metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Diazo­niabi­cyclo­[2.2.2]octane tetra­chloridozincate monohydrate

aSchool of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: wangfmzj@yahoo.com.cn

(Received 8 April 2009; accepted 21 April 2009; online 25 April 2009)

In the title compound, (C6H14N2)[ZnCl4]·H2O, the crystal packing is governed by an extensive three-dimensional network of N—H⋯Cl, N—H⋯O and O—H⋯Cl hydrogen bonds. The zinc(II) metal centre has a slightly distorted tetra­hedral coordination geometry.

Related literature

For the applications of ferroelectric materials, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Dawber et al. (2005[Dawber, M., Rabe, K. M. & Scott, J. F. (2005). Rev. Mod. Phys. 77, 1083-1130.]); Haertling (1999[Haertling, G. H. (1999). J. Am. Ceram. Soc. 82, 797-818.]); Scott (2007[Scott, J. F. (2007). Science, 315, 954-959.]). For the properties and structure of a related diaza­bicyclo­[2.2.2]octane (dabco) salt, see: Szafrański et al. (2002[Szafrański, M., Katrusiak, A. & McIntyre, G. J. (2002). Phys. Rev. Lett. 89, 215507-1-215507-4.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H14N2)[ZnCl4]·H2O

  • Mr = 339.40

  • Orthorhombic, P 21 21 21

  • a = 8.4483 (17) Å

  • b = 11.705 (2) Å

  • c = 12.976 (3) Å

  • V = 1283.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.72 mm−1

  • T = 291 K

  • 0.30 × 0.28 × 0.26 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.462, Tmax = 0.495

  • 11890 measured reflections

  • 2510 independent reflections

  • 2166 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.121

  • S = 1.03

  • 2510 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1050 Friedel pairs

  • Flack parameter: 0.07 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯O1 0.91 1.96 2.809 (8) 154
N1—H1C⋯Cl1i 0.91 2.64 3.338 (5) 134
N1—H1C⋯Cl3i 0.91 2.80 3.383 (5) 123
O1—H1D⋯Cl3ii 0.85 2.82 3.410 (7) 129
O1—H1E⋯Cl1iii 0.85 2.75 3.454 (7) 141
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ferroelectric materials continue to attract much attention due to their potential applications in memory devices (Fu et al., 2007; Dawber et al., 2005; Haertling, 1999; Scott, 2007). Among these materials, diazabicyclo[2.2.2]octane (dabco) salts with inorganic tetrahedral anions having potassium dihydrophosphate-type (KDP-type) structure have been found to exhibit exceptional dielectric properties (Szafrański et al., 2002). As a contribution to this field, the crystal structure of the title compound is reported here.

The asymmetric unit of the title compound (Fig. 1), contains a doubly protonated C6H14N22+ dication, a ZnCl42- dianion and a water molecule. The zinc(II) metal displays a slightly distorted tetrahedral coordination geometry. In the cation, the protonated N1 atom interacts via a bifurcated hydrogen bond with two Cl atoms of a neighbouring anion, while the N2 atom is hydrogen-bonded to a water molecule (Table 1). The water molecule acts as double hydrogen-bond donor to Cl atoms, resulting in an extensive three-dimensional H-bonding network (Fig. 2).

Related literature top

For the applications of ferroelectric materials, see: Fu et al. (2007); Dawber et al. (2005); Haertling (1999); Scott (2007). For the properties and structure of a related diazabicyclo[2.2.2]octane (dabco) salt, see: Szafrański et al. (2002).

Experimental top

Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation at room temperature of a HCl solution (0.5 M) containing diazabicyclo[2.2.2]octane (112 mg) and ZnCl2.2H2O (172 mg) in an approximate 1:1 molar ratio.

Refinement top

All H atoms were placed in calculated positions, with O—H = 0.85 Å, N—H = 0.91 Å, C—H = 0.97 Å, and refined using a riding model approximation, with Uiso = 1.2Ueq(C, N) or 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing digram of the title compound viewed along the b axis. H-bonding interactions are shown as dashed lines.
1,4-Diazoniabicyclo[2.2.2]octane tetrachloridozincate monohydrate top
Crystal data top
(C6H14N2)[ZnCl4]·H2OF(000) = 688
Mr = 339.40Dx = 1.757 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 11517 reflections
a = 8.4483 (17) Åθ = 3.1–27.5°
b = 11.705 (2) ŵ = 2.72 mm1
c = 12.976 (3) ÅT = 291 K
V = 1283.2 (5) Å3Block, colourless
Z = 40.30 × 0.28 × 0.26 mm
Data collection top
Rigaku Mercury2
diffractometer
2510 independent reflections
Radiation source: fine-focus sealed tube2166 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.462, Tmax = 0.495l = 1616
11890 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0665P)2 + 1.4482P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2510 reflectionsΔρmax = 0.89 e Å3
127 parametersΔρmin = 0.48 e Å3
0 restraintsAbsolute structure: Flack (1983), 1050 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (3)
Crystal data top
(C6H14N2)[ZnCl4]·H2OV = 1283.2 (5) Å3
Mr = 339.40Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.4483 (17) ŵ = 2.72 mm1
b = 11.705 (2) ÅT = 291 K
c = 12.976 (3) Å0.30 × 0.28 × 0.26 mm
Data collection top
Rigaku Mercury2
diffractometer
2510 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2166 reflections with I > 2σ(I)
Tmin = 0.462, Tmax = 0.495Rint = 0.053
11890 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.121Δρmax = 0.89 e Å3
S = 1.03Δρmin = 0.48 e Å3
2510 reflectionsAbsolute structure: Flack (1983), 1050 Friedel pairs
127 parametersAbsolute structure parameter: 0.07 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2122 (7)0.3775 (6)0.3733 (5)0.0434 (17)
H1A0.16100.31890.41430.052*
H1B0.23470.44220.41770.052*
C20.3645 (8)0.3316 (7)0.3286 (5)0.0489 (18)
H2A0.36760.24900.33470.059*
H2B0.45470.36320.36500.059*
C30.1700 (9)0.5158 (6)0.2364 (5)0.0415 (16)
H3A0.16550.58090.28260.050*
H3B0.10640.53300.17610.050*
C40.3402 (8)0.4934 (6)0.2046 (6)0.0474 (18)
H4A0.35680.51670.13360.057*
H4B0.41230.53610.24820.057*
C50.0884 (7)0.3177 (5)0.2132 (5)0.0371 (15)
H5A0.00550.33560.16410.045*
H5B0.06020.24770.24870.045*
C60.2468 (8)0.3030 (5)0.1574 (4)0.0405 (14)
H6A0.27450.22270.15360.049*
H6B0.23940.33280.08780.049*
Cl10.20057 (18)0.18534 (13)1.07634 (13)0.0420 (4)
Cl20.2573 (2)0.03346 (13)0.81713 (10)0.0444 (4)
Cl30.03672 (18)0.09791 (13)1.03379 (13)0.0371 (4)
Cl40.47943 (19)0.06684 (14)1.03500 (14)0.0414 (4)
N10.1070 (6)0.4132 (4)0.2888 (4)0.0308 (11)
H1C0.01030.43030.31560.037*
N20.3689 (6)0.3664 (5)0.2161 (5)0.0444 (15)
H2C0.46590.34930.18990.053*
O10.6587 (8)0.2561 (5)0.1794 (5)0.086 (2)
H1D0.68490.26590.11670.128*
H1E0.72930.28450.21840.128*
Zn10.24738 (9)0.01799 (5)0.99321 (4)0.0333 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (4)0.054 (4)0.033 (3)0.007 (3)0.009 (3)0.004 (3)
C20.042 (4)0.052 (4)0.052 (4)0.006 (3)0.020 (3)0.008 (4)
C30.044 (4)0.031 (3)0.050 (4)0.005 (3)0.005 (3)0.003 (3)
C40.036 (4)0.054 (4)0.053 (4)0.011 (3)0.012 (3)0.010 (4)
C50.038 (3)0.037 (4)0.037 (3)0.003 (3)0.004 (3)0.003 (3)
C60.034 (3)0.043 (3)0.045 (3)0.007 (3)0.007 (3)0.018 (3)
Cl10.0443 (9)0.0383 (8)0.0435 (8)0.0001 (7)0.0069 (6)0.0048 (7)
Cl20.0477 (9)0.0536 (9)0.0318 (7)0.0048 (9)0.0041 (8)0.0058 (6)
Cl30.0322 (8)0.0407 (8)0.0384 (9)0.0023 (6)0.0004 (7)0.0041 (7)
Cl40.0368 (8)0.0459 (8)0.0414 (9)0.0079 (7)0.0055 (7)0.0029 (8)
N10.022 (2)0.042 (3)0.029 (3)0.004 (2)0.0009 (19)0.002 (2)
N20.022 (3)0.051 (3)0.061 (4)0.003 (2)0.004 (2)0.018 (3)
O10.067 (4)0.083 (5)0.106 (5)0.004 (4)0.014 (4)0.001 (4)
Zn10.0317 (3)0.0375 (3)0.0307 (3)0.0011 (3)0.0009 (3)0.0002 (3)
Geometric parameters (Å, º) top
C1—N11.472 (7)C5—C61.531 (9)
C1—C21.510 (9)C5—H5A0.9700
C1—H1A0.9700C5—H5B0.9700
C1—H1B0.9700C6—N21.482 (8)
C2—N21.515 (9)C6—H6A0.9700
C2—H2A0.9700C6—H6B0.9700
C2—H2B0.9700Cl1—Zn12.2710 (17)
C3—N11.479 (8)Cl2—Zn12.2936 (15)
C3—C41.519 (9)Cl3—Zn12.2989 (17)
C3—H3A0.9700Cl4—Zn12.2635 (17)
C3—H3B0.9700N1—H1C0.9100
C4—N21.514 (9)N2—H2C0.9100
C4—H4A0.9700O1—H1D0.8499
C4—H4B0.9700O1—H1E0.8500
C5—N11.496 (8)
N1—C1—C2109.2 (5)C6—C5—H5B110.2
N1—C1—H1A109.8H5A—C5—H5B108.5
C2—C1—H1A109.8N2—C6—C5108.0 (5)
N1—C1—H1B109.8N2—C6—H6A110.1
C2—C1—H1B109.8C5—C6—H6A110.1
H1A—C1—H1B108.3N2—C6—H6B110.1
C1—C2—N2107.2 (5)C5—C6—H6B110.1
C1—C2—H2A110.3H6A—C6—H6B108.4
N2—C2—H2A110.3C1—N1—C3110.8 (5)
C1—C2—H2B110.3C1—N1—C5109.9 (5)
N2—C2—H2B110.3C3—N1—C5110.1 (5)
H2A—C2—H2B108.5C1—N1—H1C108.7
N1—C3—C4109.0 (5)C3—N1—H1C108.7
N1—C3—H3A109.9C5—N1—H1C108.7
C4—C3—H3A109.9C6—N2—C4109.2 (5)
N1—C3—H3B109.9C6—N2—C2110.1 (5)
C4—C3—H3B109.9C4—N2—C2110.8 (5)
H3A—C3—H3B108.3C6—N2—H2C108.9
N2—C4—C3107.1 (5)C4—N2—H2C108.9
N2—C4—H4A110.3C2—N2—H2C108.9
C3—C4—H4A110.3H1D—O1—H1E109.5
N2—C4—H4B110.3Cl4—Zn1—Cl1114.55 (7)
C3—C4—H4B110.3Cl4—Zn1—Cl2103.99 (7)
H4A—C4—H4B108.5Cl1—Zn1—Cl2114.29 (6)
N1—C5—C6107.6 (5)Cl4—Zn1—Cl3110.90 (6)
N1—C5—H5A110.2Cl1—Zn1—Cl3105.40 (6)
C6—C5—H5A110.2Cl2—Zn1—Cl3107.63 (7)
N1—C5—H5B110.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O10.911.962.809 (8)154
N1—H1C···Cl1i0.912.643.338 (5)134
N1—H1C···Cl3i0.912.803.383 (5)123
O1—H1D···Cl3ii0.852.823.410 (7)129
O1—H1E···Cl1iii0.852.753.454 (7)141
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C6H14N2)[ZnCl4]·H2O
Mr339.40
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)8.4483 (17), 11.705 (2), 12.976 (3)
V3)1283.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.72
Crystal size (mm)0.30 × 0.28 × 0.26
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.462, 0.495
No. of measured, independent and
observed [I > 2σ(I)] reflections
11890, 2510, 2166
Rint0.053
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 1.03
No. of reflections2510
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.48
Absolute structureFlack (1983), 1050 Friedel pairs
Absolute structure parameter0.07 (3)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O10.911.962.809 (8)153.5
N1—H1C···Cl1i0.912.643.338 (5)134.1
N1—H1C···Cl3i0.912.803.383 (5)123.2
O1—H1D···Cl3ii0.852.823.410 (7)128.6
O1—H1E···Cl1iii0.852.753.454 (7)141.0
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y+1/2, z+3/2.
 

References

First citationDawber, M., Rabe, K. M. & Scott, J. F. (2005). Rev. Mod. Phys. 77, 1083–1130.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHaertling, G. H. (1999). J. Am. Ceram. Soc. 82, 797–818.  CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationScott, J. F. (2007). Science, 315, 954–959.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzafrański, M., Katrusiak, A. & McIntyre, G. J. (2002). Phys. Rev. Lett. 89, 215507-1–215507-4.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds