = 250.30Dx = 1.227 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2955 reflections
a = 9.568 (1) Åθ = 2.8–27.5°
b = 10.519 (2) ŵ = 0.08 mm1
c = 13.555 (2) ÅT = 293 K
β = 96.64 (3)°Prism, colorless
V = 1355.1 (4) Å30.50 × 0.50 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2386 independent reflections
Radiation source: fine-focus sealed tube1937 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.963, Tmax = 0.981k = 1212
10962 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0801P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.30(Δ/σ)max < 0.001
2386 reflectionsΔρmax = 0.15 e Å3
173 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.032 (8)
Crystal data top
C15H14N4V = 1355.1 (4) Å3
Mr = 250.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.568 (1) ŵ = 0.08 mm1
b = 10.519 (2) ÅT = 293 K
c = 13.555 (2) Å0.50 × 0.50 × 0.25 mm
β = 96.64 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2386 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1937 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.981Rint = 0.051
10962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.30Δρmax = 0.15 e Å3
2386 reflectionsΔρmin = 0.14 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1372 (2)0.8645 (2)0.47665 (12)0.0792 (6)
N20.05623 (19)0.76334 (17)0.50563 (11)0.0725 (5)
N30.09930 (17)0.73930 (15)0.73296 (12)0.0658 (5)
N40.11155 (15)0.88829 (15)0.63546 (10)0.0561 (4)
C10.1707 (2)0.6566 (2)0.78336 (17)0.0793 (7)
H1B0.21430.68760.83630.095*
C20.1837 (2)0.5290 (2)0.76202 (19)0.0819 (7)
H2B0.23620.47610.79850.098*
C30.1172 (3)0.4818 (2)0.68567 (18)0.0845 (7)
H3B0.12370.39590.66940.101*
C40.0409 (2)0.5632 (2)0.63355 (15)0.0731 (6)
H4A0.00580.53280.58190.088*
C50.03405 (18)0.69079 (18)0.65844 (12)0.0537 (5)
C60.04303 (19)0.77911 (17)0.60035 (13)0.0559 (5)
C70.1694 (2)0.9368 (2)0.55513 (15)0.0680 (6)
C80.12918 (18)0.93671 (17)0.73586 (13)0.0527 (5)
C90.06763 (19)1.05012 (18)0.75777 (13)0.0571 (5)
H9A0.01631.09620.70740.069*
C100.0816 (2)1.09668 (18)0.85510 (14)0.0608 (5)
C110.1585 (2)1.0247 (2)0.92840 (15)0.0719 (6)
H11A0.16801.05310.99380.086*
C120.2210 (2)0.9120 (2)0.90560 (16)0.0793 (7)
H12A0.27280.86570.95570.095*
C130.2075 (2)0.86690 (19)0.80930 (14)0.0673 (6)
H13A0.25010.79110.79400.081*
C140.0136 (3)1.2195 (2)0.88081 (18)0.0886 (7)
H14A0.03461.23570.95070.133*
H14B0.08641.21340.86420.133*
H14C0.04931.28790.84400.133*
C150.2596 (3)1.0526 (2)0.55930 (19)0.0941 (8)
H15A0.28771.06890.49480.141*
H15B0.34161.03950.60610.141*
H15C0.20751.12400.57970.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0814 (13)0.1051 (15)0.0546 (11)0.0076 (11)0.0229 (9)0.0042 (9)
N20.0765 (11)0.0929 (13)0.0501 (10)0.0047 (9)0.0158 (8)0.0068 (8)
N30.0660 (10)0.0654 (10)0.0701 (11)0.0030 (8)0.0257 (8)0.0060 (8)
N40.0555 (9)0.0664 (10)0.0474 (9)0.0024 (7)0.0109 (7)0.0019 (7)
C10.0745 (14)0.0799 (16)0.0892 (16)0.0026 (11)0.0344 (12)0.0051 (11)
C20.0766 (15)0.0713 (15)0.0959 (18)0.0122 (11)0.0024 (12)0.0183 (12)
C30.1042 (19)0.0598 (13)0.0850 (17)0.0060 (13)0.0078 (14)0.0009 (12)
C40.0935 (16)0.0646 (13)0.0602 (13)0.0125 (11)0.0040 (11)0.0104 (10)
C50.0512 (10)0.0624 (11)0.0466 (10)0.0045 (8)0.0022 (7)0.0059 (8)
C60.0544 (10)0.0672 (12)0.0466 (10)0.0076 (9)0.0084 (8)0.0056 (8)
C70.0651 (12)0.0856 (14)0.0556 (12)0.0039 (10)0.0173 (9)0.0108 (10)
C80.0508 (10)0.0598 (11)0.0477 (10)0.0027 (8)0.0060 (8)0.0003 (8)
C90.0549 (11)0.0626 (11)0.0541 (11)0.0017 (9)0.0075 (8)0.0057 (8)
C100.0599 (11)0.0611 (12)0.0616 (12)0.0053 (9)0.0067 (9)0.0054 (9)
C110.0791 (14)0.0800 (14)0.0534 (12)0.0072 (11)0.0057 (10)0.0088 (10)
C120.0842 (15)0.0839 (15)0.0633 (14)0.0113 (12)0.0186 (11)0.0015 (11)
C130.0692 (13)0.0658 (12)0.0637 (13)0.0106 (10)0.0053 (10)0.0023 (9)
C140.1013 (18)0.0802 (16)0.0844 (16)0.0122 (13)0.0109 (13)0.0157 (12)
C150.0968 (18)0.0993 (18)0.0908 (17)0.0152 (14)0.0309 (14)0.0164 (13)
Geometric parameters (Å, º) top
N1—C71.315 (3)C8—C91.378 (3)
N1—N21.399 (3)C8—C131.385 (3)
N2—C61.315 (3)C9—C101.399 (3)
N3—C11.341 (3)C9—H9A0.9300
N3—C51.348 (2)C10—C111.390 (3)
N4—C71.375 (3)C10—C141.506 (3)
N4—C61.380 (3)C11—C121.379 (3)
N4—C81.445 (3)C11—H11A0.9300
C1—C21.376 (4)C12—C131.381 (3)
C1—H1B0.9300C12—H12A0.9300
C2—C31.369 (3)C13—H13A0.9300
C2—H2B0.9300C14—H14A0.9600
C3—C41.373 (3)C14—H14B0.9600
C3—H3B0.9300C14—H14C0.9600
C4—C51.384 (3)C15—H15A0.9600
C4—H4A0.9300C15—H15B0.9600
C5—C61.470 (3)C15—H15C0.9600
C7—C151.490 (4)
C7—N1—N2107.35 (17)C13—C8—N4118.98 (18)
C6—N2—N1107.28 (17)C8—C9—C10120.65 (17)
C1—N3—C5116.33 (19)C8—C9—H9A119.7
C7—N4—C6104.75 (17)C10—C9—H9A119.7
C7—N4—C8126.95 (19)C11—C10—C9117.9 (2)
C6—N4—C8128.13 (15)C11—C10—C14120.6 (2)
N3—C1—C2124.4 (2)C9—C10—C14121.47 (19)
N3—C1—H1B117.8C12—C11—C10121.0 (2)
C2—C1—H1B117.8C12—C11—H11A119.5
C3—C2—C1118.3 (2)C10—C11—H11A119.5
C3—C2—H2B120.9C11—C12—C13120.76 (19)
C1—C2—H2B120.9C11—C12—H12A119.6
C2—C3—C4119.0 (2)C13—C12—H12A119.6
C2—C3—H3B120.5C12—C13—C8118.8 (2)
C4—C3—H3B120.5C12—C13—H13A120.6
C3—C4—C5119.5 (2)C8—C13—H13A120.6
C3—C4—H4A120.2C10—C14—H14A109.5
C5—C4—H4A120.2C10—C14—H14B109.5
N3—C5—C4122.48 (18)H14A—C14—H14B109.5
N3—C5—C6117.83 (18)C10—C14—H14C109.5
C4—C5—C6119.66 (18)H14A—C14—H14C109.5
N2—C6—N4110.26 (17)H14B—C14—H14C109.5
N2—C6—C5123.65 (18)C7—C15—H15A109.5
N4—C6—C5126.10 (17)C7—C15—H15B109.5
N1—C7—N4110.4 (2)H15A—C15—H15B109.5
N1—C7—C15125.7 (2)C7—C15—H15C109.5
N4—C7—C15123.9 (2)H15A—C15—H15C109.5
C9—C8—C13120.88 (18)H15B—C15—H15C109.5
C9—C8—N4120.14 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···N1i0.932.563.377 (3)147
Symmetry code: (i) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14N4
Mr250.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.568 (1), 10.519 (2), 13.555 (2)
β (°) 96.64 (3)
V3)1355.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.50 × 0.25
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.963, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
10962, 2386, 1937
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.163, 1.30
No. of reflections2386
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···N1i0.932.563.377 (3)147
Symmetry code: (i) x1/2, y+3/2, z+1/2.
 

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 20771059) and the Natural Science Foundation of Jiangsu Province (BK2008371).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrimmel, H. W., Guenther, A. & Morgan, J. F. (1946). J. Am. Chem. Soc. 68, 539–542.  CrossRef CAS Web of Science Google Scholar
First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185.  Web of Science CrossRef CAS Google Scholar
First citationKahn, O. & Martinez, C. J. (1998). Science, 279, 44–48.  Web of Science CrossRef CAS Google Scholar
First citationKlingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2005). Eur. J. Inorg. Chem. pp. 573–589.  Google Scholar
First citationKlingsberg, E. (1958). J. Org. Chem. 23, 1086–1087.  CrossRef CAS Web of Science Google Scholar
First citationKröber, J., Codjovi, E., Kahn, O., Grolière, F. & Jay, C. (1993). J. Am. Chem. Soc. 115, 9810–9811.  CAS Google Scholar
First citationLiu, C.-Y., Wang, Z.-X., Zhou, A.-Y., Yuan, L.-T. & Lan, Y. (2005). Acta Cryst. E61, o3925–o3926.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatouzenko, G. S., Bousseksou, A., Borshch, S. A., Perrin, M., Zein, S., Salmon, L., Molnar, G. & Lecocq, S. (2004). Inorg. Chem. 43, 227–236.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoliner, N., Gaspar, A. B., Muñoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem. 40, 3986–3991.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNakano, K., Suemura, N., Kawata, S., Fuyuhiro, A., Yagi, T., Nasu, S., Morimoto, S. & Kaizaki, S. (2004). Dalton Trans. pp. 982–988.  Web of Science CSD CrossRef Google Scholar
First citationQi, L., Xie, D., Wu, Y., Shen, X. & Zhu, D. (2008). Chin. J. Inorg. Chem. 24, 868–872.  CAS Google Scholar
First citationSchneider, C. J., Cashion, J. D., Moubaraki, B., Neville, S. M., Batten, S. R., Turner, D. R. & Murray, S. K. (2007). Polyhedron, 26, 1764–1772.   Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-X., Lan, Y., Yuan, L.-T. & Liu, C.-Y. (2005). Acta Cryst. E61, o2033–o2034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, P., Wang, Z., Zhou, B. & Huang, L. (2007). Acta Cryst. E63, m3060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-P., Liu, H.-J., Shao, S.-C., Zhang, Y., Shun, D.-G., Yang, S. & Zhu, H.-L. (2004). Acta Cryst. E60, o1113–o1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-P., You, Z.-L., Shao, S.-C. & Zhu, H.-L. (2005). Acta Cryst. E61, o27–o28.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, D., Wang, Z., Song, J., Li, Y. & Lan, D. (2005). Chin. J. Inorg. Chem. 21, 128–132.  CAS Google Scholar
First citationZhu, D., Wang, T., Zhong, S. & You, X. (2004). Chin. J. Inorg. Chem. 20, 508–512.  Google Scholar
First citationZhu, D., Xu, Y., Yu, Z., Guo, Z., Sang, H., Liu, T. & You, X. (2002). Chem. Mater. 14, 838–843.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, D.-R., Xu, Y., Zhang, Y., Wang, T.-W. & You, X.-Z. (2000). Acta Cryst. C56, 895–896.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1177-o1178
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds