organic compounds
3-Methyl-4-(3-methylphenyl)-5-(2-pyridyl)-4H-1,2,4-triazole
aCollege of Chemistry and Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhudr@njut.edu.cn
In the molecule of the title compound, C15H14N4, the triazole ring is oriented at dihedral angles of 30.8 (2) and 67.4 (2)° with respect to the pyridine and benzene rings, respectively. The is stabilized by C—H⋯N hydrogen-bonding interactions, forming chains of molecules along [01].
Related literature
For general background to the chemistry of 1,2,4-triazole derivatives, see: Haasnoot (2000); Klingele et al. (2005); Moliner et al. (2001). For the applications of iron(II)–triazole complexes in electronics, see: Kröber et al. (1993); Kahn & Martinez (1998); Zhu et al. (2002). For the synthesis of the title compound, see: Grimmel et al. (1946); Klingsberg et al. (1958). For the synthesis and structures of related triazole ligands and complexes, see: Wang et al. (2005); Liu et al. (2005); Zhu et al. (2000, 2004, 2005); Zhang et al. (2004, 2005); Schneider et al. (2007); Wu et al. (2007); Matouzenko et al. (2004); Nakano et al. (2004); Qi et al. (2008). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809015712/rz2308sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809015712/rz2308Isup2.hkl
The title compoud was synthesized by the reaction of 3,3'-dimethylphenylphosphazoanilide and N'-acetyl- N-(2-pyridoyl)hydrazine in o-dichlorobenzene at 463–473 K according to the literature method (Grimmel, et al. 1946; Klingsberg, et al. 1958). Single crystals suitable for X-ray analysis were obtained by recrystallization from an aqeous ethanol solution at room temperature (yield 60%).
All H atoms were located in a difference Fourier map and allowed to ride on their parent atoms, with C—H = 0.93-0.96Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with the atomic labelling. Displacement ellipsoids are shown at the 30% probability level |
C15H14N4 | F(000) = 528 |
Mr = 250.30 | Dx = 1.227 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2955 reflections |
a = 9.568 (1) Å | θ = 2.8–27.5° |
b = 10.519 (2) Å | µ = 0.08 mm−1 |
c = 13.555 (2) Å | T = 293 K |
β = 96.64 (3)° | Prism, colorless |
V = 1355.1 (4) Å3 | 0.50 × 0.50 × 0.25 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2386 independent reflections |
Radiation source: fine-focus sealed tube | 1937 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
ω scans | θmax = 25.0°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −11→11 |
Tmin = 0.963, Tmax = 0.981 | k = −12→12 |
10962 measured reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.057 | H-atom parameters constrained |
wR(F2) = 0.163 | w = 1/[σ2(Fo2) + (0.0801P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.30 | (Δ/σ)max < 0.001 |
2386 reflections | Δρmax = 0.15 e Å−3 |
173 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.032 (8) |
C15H14N4 | V = 1355.1 (4) Å3 |
Mr = 250.30 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.568 (1) Å | µ = 0.08 mm−1 |
b = 10.519 (2) Å | T = 293 K |
c = 13.555 (2) Å | 0.50 × 0.50 × 0.25 mm |
β = 96.64 (3)° |
Bruker APEXII CCD diffractometer | 2386 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1937 reflections with I > 2σ(I) |
Tmin = 0.963, Tmax = 0.981 | Rint = 0.051 |
10962 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.163 | H-atom parameters constrained |
S = 1.30 | Δρmax = 0.15 e Å−3 |
2386 reflections | Δρmin = −0.14 e Å−3 |
173 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.1372 (2) | 0.8645 (2) | 0.47665 (12) | 0.0792 (6) | |
N2 | 0.05623 (19) | 0.76334 (17) | 0.50563 (11) | 0.0725 (5) | |
N3 | −0.09930 (17) | 0.73930 (15) | 0.73296 (12) | 0.0658 (5) | |
N4 | 0.11155 (15) | 0.88829 (15) | 0.63546 (10) | 0.0561 (4) | |
C1 | −0.1707 (2) | 0.6566 (2) | 0.78336 (17) | 0.0793 (7) | |
H1B | −0.2143 | 0.6876 | 0.8363 | 0.095* | |
C2 | −0.1837 (2) | 0.5290 (2) | 0.76202 (19) | 0.0819 (7) | |
H2B | −0.2362 | 0.4761 | 0.7985 | 0.098* | |
C3 | −0.1172 (3) | 0.4818 (2) | 0.68567 (18) | 0.0845 (7) | |
H3B | −0.1237 | 0.3959 | 0.6694 | 0.101* | |
C4 | −0.0409 (2) | 0.5632 (2) | 0.63355 (15) | 0.0731 (6) | |
H4A | 0.0058 | 0.5328 | 0.5819 | 0.088* | |
C5 | −0.03405 (18) | 0.69079 (18) | 0.65844 (12) | 0.0537 (5) | |
C6 | 0.04303 (19) | 0.77911 (17) | 0.60035 (13) | 0.0559 (5) | |
C7 | 0.1694 (2) | 0.9368 (2) | 0.55513 (15) | 0.0680 (6) | |
C8 | 0.12918 (18) | 0.93671 (17) | 0.73586 (13) | 0.0527 (5) | |
C9 | 0.06763 (19) | 1.05012 (18) | 0.75777 (13) | 0.0571 (5) | |
H9A | 0.0163 | 1.0962 | 0.7074 | 0.069* | |
C10 | 0.0816 (2) | 1.09668 (18) | 0.85510 (14) | 0.0608 (5) | |
C11 | 0.1585 (2) | 1.0247 (2) | 0.92840 (15) | 0.0719 (6) | |
H11A | 0.1680 | 1.0531 | 0.9938 | 0.086* | |
C12 | 0.2210 (2) | 0.9120 (2) | 0.90560 (16) | 0.0793 (7) | |
H12A | 0.2728 | 0.8657 | 0.9557 | 0.095* | |
C13 | 0.2075 (2) | 0.86690 (19) | 0.80930 (14) | 0.0673 (6) | |
H13A | 0.2501 | 0.7911 | 0.7940 | 0.081* | |
C14 | 0.0136 (3) | 1.2195 (2) | 0.88081 (18) | 0.0886 (7) | |
H14A | 0.0346 | 1.2357 | 0.9507 | 0.133* | |
H14B | −0.0864 | 1.2134 | 0.8642 | 0.133* | |
H14C | 0.0493 | 1.2879 | 0.8440 | 0.133* | |
C15 | 0.2596 (3) | 1.0526 (2) | 0.55930 (19) | 0.0941 (8) | |
H15A | 0.2877 | 1.0689 | 0.4948 | 0.141* | |
H15B | 0.3416 | 1.0395 | 0.6061 | 0.141* | |
H15C | 0.2075 | 1.1240 | 0.5797 | 0.141* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0814 (13) | 0.1051 (15) | 0.0546 (11) | 0.0076 (11) | 0.0229 (9) | 0.0042 (9) |
N2 | 0.0765 (11) | 0.0929 (13) | 0.0501 (10) | 0.0047 (9) | 0.0158 (8) | −0.0068 (8) |
N3 | 0.0660 (10) | 0.0654 (10) | 0.0701 (11) | −0.0030 (8) | 0.0257 (8) | −0.0060 (8) |
N4 | 0.0555 (9) | 0.0664 (10) | 0.0474 (9) | 0.0024 (7) | 0.0109 (7) | 0.0019 (7) |
C1 | 0.0745 (14) | 0.0799 (16) | 0.0892 (16) | −0.0026 (11) | 0.0344 (12) | 0.0051 (11) |
C2 | 0.0766 (15) | 0.0713 (15) | 0.0959 (18) | −0.0122 (11) | 0.0024 (12) | 0.0183 (12) |
C3 | 0.1042 (19) | 0.0598 (13) | 0.0850 (17) | −0.0060 (13) | −0.0078 (14) | −0.0009 (12) |
C4 | 0.0935 (16) | 0.0646 (13) | 0.0602 (13) | 0.0125 (11) | 0.0040 (11) | −0.0104 (10) |
C5 | 0.0512 (10) | 0.0624 (11) | 0.0466 (10) | 0.0045 (8) | 0.0022 (7) | −0.0059 (8) |
C6 | 0.0544 (10) | 0.0672 (12) | 0.0466 (10) | 0.0076 (9) | 0.0084 (8) | −0.0056 (8) |
C7 | 0.0651 (12) | 0.0856 (14) | 0.0556 (12) | 0.0039 (10) | 0.0173 (9) | 0.0108 (10) |
C8 | 0.0508 (10) | 0.0598 (11) | 0.0477 (10) | −0.0027 (8) | 0.0060 (8) | −0.0003 (8) |
C9 | 0.0549 (11) | 0.0626 (11) | 0.0541 (11) | 0.0017 (9) | 0.0075 (8) | 0.0057 (8) |
C10 | 0.0599 (11) | 0.0611 (12) | 0.0616 (12) | −0.0053 (9) | 0.0067 (9) | −0.0054 (9) |
C11 | 0.0791 (14) | 0.0800 (14) | 0.0534 (12) | −0.0072 (11) | −0.0057 (10) | −0.0088 (10) |
C12 | 0.0842 (15) | 0.0839 (15) | 0.0633 (14) | 0.0113 (12) | −0.0186 (11) | −0.0015 (11) |
C13 | 0.0692 (13) | 0.0658 (12) | 0.0637 (13) | 0.0106 (10) | −0.0053 (10) | −0.0023 (9) |
C14 | 0.1013 (18) | 0.0802 (16) | 0.0844 (16) | 0.0122 (13) | 0.0109 (13) | −0.0157 (12) |
C15 | 0.0968 (18) | 0.0993 (18) | 0.0908 (17) | −0.0152 (14) | 0.0309 (14) | 0.0164 (13) |
N1—C7 | 1.315 (3) | C8—C9 | 1.378 (3) |
N1—N2 | 1.399 (3) | C8—C13 | 1.385 (3) |
N2—C6 | 1.315 (3) | C9—C10 | 1.399 (3) |
N3—C1 | 1.341 (3) | C9—H9A | 0.9300 |
N3—C5 | 1.348 (2) | C10—C11 | 1.390 (3) |
N4—C7 | 1.375 (3) | C10—C14 | 1.506 (3) |
N4—C6 | 1.380 (3) | C11—C12 | 1.379 (3) |
N4—C8 | 1.445 (3) | C11—H11A | 0.9300 |
C1—C2 | 1.376 (4) | C12—C13 | 1.381 (3) |
C1—H1B | 0.9300 | C12—H12A | 0.9300 |
C2—C3 | 1.369 (3) | C13—H13A | 0.9300 |
C2—H2B | 0.9300 | C14—H14A | 0.9600 |
C3—C4 | 1.373 (3) | C14—H14B | 0.9600 |
C3—H3B | 0.9300 | C14—H14C | 0.9600 |
C4—C5 | 1.384 (3) | C15—H15A | 0.9600 |
C4—H4A | 0.9300 | C15—H15B | 0.9600 |
C5—C6 | 1.470 (3) | C15—H15C | 0.9600 |
C7—C15 | 1.490 (4) | ||
C7—N1—N2 | 107.35 (17) | C13—C8—N4 | 118.98 (18) |
C6—N2—N1 | 107.28 (17) | C8—C9—C10 | 120.65 (17) |
C1—N3—C5 | 116.33 (19) | C8—C9—H9A | 119.7 |
C7—N4—C6 | 104.75 (17) | C10—C9—H9A | 119.7 |
C7—N4—C8 | 126.95 (19) | C11—C10—C9 | 117.9 (2) |
C6—N4—C8 | 128.13 (15) | C11—C10—C14 | 120.6 (2) |
N3—C1—C2 | 124.4 (2) | C9—C10—C14 | 121.47 (19) |
N3—C1—H1B | 117.8 | C12—C11—C10 | 121.0 (2) |
C2—C1—H1B | 117.8 | C12—C11—H11A | 119.5 |
C3—C2—C1 | 118.3 (2) | C10—C11—H11A | 119.5 |
C3—C2—H2B | 120.9 | C11—C12—C13 | 120.76 (19) |
C1—C2—H2B | 120.9 | C11—C12—H12A | 119.6 |
C2—C3—C4 | 119.0 (2) | C13—C12—H12A | 119.6 |
C2—C3—H3B | 120.5 | C12—C13—C8 | 118.8 (2) |
C4—C3—H3B | 120.5 | C12—C13—H13A | 120.6 |
C3—C4—C5 | 119.5 (2) | C8—C13—H13A | 120.6 |
C3—C4—H4A | 120.2 | C10—C14—H14A | 109.5 |
C5—C4—H4A | 120.2 | C10—C14—H14B | 109.5 |
N3—C5—C4 | 122.48 (18) | H14A—C14—H14B | 109.5 |
N3—C5—C6 | 117.83 (18) | C10—C14—H14C | 109.5 |
C4—C5—C6 | 119.66 (18) | H14A—C14—H14C | 109.5 |
N2—C6—N4 | 110.26 (17) | H14B—C14—H14C | 109.5 |
N2—C6—C5 | 123.65 (18) | C7—C15—H15A | 109.5 |
N4—C6—C5 | 126.10 (17) | C7—C15—H15B | 109.5 |
N1—C7—N4 | 110.4 (2) | H15A—C15—H15B | 109.5 |
N1—C7—C15 | 125.7 (2) | C7—C15—H15C | 109.5 |
N4—C7—C15 | 123.9 (2) | H15A—C15—H15C | 109.5 |
C9—C8—C13 | 120.88 (18) | H15B—C15—H15C | 109.5 |
C9—C8—N4 | 120.14 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···N1i | 0.93 | 2.56 | 3.377 (3) | 147 |
Symmetry code: (i) x−1/2, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C15H14N4 |
Mr | 250.30 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 9.568 (1), 10.519 (2), 13.555 (2) |
β (°) | 96.64 (3) |
V (Å3) | 1355.1 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.50 × 0.50 × 0.25 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.963, 0.981 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10962, 2386, 1937 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.163, 1.30 |
No. of reflections | 2386 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.14 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···N1i | 0.93 | 2.56 | 3.377 (3) | 147 |
Symmetry code: (i) x−1/2, −y+3/2, z+1/2. |
Acknowledgements
This work was funded by the National Natural Science Foundation of China (No. 20771059) and the Natural Science Foundation of Jiangsu Province (BK2008371).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Grimmel, H. W., Guenther, A. & Morgan, J. F. (1946). J. Am. Chem. Soc. 68, 539–542. CrossRef CAS Web of Science Google Scholar
Haasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185. Web of Science CrossRef CAS Google Scholar
Kahn, O. & Martinez, C. J. (1998). Science, 279, 44–48. Web of Science CrossRef CAS Google Scholar
Klingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2005). Eur. J. Inorg. Chem. pp. 573–589. Google Scholar
Klingsberg, E. (1958). J. Org. Chem. 23, 1086–1087. CrossRef CAS Web of Science Google Scholar
Kröber, J., Codjovi, E., Kahn, O., Grolière, F. & Jay, C. (1993). J. Am. Chem. Soc. 115, 9810–9811. CAS Google Scholar
Liu, C.-Y., Wang, Z.-X., Zhou, A.-Y., Yuan, L.-T. & Lan, Y. (2005). Acta Cryst. E61, o3925–o3926. Web of Science CSD CrossRef IUCr Journals Google Scholar
Matouzenko, G. S., Bousseksou, A., Borshch, S. A., Perrin, M., Zein, S., Salmon, L., Molnar, G. & Lecocq, S. (2004). Inorg. Chem. 43, 227–236. Web of Science CSD CrossRef PubMed CAS Google Scholar
Moliner, N., Gaspar, A. B., Muñoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem. 40, 3986–3991. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nakano, K., Suemura, N., Kawata, S., Fuyuhiro, A., Yagi, T., Nasu, S., Morimoto, S. & Kaizaki, S. (2004). Dalton Trans. pp. 982–988. Web of Science CSD CrossRef Google Scholar
Qi, L., Xie, D., Wu, Y., Shen, X. & Zhu, D. (2008). Chin. J. Inorg. Chem. 24, 868–872. CAS Google Scholar
Schneider, C. J., Cashion, J. D., Moubaraki, B., Neville, S. M., Batten, S. R., Turner, D. R. & Murray, S. K. (2007). Polyhedron, 26, 1764–1772. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z.-X., Lan, Y., Yuan, L.-T. & Liu, C.-Y. (2005). Acta Cryst. E61, o2033–o2034. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wu, P., Wang, Z., Zhou, B. & Huang, L. (2007). Acta Cryst. E63, m3060. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, S.-P., Liu, H.-J., Shao, S.-C., Zhang, Y., Shun, D.-G., Yang, S. & Zhu, H.-L. (2004). Acta Cryst. E60, o1113–o1114. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, S.-P., You, Z.-L., Shao, S.-C. & Zhu, H.-L. (2005). Acta Cryst. E61, o27–o28. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhu, D., Wang, Z., Song, J., Li, Y. & Lan, D. (2005). Chin. J. Inorg. Chem. 21, 128–132. CAS Google Scholar
Zhu, D., Wang, T., Zhong, S. & You, X. (2004). Chin. J. Inorg. Chem. 20, 508–512. Google Scholar
Zhu, D., Xu, Y., Yu, Z., Guo, Z., Sang, H., Liu, T. & You, X. (2002). Chem. Mater. 14, 838–843. Web of Science CSD CrossRef CAS Google Scholar
Zhu, D.-R., Xu, Y., Zhang, Y., Wang, T.-W. & You, X.-Z. (2000). Acta Cryst. C56, 895–896. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, 1,2,4-triazole derivatives have attracted much attention (Haasnoot 2000; Klingele et al., 2005; Moliner et al., 2001), mainly because of the fact that these molecules can act as flexible bridging ligands and spacers between transition metal ions. For instance, some iron(II) triazole complexes have spin-crossover properties which can be used in molecular electronics (Kröber et al., 1993), as information storage (Kahn & Martinez, 1998) and switching materials (Zhu et al., 2002). Recently, some substituted 1,2,4-triazoles (Wang et al., 2005; Liu et al., 2005; Zhu et al., 2000; Zhang et al., 2004; Zhang et al., 2005) and their metal complexes (Schneider et al., 2007; Wu et al., 2007; Zhu et al., 2004; Matouzenko et al., 2004; Zhu et al., 2005; Nakano et al., 2004; Qi et al., 2008;) have been prepared by us and other groups. We report herein the crystal structure of the title compound, in order to elucidate its molecular conformation.
In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The dihedral angle formed by the 1,2,4-triazole ring with the pyridyl and methylphenyl ring is 30.8 (2)° and 67.4 (2)°, respectively. The N3—C5—C6—N4 torsion angle including the N4 atom of the 1,2,4-triazole ring and the N3 atom of the pyridyl ring is 32.0 (3)°. In the crystal packing, chains of molecules running parallel to the [10 1] direction are formed through intermolecular C—H···N hydrogen bonds (Table 1).