inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new aqua­manganese(II) oxalate phosphate, Mn(C2O4)Mn3(PO4)2(H2O)2

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
*Correspondence e-mail: zay@hpu.edu.cn

(Received 9 March 2009; accepted 31 March 2009; online 2 April 2009)

The title salt, diaquatetra­manganese(II) oxalate bis[ortho­phos­phate(V)], Mn4(C2O4)(PO4)2(H2O)2, was synthesized hydro­thermally and displays a three-dimensional framework structure. The asymmetric unit consists of two different MnII centers, half of an oxalate anion, a phosphate group and a coordinated water mol­ecule. A crystallographic inversion center is located at the mid-point of the oxalate C—C bond. The distorted octa­hedral MnO6 and the tetra­gonal pyramidal MnO5 centers are linked through bridging oxalate and phosphate groups. The water mol­ecule also has a weaker bonding contact to the five-coordinate Mn atom, which consequently exhibits a distorted octa­hedral geometry and also bridges the independent Mn atoms. The water mol­ecule is a donor for intra- and inter­molecular O—H⋯O hydrogen bonds.

Related literature

For the structure of HgC2O4 from synchrotron, X-ray and neutron powder diffraction data, see: Christensen et al. (1994[Christensen, A. N., Norby, P. & Hanson, J. C. (1994). Z. Kristallogr. 209, 874-877.]). For a polymeric [NiII(bpy)3]n2+ [MnII(C2O4)3]n2− oxalate-bridged network structure, see: Decurtins et al. (1994[Decurtins, S., Schmalle, H. W., Schneuwly, P., Ensling, J. & Gütlich, P. (1994). J. Am. Chem. Soc. 116, 9521-9528.]). For the structures of indium selenite–oxalate and indium oxalate, see: Cao et al. (2009[Cao, J.-J., Li, G.-D. & Chen, J.-S. (2009). J. Solid State Chem. 182, 102-106.]). For lanthanide–oxalate coordination polymers, see: Zhang et al. (2009[Zhang, X. J., Xing, Y. H., Wang, C. G., Han, J., Li, J., Ge, M. F., Zeng, X. Q. & Niu, S. Y. (2009). Inorg. Chim. Acta, 362, 1058-1064.]).

Experimental

Crystal data
  • Mn4(C2O4)(PO4)2(H2O)2

  • Mr = 266.88

  • Monoclinic, P 21 /c

  • a = 10.2759 (2) Å

  • b = 6.5220 (1) Å

  • c = 10.0701 (1) Å

  • β = 116.926 (1)°

  • V = 601.73 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.45 mm−1

  • T = 296 K

  • 0.21 × 0.19 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.455, Tmax = 0.519 (expected range = 0.412–0.470)

  • 5971 measured reflections

  • 1653 independent reflections

  • 1467 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.065

  • S = 1.05

  • 1653 reflections

  • 106 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O2i 2.1199 (15)
Mn1—O3ii 2.1407 (15)
Mn1—O1 2.1584 (15)
Mn1—O3iii 2.2219 (15)
Mn1—O5 2.2525 (15)
Mn1—O7W 2.2637 (17)
Mn2—O2iv 2.1145 (15)
Mn2—O4ii 2.1218 (15)
Mn2—O1 2.1220 (16)
Mn2—O6v 2.1809 (17)
Mn2—O5 2.2190 (16)
Mn2—O7Wvi 2.5641 (14)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y, -z+1; (v) -x, -y, -z; (vi) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7W—H7A⋯O6 0.85 (2) 2.00 (2) 2.828 (3) 167 (3)
O7W—H7B⋯O4vii 0.86 (2) 1.95 (2) 2.787 (2) 167 (3)
Symmetry code: (vii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Over the past decades, the synthesis of new two and three dimensional inorganic materials has received great attention, due to their functional applications. Among the hybrid compounds are metal oxalates which exhibit vast diversity and unusual structural features. The oxalate anion displays various coordination modes when it is bound to metal cations. For example, the structures of HgC2O4(Christensen et al., 1994), [In2(SeO3)2(C2O4)(H2O)2]˙2(H2O) (Cao et al., 2009) and Nd(C2O4)(CH3COO)(H2O) (Zhang et al., 2009) have been investigated in the past years. In this work, we designed and synthesized the title compound, MnC2O4Mn3(PO4)2˙2(H2O), which features a three-dimensional framework.

In the structure of the title compound, there are two MnII atoms, one phosphate, a half oxalate and one water per asymmetric unit (Fig. 1). Mn1 has a MnO6 octahedral coordination environment, but Mn2 is coordinated with five oxygen atoms (Fig. 2 and Fig. 3). The Mn—O oxalate distances (Table 1) are slightly longer than the Mn—O distances of 2.154 (2) Å and 2.166 (2) Å, observed in the polymeric anionic network structure [NiII(bpy)3]2+n [MnII(C2O4)3]n2- (Decurtins et al., 1994). The distorted octahedral MnO6 and tetragonal pyramidal MnO5 centers are linked through bridging oxalate and phosphate groups (Fig. 3). The water molecule has also a weaker bonding contact to the five coordinate atom Mn2, which consequently exhibits a distorted octahedral geometry and bridges the independent atoms Mn1 and Mn2 as well. The water molecule is a donor for intra- and intermolecular O—H···O hydrogen bonds (Table 2).

Related literature top

For the structure of HgC2O4 from synchrotron, X-ray and neutron powder diffraction data, see: Christensen et al. (1994). For a polymeric [NiII(bpy)3]2+n [MnII(C2O4)3]n2- oxalate-bridged network structure, see: Decurtins et al. (1994). For the structures of indium selenite–oxalate and indium oxalate, see: Cao et al. (2009). For lanthanide–oxalate coordination polymers, see: Zhang et al. (2009).

Experimental top

Colorless block crystals were synthesized hydrothermally from a mixture of, H3BO3, H2C2O4, ethylenediamine, H3PO4 and water. In a typical synthesis, 0. 98 g MnCl2˙4H2O was dissolved in a mixture of 5 mL water, with 0.92 g H3BO3, 2 ml (85%) H3PO4 and 0.05 ml ethylenediamine at constant stirring. Finally, the mixture was kept in a 30 ml Teflon – lined steel autoclave at 443 K for 5 days. The autoclave was slowly cooled to room temperature. Colorless block crystals of the title compound were obtained.

Refinement top

The H atoms of the coordinated water molecule were refined with Uiso(H) = 1.2Ueq(O) and distance restraints d(O—H) of 0.85 (1) Å and d(H···H) of 1.33 (1) Å, respectively. The highest peak in the difference map is 0.47 e/Å3, and 0.75 Å from O4, and the minimum peak is -0.55 e/Å3, and 0.60 Å from Mn1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A section of the coordination geometry in the title polymer structure. Displacement ellipsoids are drawn at the 50% the probability level. Symmetrycodes: (A) = -x + 1, y - 1/2, -z + 1/2; (B) = -x + 1, y + 1/2, -z + 1/2; (C) -x, -y, -z; (D) = -x + 1, -y, -z + 1; (E) = x, -y + 1/2, z - 1/2;
[Figure 2] Fig. 2. Packing diagram for Mn(C2O4)Mn3(PO4)2˙2H2O, viewed along the b axis.
[Figure 3] Fig. 3. Packing diagram for Mn(C2O4)Mn3(PO4)2˙2H2O, viewed along the b axis, Mn2 complex cations are omitted for clarity.
poly[diaqua-µ-oxalato-di-µ-phosphato-tetramanganese(II)] top
Crystal data top
[Mn4(C2O4)(PO4)2(H2O)2]F(000) = 516
Mr = 266.88Dx = 2.946 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2504 reflections
a = 10.2759 (2) Åθ = 2.2–29.9°
b = 6.5220 (1) ŵ = 4.45 mm1
c = 10.0701 (1) ÅT = 296 K
β = 116.926 (1)°Block, colourless
V = 601.73 (2) Å30.21 × 0.19 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1653 independent reflections
Radiation source: fine-focus sealed tube1467 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 29.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1411
Tmin = 0.455, Tmax = 0.519k = 98
5971 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0352P)2 + 0.1904P]
where P = (Fo2 + 2Fc2)/3
1653 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.47 e Å3
3 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Mn4(C2O4)(PO4)2(H2O)2]V = 601.73 (2) Å3
Mr = 266.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2759 (2) ŵ = 4.45 mm1
b = 6.5220 (1) ÅT = 296 K
c = 10.0701 (1) Å0.21 × 0.19 × 0.17 mm
β = 116.926 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1653 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1467 reflections with I > 2σ(I)
Tmin = 0.455, Tmax = 0.519Rint = 0.031
5971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0263 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.47 e Å3
1653 reflectionsΔρmin = 0.55 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.38352 (4)0.14623 (5)0.02672 (4)0.01004 (10)
Mn20.26622 (4)0.02679 (6)0.26753 (4)0.01198 (10)
P10.60110 (6)0.15130 (8)0.39476 (6)0.00740 (13)
O10.45405 (17)0.0984 (2)0.26145 (16)0.0123 (3)
O20.65691 (17)0.0342 (2)0.50294 (16)0.0110 (3)
O30.57805 (17)0.3259 (2)0.48610 (17)0.0112 (3)
O40.71121 (17)0.2029 (2)0.33744 (17)0.0124 (3)
O50.17132 (17)0.0906 (3)0.03574 (17)0.0148 (3)
O60.03134 (18)0.0699 (3)0.18037 (17)0.0174 (4)
O7W0.22135 (19)0.1426 (2)0.21781 (18)0.0157 (4)
H7A0.1384 (17)0.118 (4)0.222 (3)0.019*
H7B0.231 (3)0.043 (3)0.268 (3)0.019*
C10.0400 (2)0.0465 (3)0.0428 (2)0.0122 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01109 (18)0.00852 (19)0.01143 (17)0.00060 (12)0.00591 (14)0.00116 (11)
Mn20.00891 (18)0.0177 (2)0.00885 (17)0.00151 (13)0.00360 (14)0.00260 (12)
P10.0080 (3)0.0070 (3)0.0073 (2)0.00008 (19)0.0035 (2)0.00015 (18)
O10.0098 (8)0.0162 (8)0.0092 (7)0.0004 (6)0.0027 (6)0.0008 (6)
O20.0140 (8)0.0081 (8)0.0102 (7)0.0009 (6)0.0050 (6)0.0013 (5)
O30.0140 (8)0.0099 (8)0.0126 (7)0.0005 (6)0.0084 (7)0.0016 (6)
O40.0129 (8)0.0130 (8)0.0133 (7)0.0006 (6)0.0078 (6)0.0011 (6)
O50.0088 (8)0.0214 (9)0.0121 (7)0.0022 (7)0.0031 (6)0.0005 (6)
O60.0105 (8)0.0299 (10)0.0111 (7)0.0017 (7)0.0041 (7)0.0022 (7)
O7W0.0160 (9)0.0179 (9)0.0156 (8)0.0021 (7)0.0091 (7)0.0014 (6)
C10.0106 (10)0.0137 (11)0.0134 (10)0.0008 (8)0.0064 (9)0.0014 (8)
Geometric parameters (Å, º) top
Mn1—O2i2.1199 (15)P1—O11.5386 (16)
Mn1—O3ii2.1407 (15)P1—O31.5481 (15)
Mn1—O12.1584 (15)P1—O21.5534 (15)
Mn1—O3iii2.2219 (15)O2—Mn2iv2.1145 (15)
Mn1—O52.2525 (15)O2—Mn1ii2.1199 (15)
Mn1—O7W2.2637 (17)O3—Mn1i2.1407 (15)
Mn2—O2iv2.1145 (15)O3—Mn1vi2.2219 (15)
Mn2—O4ii2.1218 (15)O4—Mn2i2.1218 (15)
Mn2—O12.1220 (16)O5—C11.250 (3)
Mn2—O6v2.1809 (17)O6—C11.249 (3)
Mn2—O52.2190 (16)O7W—H7A0.85 (2)
Mn2—O7Wvi2.5641 (14)O7W—H7B0.86 (2)
P1—O41.5225 (15)C1—C1v1.558 (4)
O2i—Mn1—O3ii168.73 (6)O4—P1—O1108.88 (8)
O2i—Mn1—O1104.10 (6)O4—P1—O3113.75 (9)
O3ii—Mn1—O186.86 (6)O1—P1—O3109.23 (9)
O2i—Mn1—O3iii91.66 (6)O4—P1—O2109.64 (9)
O3ii—Mn1—O3iii82.11 (6)O1—P1—O2110.00 (9)
O1—Mn1—O3iii109.24 (6)O3—P1—O2105.28 (8)
O2i—Mn1—O591.86 (6)P1—O1—Mn2127.44 (9)
O3ii—Mn1—O593.07 (6)P1—O1—Mn1129.28 (9)
O1—Mn1—O577.51 (6)Mn2—O1—Mn1103.21 (7)
O3iii—Mn1—O5171.35 (6)P1—O2—Mn2iv117.17 (8)
O2i—Mn1—O7W81.74 (6)P1—O2—Mn1ii132.87 (9)
O3ii—Mn1—O7W89.39 (6)Mn2iv—O2—Mn1ii106.93 (6)
O1—Mn1—O7W155.02 (6)P1—O3—Mn1i126.88 (9)
O3iii—Mn1—O7W94.65 (6)P1—O3—Mn1vi124.19 (9)
O5—Mn1—O7W78.05 (6)Mn1i—O3—Mn1vi97.89 (6)
O4ii—Mn2—O7Wvi154.66 (7)P1—O4—Mn2i129.80 (9)
O2iv—Mn2—O4ii129.04 (6)C1—O5—Mn2114.85 (14)
O2iv—Mn2—O193.71 (6)C1—O5—Mn1143.03 (14)
O4ii—Mn2—O189.96 (6)Mn2—O5—Mn197.22 (6)
O2iv—Mn2—O6v105.17 (6)C1—O6—Mn2v114.67 (14)
O4ii—Mn2—O6v92.47 (6)Mn1—O7W—H7A106.7 (18)
O1—Mn2—O6v153.30 (6)Mn1—O7W—H7B115.2 (18)
O2iv—Mn2—O5148.61 (6)H7A—O7W—H7B101.8 (13)
O4ii—Mn2—O581.83 (6)O6—C1—O5126.6 (2)
O1—Mn2—O578.99 (6)O6—C1—C1v118.0 (2)
O6v—Mn2—O575.05 (6)O5—C1—C1v115.4 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y, z+1; (v) x, y, z; (vi) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7W—H7A···O60.85 (2)2.00 (2)2.828 (3)167 (3)
O7W—H7B···O4vii0.86 (2)1.95 (2)2.787 (2)167 (3)
Symmetry code: (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Mn4(C2O4)(PO4)2(H2O)2]
Mr266.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.2759 (2), 6.5220 (1), 10.0701 (1)
β (°) 116.926 (1)
V3)601.73 (2)
Z4
Radiation typeMo Kα
µ (mm1)4.45
Crystal size (mm)0.21 × 0.19 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.455, 0.519
No. of measured, independent and
observed [I > 2σ(I)] reflections
5971, 1653, 1467
Rint0.031
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.065, 1.05
No. of reflections1653
No. of parameters106
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.55

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O2i2.1199 (15)Mn2—O2iv2.1145 (15)
Mn1—O3ii2.1407 (15)Mn2—O4ii2.1218 (15)
Mn1—O12.1584 (15)Mn2—O12.1220 (16)
Mn1—O3iii2.2219 (15)Mn2—O6v2.1809 (17)
Mn1—O52.2525 (15)Mn2—O52.2190 (16)
Mn1—O7W2.2637 (17)Mn2—O7Wvi2.5641 (14)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y, z+1; (v) x, y, z; (vi) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7W—H7A···O60.85 (2)2.00 (2)2.828 (3)167 (3)
O7W—H7B···O4vii0.86 (2)1.95 (2)2.787 (2)167 (3)
Symmetry code: (vii) x+1, y, z.
 

Acknowledgements

This work was supported by the Main Teacher Project of Hena Province (Reference 649082)

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, J.-J., Li, G.-D. & Chen, J.-S. (2009). J. Solid State Chem. 182, 102–106.  Web of Science CSD CrossRef CAS Google Scholar
First citationChristensen, A. N., Norby, P. & Hanson, J. C. (1994). Z. Kristallogr. 209, 874–877.  CrossRef CAS Google Scholar
First citationDecurtins, S., Schmalle, H. W., Schneuwly, P., Ensling, J. & Gütlich, P. (1994). J. Am. Chem. Soc. 116, 9521–9528.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. J., Xing, Y. H., Wang, C. G., Han, J., Li, J., Ge, M. F., Zeng, X. Q. & Niu, S. Y. (2009). Inorg. Chim. Acta, 362, 1058–1064.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds