organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1158

Di­methyl 1-(2-cyano­benz­yl)-1H-pyrazole-3,5-di­carboxyl­ate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhaohong@seu.edu.cn

(Received 15 April 2009; accepted 23 April 2009; online 30 April 2009)

In the mol­ecule of the title compound, C15H13N3O4, the dihedral angle between the pyrazole and benzene rings is 79.89 (6)°. An intra­molecular C—H⋯O hydrogen bond is present. The crystal structure is stabilized by ππ stacking inter­actions between centrosymmetrically related pyrazole rings with a centroid–centroid distance of 3.500 (3) Å.

Related literature

For the use of pyrazoles as ligands, see: Dvorak et al. (2005[Dvorak, C.-A., Rudolph, D. A., Ma, S. & Carruthers, N. I. (2005). J. Org. Chem. 70, 4188-4190.]). For the use of nitrile derivatives in the synthesis of heterocyclic compounds, see: Radl et al. (2000[Radl, S., Hezky, P., Konvicka, P. & Krejci, J. (2000). Collect. Czech. Chem. Commun. 65, 1093-1108.]). For a related structure, see: Fu & Zhao (2007[Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O4

  • Mr = 299.28

  • Monoclinic, P 21 /n

  • a = 7.2416 (19) Å

  • b = 10.977 (3) Å

  • c = 18.405 (4) Å

  • β = 100.670 (11)°

  • V = 1437.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 291 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.968, Tmax = 0.980

  • 14431 measured reflections

  • 3287 independent reflections

  • 2452 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.130

  • S = 1.09

  • 3287 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O3 0.97 2.41 2.917 (2) 112

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Pyrazoles are considered as extremely versatile building blocks in organic chemistry. They constitute key fragments in active pharmaceutical and agrochemical ingredients, which have found widespread use as ligands for transition metals (Dvorak et al., 2005), In addition, nitrile derivatives are important materials in the synthesis of some heterocyclic molecules (Radl et al., 2000). Recently, we have reported a few benzonitrile compounds (Fu & Zhao, 2007). As an extension of our work on the structural characterization of nitrile compounds, the structure of the title compound is reported here.

In the molecule of the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the planes of the pyrazole and phenyl rings is 79.89 (6) °. The molecular conformation is stabilized by an intramolecular C—H···O hydrogen bond (Table 1). In the crystal packing, centrosymmetrically related molecules at (x, y, z) and (2-x, -y, -z) are connected by a π-π stacking interaction involving the pyrazole rings, with a centroid-centroid separation of 3.500 (3) Å, a perpendicular interplanar distance of 3.382 (3) and a centroid-centroid offset of 0.901 (2) Å.

Related literature top

For the use of pyrazoles as ligands, see: Dvorak et al. (2005). For the use of nitrile derivatives in the synthesis of heterocyclic compounds, see: Radl et al. (2000). For a related structure, see: Fu & Zhao (2007).

Experimental top

1H-Pyrazole-3,5-dicarboxylic acid dimethyl ester (0.185 mg, 1 mmol) and 2-(bromomethyl)benzonitrile (0.196 mg, 1 mmol) were dissolved in acetone in the presence of K2CO3 (0.138 mg, 1 mmol) and heated under reflux for 1 day. After the mixture was cooled to room temperature, the solution was filtered and the solvents removed in vacuum to afford a white precipitate of the title compound. Colourless crystals suitable for X-ray diffraction were obtained after 9 days by slow evaporation of a diethylether solution.

Refinement top

All H atoms were detected in a difference Fourier map, but were placed in calculated positions and refined using a riding motion approximation, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Dimethyl 1-(2-cyanobenzyl)-1H-pyrazole-3,5-dicarboxylate top
Crystal data top
C15H13N3O4F(000) = 624
Mr = 299.28Dx = 1.383 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3210 reflections
a = 7.2416 (19) Åθ = 2.9–27.5°
b = 10.977 (3) ŵ = 0.10 mm1
c = 18.405 (4) ÅT = 291 K
β = 100.670 (11)°Prism, colourless
V = 1437.7 (6) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3287 independent reflections
Radiation source: fine-focus sealed tube2452 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.9°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.968, Tmax = 0.980l = 2323
14431 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.1406P]
where P = (Fo2 + 2Fc2)/3
3287 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C15H13N3O4V = 1437.7 (6) Å3
Mr = 299.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2416 (19) ŵ = 0.10 mm1
b = 10.977 (3) ÅT = 291 K
c = 18.405 (4) Å0.35 × 0.30 × 0.25 mm
β = 100.670 (11)°
Data collection top
Rigaku SCXmini
diffractometer
3287 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2452 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.980Rint = 0.040
14431 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.09Δρmax = 0.18 e Å3
3287 reflectionsΔρmin = 0.19 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7452 (2)0.11741 (14)0.00030 (8)0.0384 (4)
C20.7207 (2)0.00398 (14)0.02209 (9)0.0384 (4)
H20.65930.03370.06750.046*
C30.8066 (2)0.07034 (14)0.03796 (9)0.0369 (4)
C40.6825 (2)0.22943 (15)0.04182 (9)0.0430 (4)
C50.5284 (3)0.3033 (2)0.15741 (12)0.0698 (6)
H5A0.63330.35440.16180.105*
H5B0.47150.27360.20540.105*
H5C0.43780.34940.13680.105*
C60.8293 (2)0.20236 (15)0.04805 (9)0.0419 (4)
C70.7579 (3)0.39182 (17)0.01060 (12)0.0691 (6)
H7A0.69400.42590.02590.104*
H7B0.70380.42340.05840.104*
H7C0.88860.41320.00090.104*
C80.9833 (2)0.00848 (16)0.16631 (9)0.0438 (4)
H8A1.06960.07580.16550.053*
H8B1.05720.06350.18260.053*
C90.8571 (2)0.03652 (14)0.22102 (9)0.0409 (4)
C100.9142 (2)0.11795 (15)0.27911 (9)0.0455 (4)
C110.8042 (3)0.13819 (17)0.33260 (10)0.0572 (5)
H110.84470.19190.37140.069*
C120.6365 (3)0.0788 (2)0.32785 (11)0.0639 (5)
H120.56230.09240.36330.077*
C130.5775 (3)0.0008 (2)0.27081 (12)0.0636 (5)
H130.46310.04080.26770.076*
C140.6869 (3)0.02201 (17)0.21785 (10)0.0519 (4)
H140.64520.07640.17960.062*
C151.0869 (3)0.18543 (18)0.28545 (10)0.0560 (5)
N10.87843 (18)0.01204 (12)0.09157 (7)0.0385 (3)
N20.84141 (19)0.12686 (12)0.06921 (7)0.0414 (3)
N31.2207 (3)0.24250 (19)0.29236 (11)0.0811 (6)
O10.7088 (2)0.33067 (12)0.01849 (7)0.0649 (4)
O20.5924 (2)0.20179 (11)0.10967 (7)0.0574 (4)
O30.9169 (2)0.25110 (12)0.10214 (7)0.0645 (4)
O40.7390 (2)0.26063 (10)0.01091 (7)0.0568 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0436 (9)0.0354 (8)0.0381 (9)0.0005 (7)0.0124 (7)0.0002 (6)
C20.0426 (9)0.0358 (8)0.0364 (8)0.0020 (6)0.0068 (7)0.0002 (6)
C30.0405 (8)0.0315 (8)0.0404 (8)0.0021 (6)0.0121 (7)0.0012 (6)
C40.0520 (10)0.0354 (9)0.0437 (9)0.0026 (7)0.0140 (8)0.0022 (7)
C50.0987 (17)0.0559 (12)0.0525 (12)0.0175 (11)0.0084 (11)0.0181 (9)
C60.0468 (9)0.0367 (9)0.0433 (9)0.0000 (7)0.0112 (7)0.0030 (7)
C70.1012 (17)0.0315 (10)0.0721 (14)0.0033 (10)0.0092 (12)0.0056 (9)
C80.0463 (9)0.0459 (10)0.0377 (9)0.0035 (7)0.0041 (7)0.0006 (7)
C90.0487 (9)0.0368 (8)0.0366 (8)0.0070 (7)0.0058 (7)0.0040 (6)
C100.0579 (10)0.0394 (9)0.0377 (9)0.0082 (7)0.0050 (8)0.0025 (7)
C110.0759 (13)0.0531 (12)0.0438 (10)0.0114 (9)0.0148 (10)0.0049 (8)
C120.0738 (14)0.0707 (14)0.0537 (11)0.0150 (11)0.0288 (10)0.0053 (10)
C130.0589 (12)0.0713 (14)0.0646 (13)0.0013 (10)0.0220 (10)0.0057 (10)
C140.0577 (11)0.0501 (11)0.0484 (10)0.0008 (8)0.0114 (9)0.0012 (8)
C150.0632 (12)0.0537 (12)0.0484 (10)0.0007 (9)0.0030 (9)0.0093 (8)
N10.0453 (8)0.0350 (7)0.0356 (7)0.0015 (5)0.0089 (6)0.0003 (5)
N20.0523 (8)0.0324 (7)0.0407 (7)0.0006 (6)0.0122 (6)0.0003 (5)
N30.0735 (13)0.0847 (14)0.0806 (14)0.0193 (11)0.0024 (10)0.0156 (11)
O10.0995 (11)0.0333 (7)0.0601 (8)0.0036 (7)0.0103 (8)0.0019 (6)
O20.0811 (9)0.0403 (7)0.0458 (7)0.0055 (6)0.0011 (6)0.0065 (5)
O30.0864 (10)0.0431 (7)0.0573 (8)0.0058 (7)0.0037 (7)0.0088 (6)
O40.0792 (9)0.0307 (6)0.0555 (8)0.0007 (6)0.0005 (7)0.0026 (5)
Geometric parameters (Å, º) top
C1—N21.343 (2)C7—H7C0.9600
C1—C21.393 (2)C8—N11.460 (2)
C1—C41.474 (2)C8—C91.512 (2)
C2—C31.373 (2)C8—H8A0.9700
C2—H20.9300C8—H8B0.9700
C3—N11.368 (2)C9—C141.381 (3)
C3—C61.466 (2)C9—C101.396 (2)
C4—O11.194 (2)C10—C111.394 (3)
C4—O21.332 (2)C10—C151.440 (3)
C5—O21.441 (2)C11—C121.367 (3)
C5—H5A0.9600C11—H110.9300
C5—H5B0.9600C12—C131.372 (3)
C5—H5C0.9600C12—H120.9300
C6—O31.202 (2)C13—C141.385 (3)
C6—O41.324 (2)C13—H130.9300
C7—O41.446 (2)C14—H140.9300
C7—H7A0.9600C15—N31.141 (3)
C7—H7B0.9600N1—N21.3376 (18)
N2—C1—C2111.35 (14)C9—C8—H8A109.1
N2—C1—C4119.02 (14)N1—C8—H8B109.1
C2—C1—C4129.63 (15)C9—C8—H8B109.1
C3—C2—C1105.13 (14)H8A—C8—H8B107.8
C3—C2—H2127.4C14—C9—C10117.76 (16)
C1—C2—H2127.4C14—C9—C8121.46 (15)
N1—C3—C2106.57 (13)C10—C9—C8120.69 (16)
N1—C3—C6122.89 (14)C11—C10—C9121.04 (18)
C2—C3—C6130.53 (15)C11—C10—C15117.53 (17)
O1—C4—O2124.53 (16)C9—C10—C15121.42 (16)
O1—C4—C1125.21 (16)C12—C11—C10119.74 (18)
O2—C4—C1110.25 (14)C12—C11—H11120.1
O2—C5—H5A109.5C10—C11—H11120.1
O2—C5—H5B109.5C11—C12—C13119.98 (18)
H5A—C5—H5B109.5C11—C12—H12120.0
O2—C5—H5C109.5C13—C12—H12120.0
H5A—C5—H5C109.5C12—C13—C14120.5 (2)
H5B—C5—H5C109.5C12—C13—H13119.7
O3—C6—O4124.65 (16)C14—C13—H13119.7
O3—C6—C3125.05 (16)C9—C14—C13120.93 (18)
O4—C6—C3110.30 (14)C9—C14—H14119.5
O4—C7—H7A109.5C13—C14—H14119.5
O4—C7—H7B109.5N3—C15—C10177.0 (2)
H7A—C7—H7B109.5N2—N1—C3111.90 (13)
O4—C7—H7C109.5N2—N1—C8118.35 (13)
H7A—C7—H7C109.5C3—N1—C8129.75 (14)
H7B—C7—H7C109.5N1—N2—C1105.04 (12)
N1—C8—C9112.67 (14)C4—O2—C5116.21 (14)
N1—C8—H8A109.1C6—O4—C7116.47 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O30.972.412.917 (2)112

Experimental details

Crystal data
Chemical formulaC15H13N3O4
Mr299.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)7.2416 (19), 10.977 (3), 18.405 (4)
β (°) 100.670 (11)
V3)1437.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.968, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
14431, 3287, 2452
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.130, 1.09
No. of reflections3287
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O30.972.412.917 (2)112
 

Acknowledgements

This work was supported by the Southeast University Fund for Young Researchers (4007041027).

References

First citationDvorak, C.-A., Rudolph, D. A., Ma, S. & Carruthers, N. I. (2005). J. Org. Chem. 70, 4188–4190.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRadl, S., Hezky, P., Konvicka, P. & Krejci, J. (2000). Collect. Czech. Chem. Commun. 65, 1093–1108.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1158
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds