metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Ferrocenyl-3-meth­­oxy-6-methyl­pyridine

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, and bDepartment of Chemistry, Henan Key Laboratory of Chemical, Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: maopingsong@zzu.edu.cn

(Received 22 March 2009; accepted 1 April 2009; online 10 April 2009)

In the title compound, [Fe(C5H5)(C12H12NO)], the dihedral angle between the pyridyl and substituted cyclo­penta­dienyl rings is 23.58 (3)°. The crystal structure is characterized by weak inter­molecular C—H⋯N hydrogen-bonding contacts, leading to the formation of chains running parallel to the n-glide planes. A weak inter­molecular C—H⋯π contact is also present.

Related literature

For historical background and for properties of ferrocenes and derivatives, see: Wang et al. (2008[Wang, Z.-Q., Xu, C., Cen, F.-F., Li, Y.-F. & Ji, B.-M. (2008). Acta Cryst. E64, m1633.]) and references cited therein. For the structure of (Z)-2,3-di(ferrocen­yl)-2-butenedionate, see: Beletskaya et al. (2001[Beletskaya, I. P., Tsvetkov, A. V., Latyshev, G. V., Tafeenko, V. A. & Lukashev, N. V. (2001). J. Organomet. Chem. 637-639, 653-663.]). For cyclo­palladated ferrocen­yl–pyrimidine complexes, see: Xu et al. (2009[Xu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009). Organometallics, 28, 1909-1916.]). For the structure of {1-[(3,5-dimethyl-4H-1,2,4-triazol-4-yl)-imino]eth­yl}ferrocene, see: Hao et al. (2008[Hao, X.-Q., Liang, D.-S., Liu, R.-Y., Gong, J.-F. & Song, M.-P. (2008). Acta Cryst. E64, m1275.]). For the synthesis of functional compounds related to ferrocene-bearing units, see: Sarhan & Izumi (2003[Sarhan, A. A. O. & Izumi, T. (2003). J. Organomet. Chem. 675, 1-12.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C12H12NO)]

  • Mr = 307.17

  • Monoclinic, P 21 /n

  • a = 5.9949 (13) Å

  • b = 20.284 (4) Å

  • c = 12.035 (2) Å

  • β = 100.036 (3)°

  • V = 1441.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 294 K

  • 0.43 × 0.35 × 0.27 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.663, Tmax = 0.767

  • 8219 measured reflections

  • 2673 independent reflections

  • 2280 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.076

  • S = 1.06

  • 2673 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1i 0.93 2.65 3.577 (3) 172
C4—H4⋯Cg1ii 0.93 2.96 3.880 (3) 173
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]. Cg1 is the centroid of the C8–C12 cyclo­penta­dienyl ring.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL .

Supporting information


Comment top

Since the discovery of ferrocene in the 1950s, the fascinating structural properties of ferrocene and its derivatives have been the subject of increasing interest in all fields of organometallic chemistry (Hao et al., 2008; Xu et al., 2009; Wang et al., 2008 with relevant literature cited therein). Among them, ferrocene-heterocycles are one of the most important ones (Sarhan & Izumi, 2003).

In the title compound (Fig. 1), the dihedral angle between the pyridyl and substituted cyclopentadienyl rings is 23.58 (3)°. The crystal structure is characterised by weak intermolecular C—H···N hydrogen bonding contacts (Table 1), leading to the formation of one-dimensional chains running parallel to the n-glide planes (Fig. 2). Furthermore, a weak intermolecular C—H···π contact may also be considered in the structure (Table 1). Cg1 is the centroid of the Cp ring C8 - C12. The perpendicular distance of H4 to the Cp ring is 2.812 Å. C—H···π contacts were also observed in a triazol-ferrocene derivative (Hao et al., 2008). The n-glide plane symmetry operation is also observed in the structure of 2-Ferrocenyl-6-methylpyridin-3-ol (Wang et al., 2008), in which the nitrogen atoms form classic intermolecular O—H···N hydrogen bonds with the adjacent -OH groups. Both compounds crystallize in the space group P21/n .

Related literature top

For historical background and for properties of ferrocenes and derivatives, see: Wang et al. (2008) and references cited therein. For the structure of (Z)-2,3-di(ferrocenyl)-2-butenedionate, see: Beletskaya et al. (2001). For cyclopalladated ferrocenyl–pyrimidine complexes, see: Xu et al. (2009). For the structure of {1-[(3,5-dimethyl-4H-1,2,4-triazol-4-yl)-imino]ethyl}ferrocene, see: Hao et al. (2008). For the synthesis of functional compounds related to ferrocene-bearing units, see: Sarhan & Izumi (2003). Cg1 is the centroid of the Cp ring C8–C12.

Experimental top

The title compound was prepared as described in the literature (Beletskaya et al., 2001; Xu et al., 2009) and recrystallized from dichloromethane-petroleum ether solution at room temperature to give the desired product as red crystals.

Refinement top

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93–0.96 Å, and with Uiso(H)=1.2Ueq(C) (1.5Ueq for methyl H).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial view of the crystal packing showing the formation of the one-dimensional chain structure formed by the weak intermolecular C—H···N hydrogen bonding contacts.
2-Ferrocenyl-3-methoxy-6-methylpyridine top
Crystal data top
[Fe(C5H5)(C12H12NO)]F(000) = 640
Mr = 307.17Dx = 1.416 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3338 reflections
a = 5.9949 (13) Åθ = 2.7–26.2°
b = 20.284 (4) ŵ = 1.04 mm1
c = 12.035 (2) ÅT = 294 K
β = 100.036 (3)°Block, red
V = 1441.0 (5) Å30.43 × 0.35 × 0.27 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2673 independent reflections
Radiation source: fine-focus sealed tube2280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.663, Tmax = 0.767k = 2423
8219 measured reflectionsl = 1410
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.3178P]
where P = (Fo2 + 2Fc2)/3
2673 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Fe(C5H5)(C12H12NO)]V = 1441.0 (5) Å3
Mr = 307.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.9949 (13) ŵ = 1.04 mm1
b = 20.284 (4) ÅT = 294 K
c = 12.035 (2) Å0.43 × 0.35 × 0.27 mm
β = 100.036 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2673 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2280 reflections with I > 2σ(I)
Tmin = 0.663, Tmax = 0.767Rint = 0.020
8219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
2673 reflectionsΔρmin = 0.27 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2209 (3)0.19049 (9)0.27110 (15)0.0381 (4)
C20.3488 (4)0.20189 (10)0.37922 (17)0.0454 (5)
C30.2693 (4)0.24755 (11)0.44894 (18)0.0555 (6)
H30.35000.25630.52070.067*
C40.0683 (4)0.27974 (10)0.4098 (2)0.0576 (6)
H40.01370.31080.45520.069*
C50.0523 (4)0.26628 (9)0.30382 (18)0.0483 (5)
C60.2728 (4)0.29957 (11)0.2575 (2)0.0636 (6)
H6A0.24990.33050.20020.095*
H6B0.32770.32240.31720.095*
H6C0.38180.26710.22550.095*
C70.6707 (4)0.17331 (14)0.5189 (2)0.0729 (7)
H7A0.71170.21870.53330.109*
H7B0.80540.14690.52630.109*
H7C0.57940.15870.57220.109*
C80.2889 (3)0.14341 (9)0.18926 (15)0.0375 (4)
C90.5096 (3)0.11890 (9)0.18035 (17)0.0416 (4)
H90.65210.13030.22980.050*
C100.4844 (4)0.07527 (9)0.08687 (17)0.0461 (5)
H100.60710.05100.06110.055*
C110.2523 (4)0.07186 (10)0.03813 (17)0.0477 (5)
H110.18680.04500.02710.057*
C120.1309 (3)0.11391 (9)0.10025 (16)0.0415 (4)
H120.03330.12100.08560.050*
C130.0699 (4)0.01181 (13)0.2693 (2)0.0722 (8)
H130.09520.00680.25290.087*
C140.1998 (5)0.05346 (11)0.2134 (2)0.0665 (7)
H140.14110.08190.14910.080*
C150.4275 (5)0.04656 (11)0.2624 (3)0.0683 (7)
H150.55500.06960.23860.082*
C160.4429 (5)0.00088 (13)0.3495 (2)0.0722 (8)
H160.58300.01320.39840.087*
C170.2229 (6)0.02140 (14)0.3562 (2)0.0769 (8)
H170.18200.05300.41090.092*
Fe10.29948 (4)0.042837 (12)0.20323 (2)0.03896 (11)
N10.0252 (3)0.22223 (7)0.23573 (14)0.0416 (4)
O10.5451 (3)0.16693 (8)0.40698 (12)0.0597 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0488 (11)0.0324 (9)0.0342 (10)0.0068 (8)0.0100 (9)0.0025 (8)
C20.0538 (12)0.0421 (10)0.0399 (11)0.0080 (9)0.0073 (9)0.0020 (9)
C30.0814 (16)0.0475 (12)0.0389 (12)0.0181 (11)0.0144 (11)0.0122 (10)
C40.0811 (17)0.0412 (11)0.0560 (14)0.0047 (11)0.0269 (13)0.0144 (10)
C50.0627 (13)0.0330 (10)0.0549 (13)0.0036 (9)0.0255 (11)0.0037 (9)
C60.0650 (15)0.0465 (13)0.0848 (18)0.0062 (11)0.0283 (13)0.0044 (12)
C70.0755 (17)0.0905 (19)0.0452 (14)0.0078 (14)0.0108 (12)0.0013 (13)
C80.0477 (10)0.0313 (9)0.0336 (10)0.0011 (7)0.0073 (8)0.0007 (7)
C90.0451 (10)0.0355 (10)0.0449 (12)0.0024 (8)0.0096 (9)0.0001 (8)
C100.0565 (12)0.0390 (11)0.0456 (12)0.0068 (9)0.0166 (10)0.0004 (9)
C110.0680 (14)0.0393 (10)0.0330 (11)0.0080 (9)0.0014 (10)0.0046 (8)
C120.0491 (11)0.0379 (10)0.0345 (10)0.0061 (8)0.0011 (8)0.0011 (8)
C130.0561 (14)0.0766 (17)0.085 (2)0.0117 (13)0.0144 (14)0.0298 (15)
C140.0759 (17)0.0432 (12)0.0765 (19)0.0133 (11)0.0025 (14)0.0082 (12)
C150.0702 (16)0.0464 (13)0.084 (2)0.0045 (11)0.0009 (14)0.0224 (13)
C160.0786 (18)0.0742 (17)0.0542 (16)0.0149 (14)0.0153 (13)0.0319 (14)
C170.127 (3)0.0601 (15)0.0502 (15)0.0075 (16)0.0338 (16)0.0152 (12)
Fe10.04316 (17)0.03381 (16)0.03740 (18)0.00120 (11)0.00003 (12)0.00266 (11)
N10.0508 (9)0.0325 (8)0.0433 (9)0.0001 (7)0.0133 (8)0.0012 (7)
O10.0649 (10)0.0689 (10)0.0398 (9)0.0010 (8)0.0063 (7)0.0086 (7)
Geometric parameters (Å, º) top
C1—N11.341 (2)C10—C111.415 (3)
C1—C21.410 (3)C10—Fe12.041 (2)
C1—C81.479 (2)C10—H100.9800
C2—O11.364 (3)C11—C121.416 (3)
C2—C31.389 (3)C11—Fe12.044 (2)
C3—C41.379 (3)C11—H110.9800
C3—H30.9300C12—Fe12.0492 (18)
C4—C51.379 (3)C12—H120.9800
C4—H40.9300C13—C141.399 (4)
C5—N11.349 (2)C13—C171.434 (4)
C5—C61.503 (3)C13—Fe12.034 (2)
C6—H6A0.9600C13—H130.9800
C6—H6B0.9600C14—C151.396 (4)
C6—H6C0.9600C14—Fe12.053 (2)
C7—O11.430 (3)C14—H140.9800
C7—H7A0.9600C15—C161.390 (4)
C7—H7B0.9600C15—Fe12.048 (2)
C7—H7C0.9600C15—H150.9800
C8—C121.431 (3)C16—C171.410 (4)
C8—C91.435 (3)C16—Fe12.024 (2)
C8—Fe12.0470 (18)C16—H160.9800
C9—C101.419 (3)C17—Fe12.021 (2)
C9—Fe12.0405 (18)C17—H170.9800
C9—H90.9800
N1—C1—C2121.29 (17)C13—C14—H14125.6
N1—C1—C8115.20 (16)Fe1—C14—H14125.6
C2—C1—C8123.50 (18)C16—C15—C14108.5 (3)
O1—C2—C3124.81 (19)C16—C15—Fe169.12 (13)
O1—C2—C1116.61 (17)C14—C15—Fe170.28 (13)
C3—C2—C1118.6 (2)C16—C15—H15125.8
C4—C3—C2118.7 (2)C14—C15—H15125.8
C4—C3—H3120.6Fe1—C15—H15125.8
C2—C3—H3120.6C15—C16—C17108.5 (2)
C3—C4—C5120.5 (2)C15—C16—Fe170.96 (14)
C3—C4—H4119.7C17—C16—Fe169.50 (13)
C5—C4—H4119.7C15—C16—H16125.8
N1—C5—C4120.8 (2)C17—C16—H16125.8
N1—C5—C6116.5 (2)Fe1—C16—H16125.8
C4—C5—C6122.67 (19)C16—C17—C13107.0 (3)
C5—C6—H6A109.5C16—C17—Fe169.70 (15)
C5—C6—H6B109.5C13—C17—Fe169.76 (14)
H6A—C6—H6B109.5C16—C17—H17126.5
C5—C6—H6C109.5C13—C17—H17126.5
H6A—C6—H6C109.5Fe1—C17—H17126.5
H6B—C6—H6C109.5C17—Fe1—C1640.81 (12)
O1—C7—H7A109.5C17—Fe1—C1341.42 (11)
O1—C7—H7B109.5C16—Fe1—C1368.62 (11)
H7A—C7—H7B109.5C17—Fe1—C10158.66 (12)
O1—C7—H7C109.5C16—Fe1—C10122.60 (10)
H7A—C7—H7C109.5C13—Fe1—C10158.36 (11)
H7B—C7—H7C109.5C17—Fe1—C9121.95 (11)
C12—C8—C9107.31 (16)C16—Fe1—C9105.66 (9)
C12—C8—C1123.04 (17)C13—Fe1—C9160.15 (11)
C9—C8—C1129.64 (17)C10—Fe1—C940.68 (8)
C12—C8—Fe169.63 (10)C17—Fe1—C11158.83 (12)
C9—C8—Fe169.20 (10)C16—Fe1—C11159.61 (11)
C1—C8—Fe1126.65 (13)C13—Fe1—C11123.25 (10)
C10—C9—C8107.66 (17)C10—Fe1—C1140.52 (8)
C10—C9—Fe169.66 (11)C9—Fe1—C1168.61 (8)
C8—C9—Fe169.69 (10)C17—Fe1—C8106.28 (10)
C10—C9—H9126.2C16—Fe1—C8120.70 (10)
C8—C9—H9126.2C13—Fe1—C8124.18 (10)
Fe1—C9—H9126.2C10—Fe1—C868.61 (7)
C11—C10—C9108.69 (17)C9—Fe1—C841.11 (7)
C11—C10—Fe169.88 (12)C11—Fe1—C868.66 (7)
C9—C10—Fe169.66 (11)C17—Fe1—C1567.90 (12)
C11—C10—H10125.7C16—Fe1—C1539.92 (11)
C9—C10—H10125.7C13—Fe1—C1567.65 (11)
Fe1—C10—H10125.7C10—Fe1—C15107.97 (10)
C10—C11—C12108.09 (17)C9—Fe1—C15120.91 (9)
C10—C11—Fe169.60 (11)C11—Fe1—C15124.95 (10)
C12—C11—Fe169.95 (11)C8—Fe1—C15156.28 (9)
C10—C11—H11126.0C17—Fe1—C12122.41 (11)
C12—C11—H11126.0C16—Fe1—C12157.56 (11)
Fe1—C11—H11126.0C13—Fe1—C12108.88 (9)
C11—C12—C8108.25 (17)C10—Fe1—C1268.15 (8)
C11—C12—Fe169.57 (11)C9—Fe1—C1268.74 (8)
C8—C12—Fe169.46 (10)C11—Fe1—C1240.48 (8)
C11—C12—H12125.9C8—Fe1—C1240.91 (7)
C8—C12—H12125.9C15—Fe1—C12161.55 (10)
Fe1—C12—H12125.9C17—Fe1—C1468.07 (12)
C14—C13—C17107.2 (2)C16—Fe1—C1467.38 (10)
C14—C13—Fe170.71 (14)C13—Fe1—C1440.03 (11)
C17—C13—Fe168.82 (14)C10—Fe1—C14123.10 (10)
C14—C13—H13126.4C9—Fe1—C14157.00 (10)
C17—C13—H13126.4C11—Fe1—C14109.84 (10)
Fe1—C13—H13126.4C8—Fe1—C14161.46 (10)
C15—C14—C13108.8 (2)C15—Fe1—C1439.82 (10)
C15—C14—Fe169.90 (13)C12—Fe1—C14125.97 (9)
C13—C14—Fe169.27 (13)C1—N1—C5120.02 (17)
C15—C14—H14125.6C2—O1—C7118.28 (18)
N1—C1—C2—O1179.85 (17)C9—C10—Fe1—C14158.02 (13)
C8—C1—C2—O10.2 (3)C10—C9—Fe1—C17163.42 (14)
N1—C1—C2—C30.7 (3)C8—C9—Fe1—C1777.75 (16)
C8—C1—C2—C3179.65 (18)C10—C9—Fe1—C16122.15 (15)
O1—C2—C3—C4179.62 (19)C8—C9—Fe1—C16119.02 (14)
C1—C2—C3—C40.2 (3)C10—C9—Fe1—C13167.6 (3)
C2—C3—C4—C50.6 (3)C8—C9—Fe1—C1348.8 (3)
C3—C4—C5—N11.0 (3)C8—C9—Fe1—C10118.83 (16)
C3—C4—C5—C6179.5 (2)C10—C9—Fe1—C1137.19 (12)
N1—C1—C8—C1223.2 (3)C8—C9—Fe1—C1181.64 (12)
C2—C1—C8—C12156.51 (18)C10—C9—Fe1—C8118.83 (16)
N1—C1—C8—C9156.33 (18)C10—C9—Fe1—C1581.66 (16)
C2—C1—C8—C924.0 (3)C8—C9—Fe1—C15159.51 (13)
N1—C1—C8—Fe1111.27 (17)C10—C9—Fe1—C1280.79 (13)
C2—C1—C8—Fe168.4 (2)C8—C9—Fe1—C1238.04 (11)
C12—C8—C9—C100.1 (2)C10—C9—Fe1—C1453.4 (3)
C1—C8—C9—C10179.48 (18)C8—C9—Fe1—C14172.2 (2)
Fe1—C8—C9—C1059.55 (13)C10—C11—Fe1—C17161.5 (3)
C12—C8—C9—Fe159.44 (13)C12—C11—Fe1—C1742.3 (3)
C1—C8—C9—Fe1121.0 (2)C10—C11—Fe1—C1639.8 (3)
C8—C9—C10—C110.4 (2)C12—C11—Fe1—C16159.1 (2)
Fe1—C9—C10—C1159.16 (14)C10—C11—Fe1—C13160.67 (14)
C8—C9—C10—Fe159.57 (13)C12—C11—Fe1—C1380.10 (16)
C9—C10—C11—C120.6 (2)C12—C11—Fe1—C10119.24 (17)
Fe1—C10—C11—C1259.58 (14)C10—C11—Fe1—C937.33 (11)
C9—C10—C11—Fe159.02 (14)C12—C11—Fe1—C981.91 (12)
C10—C11—C12—C80.5 (2)C10—C11—Fe1—C881.62 (12)
Fe1—C11—C12—C858.87 (13)C12—C11—Fe1—C837.61 (11)
C10—C11—C12—Fe159.36 (14)C10—C11—Fe1—C1576.21 (15)
C9—C8—C12—C110.2 (2)C12—C11—Fe1—C15164.55 (13)
C1—C8—C12—C11179.86 (17)C10—C11—Fe1—C12119.24 (17)
Fe1—C8—C12—C1158.94 (13)C10—C11—Fe1—C14118.13 (13)
C9—C8—C12—Fe159.17 (13)C12—C11—Fe1—C14122.63 (14)
C1—C8—C12—Fe1121.20 (17)C12—C8—Fe1—C17121.03 (15)
C17—C13—C14—C150.5 (3)C9—C8—Fe1—C17120.25 (15)
Fe1—C13—C14—C1558.89 (17)C1—C8—Fe1—C174.4 (2)
C17—C13—C14—Fe159.40 (16)C12—C8—Fe1—C16162.99 (14)
C13—C14—C15—C160.2 (3)C9—C8—Fe1—C1678.29 (15)
Fe1—C14—C15—C1658.73 (16)C1—C8—Fe1—C1646.3 (2)
C13—C14—C15—Fe158.50 (17)C12—C8—Fe1—C1379.27 (15)
C14—C15—C16—C170.2 (3)C9—C8—Fe1—C13162.01 (13)
Fe1—C15—C16—C1759.60 (16)C1—C8—Fe1—C1337.4 (2)
C14—C15—C16—Fe159.44 (17)C12—C8—Fe1—C1080.89 (13)
C15—C16—C17—C130.5 (3)C9—C8—Fe1—C1037.83 (12)
Fe1—C16—C17—C1360.05 (17)C1—C8—Fe1—C10162.45 (18)
C15—C16—C17—Fe160.51 (17)C12—C8—Fe1—C9118.72 (16)
C14—C13—C17—C160.6 (3)C1—C8—Fe1—C9124.6 (2)
Fe1—C13—C17—C1660.01 (16)C12—C8—Fe1—C1137.23 (12)
C14—C13—C17—Fe160.60 (17)C9—C8—Fe1—C1181.49 (12)
C13—C17—Fe1—C16118.0 (2)C1—C8—Fe1—C11153.89 (19)
C16—C17—Fe1—C13118.0 (2)C12—C8—Fe1—C15167.0 (2)
C16—C17—Fe1—C1045.6 (3)C9—C8—Fe1—C1548.3 (3)
C13—C17—Fe1—C10163.6 (2)C1—C8—Fe1—C1576.3 (3)
C16—C17—Fe1—C976.37 (18)C9—C8—Fe1—C12118.72 (16)
C13—C17—Fe1—C9165.62 (15)C1—C8—Fe1—C12116.7 (2)
C16—C17—Fe1—C11168.8 (2)C12—C8—Fe1—C1451.7 (3)
C13—C17—Fe1—C1150.8 (3)C9—C8—Fe1—C14170.4 (3)
C16—C17—Fe1—C8118.39 (16)C1—C8—Fe1—C1465.0 (4)
C13—C17—Fe1—C8123.61 (16)C16—C15—Fe1—C1738.02 (17)
C16—C17—Fe1—C1537.22 (16)C14—C15—Fe1—C1781.80 (19)
C13—C17—Fe1—C1580.78 (17)C14—C15—Fe1—C16119.8 (3)
C16—C17—Fe1—C12160.05 (15)C16—C15—Fe1—C1382.94 (19)
C13—C17—Fe1—C1281.95 (18)C14—C15—Fe1—C1336.89 (18)
C16—C17—Fe1—C1480.32 (18)C16—C15—Fe1—C10119.66 (17)
C13—C17—Fe1—C1437.68 (16)C14—C15—Fe1—C10120.51 (17)
C15—C16—Fe1—C17119.2 (2)C16—C15—Fe1—C976.98 (19)
C15—C16—Fe1—C1380.30 (18)C14—C15—Fe1—C9163.20 (16)
C17—C16—Fe1—C1338.85 (17)C16—C15—Fe1—C11161.22 (16)
C15—C16—Fe1—C1078.84 (18)C14—C15—Fe1—C1178.9 (2)
C17—C16—Fe1—C10162.01 (15)C16—C15—Fe1—C842.1 (3)
C15—C16—Fe1—C9119.76 (16)C14—C15—Fe1—C8161.9 (2)
C17—C16—Fe1—C9121.09 (16)C16—C15—Fe1—C12165.7 (3)
C15—C16—Fe1—C1149.2 (3)C14—C15—Fe1—C1245.8 (4)
C17—C16—Fe1—C11168.4 (2)C16—C15—Fe1—C14119.8 (3)
C15—C16—Fe1—C8161.72 (15)C11—C12—Fe1—C17163.27 (15)
C17—C16—Fe1—C879.13 (18)C8—C12—Fe1—C1776.97 (16)
C17—C16—Fe1—C15119.2 (2)C11—C12—Fe1—C16161.0 (2)
C15—C16—Fe1—C12168.2 (2)C8—C12—Fe1—C1641.2 (3)
C17—C16—Fe1—C1249.0 (3)C11—C12—Fe1—C13119.46 (15)
C15—C16—Fe1—C1437.00 (17)C8—C12—Fe1—C13120.79 (14)
C17—C16—Fe1—C1482.15 (18)C11—C12—Fe1—C1037.65 (12)
C14—C13—Fe1—C17118.2 (2)C8—C12—Fe1—C1082.10 (12)
C14—C13—Fe1—C1679.86 (17)C11—C12—Fe1—C981.54 (13)
C17—C13—Fe1—C1638.29 (17)C8—C12—Fe1—C938.22 (11)
C14—C13—Fe1—C1045.7 (3)C8—C12—Fe1—C11119.76 (17)
C17—C13—Fe1—C10163.9 (2)C11—C12—Fe1—C8119.76 (17)
C14—C13—Fe1—C9156.5 (2)C11—C12—Fe1—C1543.6 (4)
C17—C13—Fe1—C938.4 (3)C8—C12—Fe1—C15163.4 (3)
C14—C13—Fe1—C1181.39 (17)C11—C12—Fe1—C1478.20 (17)
C17—C13—Fe1—C11160.45 (16)C8—C12—Fe1—C14162.04 (13)
C14—C13—Fe1—C8166.76 (14)C15—C14—Fe1—C1781.35 (19)
C17—C13—Fe1—C875.09 (18)C13—C14—Fe1—C1738.96 (17)
C14—C13—Fe1—C1536.71 (16)C15—C14—Fe1—C1637.10 (18)
C17—C13—Fe1—C1581.45 (18)C13—C14—Fe1—C1683.22 (18)
C14—C13—Fe1—C12123.92 (15)C15—C14—Fe1—C13120.3 (2)
C17—C13—Fe1—C12117.93 (17)C15—C14—Fe1—C1078.06 (19)
C17—C13—Fe1—C14118.2 (2)C13—C14—Fe1—C10161.63 (15)
C11—C10—Fe1—C17161.7 (3)C15—C14—Fe1—C939.4 (3)
C9—C10—Fe1—C1741.7 (3)C13—C14—Fe1—C9159.7 (2)
C11—C10—Fe1—C16164.63 (13)C15—C14—Fe1—C11121.21 (17)
C9—C10—Fe1—C1675.38 (16)C13—C14—Fe1—C11118.47 (16)
C11—C10—Fe1—C1348.7 (3)C15—C14—Fe1—C8156.9 (3)
C9—C10—Fe1—C13168.6 (2)C13—C14—Fe1—C836.6 (4)
C11—C10—Fe1—C9119.99 (16)C13—C14—Fe1—C15120.3 (2)
C9—C10—Fe1—C11119.99 (16)C15—C14—Fe1—C12163.71 (16)
C11—C10—Fe1—C881.77 (12)C13—C14—Fe1—C1275.98 (18)
C9—C10—Fe1—C838.22 (11)C2—C1—N1—C50.3 (3)
C11—C10—Fe1—C15123.19 (13)C8—C1—N1—C5179.98 (16)
C9—C10—Fe1—C15116.83 (13)C4—C5—N1—C10.5 (3)
C11—C10—Fe1—C1237.61 (11)C6—C5—N1—C1180.00 (17)
C9—C10—Fe1—C1282.37 (12)C3—C2—O1—C75.3 (3)
C11—C10—Fe1—C1481.99 (15)C1—C2—O1—C7175.28 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.932.653.577 (3)172
C4—H4···Cg1ii0.932.963.880 (3)173
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C12H12NO)]
Mr307.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)5.9949 (13), 20.284 (4), 12.035 (2)
β (°) 100.036 (3)
V3)1441.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.43 × 0.35 × 0.27
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.663, 0.767
No. of measured, independent and
observed [I > 2σ(I)] reflections
8219, 2673, 2280
Rint0.020
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.06
No. of reflections2673
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.27

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.932.653.577 (3)171.82
C4—H4···Cg1ii0.932.963.880 (3)173
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Henan Education Department (No. 2009B150019), the National Science Foundation of China (No. 20872133) and the Innovation Fund for Outstanding Scholars of Henan Province (No. 074200510005).

References

First citationBeletskaya, I. P., Tsvetkov, A. V., Latyshev, G. V., Tafeenko, V. A. & Lukashev, N. V. (2001). J. Organomet. Chem. 637–639, 653-663.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHao, X.-Q., Liang, D.-S., Liu, R.-Y., Gong, J.-F. & Song, M.-P. (2008). Acta Cryst. E64, m1275.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSarhan, A. A. O. & Izumi, T. (2003). J. Organomet. Chem. 675, 1–12.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-Q., Xu, C., Cen, F.-F., Li, Y.-F. & Ji, B.-M. (2008). Acta Cryst. E64, m1633.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009). Organometallics, 28, 1909–1916.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds