metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m558-m559

Tri­carbonyl(chlorodi­phenylstannyl){η5-[2-(di­methylamino)ethyl]cyclo­penta­dienyl}molybdenum

aChemistry Department, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105, USA, and bX-ray Crystallographic Laboratory, Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
*Correspondence e-mail: fischer@macalester.edu

(Received 2 April 2009; accepted 16 April 2009; online 25 April 2009)

Reaction of the tricarbon­yl{η5-[2-(dimethyl­amino)eth­yl]cyclo­penta­dien­yl}molybdenum anion and dichlorido­diphenyl­stannane affords the title compound, [MoSn(C6H5)2Cl(C9H14N)(CO)3], which exhibits a four-legged piano-stool geometry with chlorido­diphenyl­stannyl ligands unperturbed by the pendant 2-(dimethyl­amino)ethyl groups. The Mo—Sn bond length [2.7584 (5) Å] and the distortion of the tetra­hedral tin coordination geometry are similar to those observed in related tin-substituted tricarbonyl­molybdenum and -tungsten complexes.

Related literature

The synthesis of Mo(SnMe2Cl)(CO)3(η5-Cp) was reported by Patil & Graham (1966[Patil, H. R. H. & Graham, W. A. G. (1966). Inorg. Chem. 5, 1401-1405.]). This methodolgy was extended to prepare Mo(SnPh2Cl)(CO)3(η5-Cp) by Marks & Seyam (1974[Marks, T. J. & Seyam, A. M. (1974). Inorg. Chem. 13, 1624-1627.]). Triphenyl­tin and tricyclo­hexyl­tin derivatives of [M(CO)3(η5-C5H4CH2CH2NMe2)] (M = Mo and W) were reported by Fischer et al. (2005[Fischer, P. J., Krohn, K. M., Mwenda, E. T. & Young, V. G. Jr (2005). Organometallics, 24, 1776-1779.]). The structural characterization and reaction chemistry of a variety of half-sandwich molybdenum and tungsten chloro­stannyl complexes have been reported by Braunschweig et al. (2007[Braunschweig, H., Bera, H., Geibel, B., Dörfler, R., Götz, D., Seeler, F., Kupfer, T. & Radacki, K. (2007). Eur. J. Inorg. Chem. pp. 3416-3424.], 2009[Braunschweig, H., Dörfler, R., Mager, J., Radacki, K. & Seeler, F. (2009). J. Organomet. Chem. 694, 1134-1137.]). The Lewis acidity of coordinatively saturated chloro­stannyl ligands has been explored by Tang et al. (2005[Tang, L.-F., Zhao, X.-M., Zou, H.-B., Song, H.-B. & Zhai, Y.-P. (2005). J. Organomet. Chem. 690, 4124-4131.]). Structural parameters that define four-legged piano-stool geometries were detailed by Kubácek et al. (1982[Kubácek, P., Hoffmann, R. & Havias, Z. (1982). Organometallics, 1, 180-188.]).

[Scheme 1]

Experimental

Crystal data
  • [MoSn(C6H5)2Cl(C9H14N)(CO)3]

  • Mr = 624.52

  • Triclinic, [P \overline 1]

  • a = 8.8096 (8) Å

  • b = 9.3458 (8) Å

  • c = 16.1258 (14) Å

  • α = 89.392 (2)°

  • β = 85.269 (2)°

  • γ = 63.8560 (10)°

  • V = 1187.29 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.72 mm−1

  • T = 173 K

  • 0.25 × 0.12 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.673, Tmax = 0.935

  • 14425 measured reflections

  • 5431 independent reflections

  • 4081 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.083

  • S = 1.00

  • 5431 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C13 2.144 (4)
Sn1—C19 2.146 (4)
Sn1—Cl1 2.3914 (11)

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of half-sandwich molybdenum and tungsten chlorostannyl complexes is undergoing a revival since their discovery roughly forty years ago (Braunschweig et al., 2009). Chlorostannyl ligands permit functionalization at tin in heterobimetallic complexes (Braunschweig et al., 2007). The design of hypervalent tin ligands via intramolecular coordination of cyclopentadienyl-bound tethered donor groups is facilitated by chlorostannyl ligand Lewis acidity (Tang et al., 2005).

The complexes W(SnBu2Cl)(CO)3(η5-Cp) (2) and W(SnMe2Cl)(CO)3(η5-Cp*) (3) were structurally characterized by Braunschweig et al. (2007). The title complex 1 is the first crystallographically characterized substance of general formula M(SnAr2X)(CO)3(η5-Cp).

The Mo—Sn bond length in 1 is slightly shorter (Table 1) than the W—Sn distances found in 2 (2.7959 (5) Å) and 3 (2.7866 (3) Å), respectively. The steric impact of the SnPh3 ligand relative to SnPh2Cl is minimal on the basis of Mo—Sn bond lengths; this separation is 2.8152 (3) Å in Mo(SnPh3)(CO)3(η5-C5H4CH2CH2NMe2) (4) (Fischer et al., 2005). The geometric parameters of 1-4 satisfy the requirements for four-legged piano-stool structures (Kubácek et al., 1982).

The tetrahedral coordination geometry of the tin atoms in 1-3 are distorted more significantly than that of 4. In 4, the diagnostic six angles about tin range from 105.60 (9)° to 116.15 (6)°, while the corresponding angles in 1 range from 100.30 (11)° to 120.34 (11)°. In 1-3 the M—Sn—C angles are widened whereas the C—Sn—Cl angles are more acute in comparison to the ideal tetrahedral angle. The angles about the Sn atoms of 1 and 3 are very similar as the phenyl and methyl substituents, respectively, attempt to minimize steric hinderance with the M(CO)3(Cp) fragment. The C(13)—Sn(1)—Mo (116.32 (10)°) and C(19)—Sn(1)—Mo (120.34 (11)°) angles in 1 are similar to the corresponding angles found in 3 (118.56 (11), 118.31 (12)°). The widening of these angles is accommodated by compression of C—Sn—Cl angles. These angles in 1 (C(13)—Sn(1)—Cl(1), 100.30 (11)°; C(19)—Sn(1)—Cl(1), 101.25 (11)°) are similar to the corresponding angles found in 3 (99.75 (12), 100.48 (13)°).

Related literature top

The synthesis of Mo(SnMe2Cl)(CO)3(η5-Cp) was reported by Patil & Graham (1966). This methodolgy was extended to prepare Mo(SnPh2Cl)(CO)3(η5-Cp) by Marks & Seyam (1974). Triphenyltin and tricyclohexyltin derivatives of [M(CO)3(η5-C5H4CH2CH2NMe2)]- (M = Mo and W) were reported by Fischer et al. (2005). The structural characterization and reaction chemistry of a variety of half-sandwich molybdenum and tungsten chlorostannyl complexes have been reported by Braunschweig et al. (2007, 2009). The Lewis acidity of coordinatively saturated chlorostannyl ligands has been explored by Tang et al. (2005). Structural parameters that define four-legged piano-stool geometries were detailed by Kubácek et al. (1982).

Experimental top

The following procedures were conducted under argon using standard techniques for handling air and moisture sensitive substances. THF (75 ml) was added to molybdenum hexacarbonyl (0.415 g, 1.57 mmol) and sodium ((2-dimethylamino)ethyl)cyclopentadienide (0.300 g, 1.88 mmol). The yellow solution was refluxed for 15 h. Addition of dichlorodiphenylstannane (0.540 g, 1.57 mmol) in THF (30 ml) resulted in a pale yellow suspension. A single molybdenum carbonyl complex was present in solution (based on IR spectroscopy) within 10 min. The suspension was filtered through Celite. THF was removed in vacuo revealing a yellow oil. The product was extracted with pentane (5 * 70 ml). Each colorless extract was filtered. The combined extracts were concentrated in vacuo until a yellow solid precipitated. The suspension (75 ml) was cooled and filtered at -70°C. The pale yellow, moderately air-sensitive solid was washed with pentane (-60°C, 5 * 15 ml) and dried in vacuo. Recrystallization from pentane at -65°C afforded pale yellow microcrystals (0.461 g, 47%). X-ray quality single crystals of 1 were obtained from a supersaturated pentane solution.

Refinement top

The structure was solved using Bruker SHELXTL and refined using Bruker SHELXTL. The space group was determined based on systematic absences and intensity statistics. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to R1 = 0.0362 and wR2 = 0.0827 (F2, all data).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of 1 (50% thermal ellipsoids).
Tricarbonyl-1κ3C-chlorido-2κCl-diphenyl-2κ2C- {1η5-[2-(dimethylamino)ethyl]cyclopentadienyl}molybdenum(0) tin(IV)(MoSn) top
Crystal data top
[MoSn(C6H5)2Cl(C9H14N)(CO)3]Z = 2
Mr = 624.52F(000) = 616
Triclinic, P1Dx = 1.747 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8096 (8) ÅCell parameters from 2659 reflections
b = 9.3458 (8) Åθ = 2.4–27.4°
c = 16.1258 (14) ŵ = 1.72 mm1
α = 89.392 (2)°T = 173 K
β = 85.269 (2)°Plate, colourless
γ = 63.856 (1)°0.25 × 0.12 × 0.04 mm
V = 1187.29 (18) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5431 independent reflections
Radiation source: sealed tube4081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1111
Tmin = 0.673, Tmax = 0.935k = 1212
14425 measured reflectionsl = 020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0315P)2]
where P = (Fo2 + 2Fc2)/3
5431 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[MoSn(C6H5)2Cl(C9H14N)(CO)3]γ = 63.856 (1)°
Mr = 624.52V = 1187.29 (18) Å3
Triclinic, P1Z = 2
a = 8.8096 (8) ÅMo Kα radiation
b = 9.3458 (8) ŵ = 1.72 mm1
c = 16.1258 (14) ÅT = 173 K
α = 89.392 (2)°0.25 × 0.12 × 0.04 mm
β = 85.269 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5431 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4081 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.935Rint = 0.056
14425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.00Δρmax = 0.71 e Å3
5431 reflectionsΔρmin = 0.56 e Å3
282 parameters
Special details top

Experimental. Anal. Calcd for C24H24ClMoNO3Sn: C, 46.15; H, 3.87; N, 2.24. Found: C, 46.01, H, 3.78; N, 2.30.

IR (THF) ν(CO): 2011 (s), 1944 (m, sh), 1912 (s) cm-1; (pentane) ν(CO): 2015 (s), 1952 (m), 1919 (m) cm-1; (nujol) ν(CO): 2011 (s), 1942 (m, sh), 1893 (s) cm-1.

NMR (CD2Cl2, 300 MHz) 1H δ 7.78–7.54 (m, 4H, ortho, SnPh2Cl), 7.48–7.32 (m, 6H, meta/para, SnPh2Cl), 5.52 (app. t, J=2.1 Hz, 2H, Cp), 5.27 (app. t, J=2.1 Hz, 2H, Cp), 2.44–2.29 (m, 4H, CH2CH2), 2.14 (s, 6H, CH3).

NMR (CD2Cl2, 75.5 MHz) 13C{1H} δ 228.64 (s, trans CO), 224.35 (s, cis CO), 146.11 (s, ipso C), 135.30 (s, ortho C, 117,119Sn-13C sat. (merged): 135.63, 134.97, 2JSnC=49.7 Hz), 129.80 (s, para, 117,119Sn-13C sat. (merged): 129.89, 129.73, 4JSnC=12.2 Hz), 129.12 (s, meta C, 117,119Sn-13C sat. (merged): 129.48, 128.76, 3JSnC=54.5 Hz), 114.60 (s, quat. C, Cp), 91.75 (s, Cp), 89.65 (s, Cp), 61.15 (s, CH2CH2N(CH3)2), 45.57 (s, CH2CH2N(CH3)2), 27.08 (s, CH2CH2N(CH3)2).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. A crystal (approximate dimensions 1/4 x 0.12 x 0.04 mm3) was placed onto the tip of a 0.1 mm diameter glass capillary and mounted on a CCD area detector diffractometer for a data collection at 173 (2) K (SMART, Bruker, 2003). A preliminary set of cell constants was calculated from reflections harvested from three sets of 20 frames. These initial sets of frames were oriented such that orthogonal wedges of reciprocal space were surveyed. This produced initial orientation matrices determined from 48 reflections. The data collection was carried out using Mo Kα radiation (graphite monochromator) with a frame time of 8 s and a detector distance of 4.8 cm. A randomly oriented region of reciprocal space was surveyed to the extent of one sphere and to a resolution of 0.77 Å. Four major sections of frames were collected with 0.30° steps in ω at four different ϕ settings and a detector position of -28° in 2θ. The intensity data were corrected for absorption and decay (SADABS, Bruker, 2003). Final cell constants were calculated from 2659 strong reflections from the actual data collection after integration (SAINT, Bruker, 2003).

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.58741 (4)0.72843 (4)0.66247 (2)0.01938 (9)
C10.6228 (5)0.6492 (5)0.5449 (3)0.0282 (9)
O10.6433 (4)0.6021 (4)0.47726 (19)0.0434 (8)
C20.8374 (5)0.6518 (5)0.6404 (3)0.0265 (9)
O20.9820 (4)0.5983 (4)0.6286 (2)0.0420 (8)
C30.4662 (5)0.9349 (5)0.6085 (2)0.0223 (9)
O30.3862 (3)1.0542 (3)0.57849 (17)0.0279 (7)
C40.6083 (5)0.5692 (5)0.7791 (2)0.0242 (9)
C50.5505 (5)0.5124 (5)0.7139 (3)0.0267 (9)
H5A0.60930.41050.68680.032*
C60.3894 (6)0.6330 (5)0.6953 (3)0.0353 (11)
H6A0.32220.62630.65380.042*
C70.3483 (5)0.7632 (5)0.7495 (3)0.0338 (11)
H7A0.24700.86020.75140.041*
C80.4815 (5)0.7269 (5)0.8010 (2)0.0267 (9)
H8A0.48620.79530.84280.032*
C90.7613 (5)0.4754 (5)0.8262 (3)0.0273 (9)
H9A0.80190.54840.84980.033*
H9B0.85420.39740.78810.033*
C100.7123 (5)0.3881 (5)0.8963 (3)0.0296 (10)
H10A0.60870.46560.92890.035*
H10B0.68440.30720.87140.035*
N10.8441 (4)0.3094 (4)0.9527 (2)0.0262 (8)
C110.9863 (5)0.1694 (5)0.9137 (3)0.0304 (10)
H11A1.03500.20080.86410.046*
H11B0.94660.09160.89770.046*
H11C1.07300.12150.95310.046*
C120.7735 (6)0.2630 (5)1.0275 (3)0.0370 (11)
H12A0.68130.35791.05520.055*
H12B0.86260.21161.06540.055*
H12C0.72930.18831.01210.055*
Sn10.66959 (3)0.95053 (3)0.732290 (16)0.02009 (8)
Cl10.86682 (14)0.82366 (13)0.83383 (7)0.0336 (3)
C130.4703 (5)1.1368 (5)0.8078 (2)0.0235 (9)
C140.4566 (6)1.1328 (5)0.8939 (3)0.0321 (10)
H14A0.53451.04260.92090.038*
C150.3298 (6)1.2593 (6)0.9416 (3)0.0418 (12)
H15A0.32101.25411.00050.050*
C160.2193 (6)1.3896 (6)0.9037 (3)0.0450 (13)
H16A0.13521.47670.93640.054*
C170.2282 (6)1.3965 (5)0.8176 (3)0.0396 (12)
H17A0.14921.48720.79140.047*
C180.3534 (5)1.2702 (5)0.7697 (3)0.0301 (10)
H18A0.35921.27470.71070.036*
C190.7998 (5)1.0601 (4)0.6573 (2)0.0234 (9)
C200.7633 (6)1.1042 (5)0.5768 (3)0.0353 (11)
H20A0.68441.07830.55170.042*
C210.8401 (6)1.1859 (6)0.5316 (3)0.0410 (12)
H21A0.81381.21450.47600.049*
C220.9535 (6)1.2252 (5)0.5667 (3)0.0379 (12)
H22A1.00461.28240.53600.045*
C230.9928 (6)1.1815 (5)0.6468 (3)0.0347 (11)
H23A1.07301.20680.67110.042*
C240.9161 (5)1.1009 (5)0.6922 (3)0.0286 (10)
H24A0.94281.07280.74770.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02176 (19)0.01690 (18)0.01947 (19)0.00855 (15)0.00209 (14)0.00347 (14)
C10.035 (3)0.022 (2)0.028 (2)0.012 (2)0.0045 (19)0.0042 (18)
O10.061 (2)0.0359 (19)0.0279 (18)0.0161 (17)0.0040 (16)0.0046 (15)
C20.030 (2)0.022 (2)0.028 (2)0.0111 (19)0.0049 (19)0.0037 (17)
O20.0278 (18)0.045 (2)0.048 (2)0.0117 (16)0.0004 (15)0.0022 (16)
C30.027 (2)0.026 (2)0.016 (2)0.0140 (19)0.0008 (17)0.0027 (17)
O30.0258 (16)0.0235 (15)0.0288 (16)0.0053 (13)0.0058 (13)0.0093 (13)
C40.023 (2)0.024 (2)0.027 (2)0.0111 (18)0.0017 (17)0.0083 (17)
C50.032 (2)0.019 (2)0.035 (2)0.0164 (19)0.0063 (19)0.0107 (18)
C60.031 (2)0.042 (3)0.042 (3)0.023 (2)0.013 (2)0.023 (2)
C70.021 (2)0.033 (3)0.039 (3)0.005 (2)0.0062 (19)0.014 (2)
C80.033 (2)0.025 (2)0.020 (2)0.0130 (19)0.0052 (18)0.0064 (17)
C90.032 (2)0.026 (2)0.029 (2)0.018 (2)0.0093 (19)0.0076 (18)
C100.026 (2)0.029 (2)0.034 (2)0.0116 (19)0.0073 (19)0.0117 (19)
N10.0263 (19)0.0221 (18)0.0282 (19)0.0085 (15)0.0057 (15)0.0090 (15)
C110.034 (3)0.022 (2)0.034 (3)0.010 (2)0.009 (2)0.0043 (18)
C120.042 (3)0.036 (3)0.029 (2)0.015 (2)0.002 (2)0.014 (2)
Sn10.02179 (15)0.01760 (14)0.02049 (15)0.00814 (12)0.00317 (11)0.00216 (11)
Cl10.0381 (6)0.0298 (6)0.0355 (6)0.0152 (5)0.0179 (5)0.0096 (5)
C130.024 (2)0.022 (2)0.027 (2)0.0132 (18)0.0016 (17)0.0024 (17)
C140.037 (3)0.032 (2)0.027 (2)0.016 (2)0.001 (2)0.0019 (19)
C150.047 (3)0.051 (3)0.030 (3)0.026 (3)0.011 (2)0.012 (2)
C160.038 (3)0.038 (3)0.055 (3)0.018 (2)0.023 (2)0.024 (3)
C170.034 (3)0.022 (2)0.058 (3)0.009 (2)0.003 (2)0.002 (2)
C180.032 (2)0.023 (2)0.034 (2)0.013 (2)0.0053 (19)0.0018 (19)
C190.021 (2)0.019 (2)0.027 (2)0.0069 (17)0.0012 (17)0.0003 (17)
C200.037 (3)0.042 (3)0.032 (3)0.021 (2)0.010 (2)0.008 (2)
C210.050 (3)0.053 (3)0.026 (2)0.028 (3)0.003 (2)0.011 (2)
C220.042 (3)0.030 (2)0.041 (3)0.019 (2)0.016 (2)0.001 (2)
C230.030 (2)0.034 (3)0.044 (3)0.020 (2)0.006 (2)0.006 (2)
C240.025 (2)0.029 (2)0.030 (2)0.0112 (19)0.0011 (18)0.0022 (19)
Geometric parameters (Å, º) top
Mo1—C31.981 (4)C11—H11B0.9800
Mo1—C11.992 (4)C11—H11C0.9800
Mo1—C21.994 (4)C12—H12A0.9800
Mo1—C62.308 (4)C12—H12B0.9800
Mo1—C52.317 (4)C12—H12C0.9800
Mo1—C72.331 (4)Sn1—C132.144 (4)
Mo1—C82.351 (4)Sn1—C192.146 (4)
Mo1—C42.353 (4)Sn1—Cl12.3914 (11)
Mo1—Sn12.7584 (5)C13—C141.384 (6)
C1—O11.150 (5)C13—C181.396 (6)
C2—O21.145 (5)C14—C151.397 (6)
C3—O31.152 (4)C14—H14A0.9500
C4—C51.408 (6)C15—C161.357 (7)
C4—C81.428 (5)C15—H15A0.9500
C4—C91.509 (5)C16—C171.386 (7)
C5—C61.424 (6)C16—H16A0.9500
C5—H5A0.9500C17—C181.392 (6)
C6—C71.399 (6)C17—H17A0.9500
C6—H6A0.9500C18—H18A0.9500
C7—C81.409 (6)C19—C201.379 (6)
C7—H7A0.9500C19—C241.398 (5)
C8—H8A0.9500C20—C211.390 (6)
C9—C101.530 (5)C20—H20A0.9500
C9—H9A0.9900C21—C221.369 (6)
C9—H9B0.9900C21—H21A0.9500
C10—N11.457 (5)C22—C231.376 (6)
C10—H10A0.9900C22—H22A0.9500
C10—H10B0.9900C23—C241.384 (6)
N1—C111.456 (5)C23—H23A0.9500
N1—C121.461 (5)C24—H24A0.9500
C11—H11A0.9800
C3—Mo1—C181.02 (16)C4—C9—C10109.1 (3)
C3—Mo1—C2109.86 (16)C4—C9—H9A109.9
C1—Mo1—C279.28 (17)C10—C9—H9A109.9
C3—Mo1—C6106.33 (16)C4—C9—H9B109.9
C1—Mo1—C691.77 (17)C10—C9—H9B109.9
C2—Mo1—C6140.66 (16)H9A—C9—H9B108.3
C3—Mo1—C5141.90 (15)N1—C10—C9114.0 (3)
C1—Mo1—C593.04 (16)N1—C10—H10A108.8
C2—Mo1—C5105.82 (15)C9—C10—H10A108.8
C6—Mo1—C535.87 (14)N1—C10—H10B108.8
C3—Mo1—C792.95 (15)C9—C10—H10B108.8
C1—Mo1—C7122.26 (17)H10A—C10—H10B107.6
C2—Mo1—C7151.56 (16)C11—N1—C10112.1 (3)
C6—Mo1—C735.08 (16)C11—N1—C12109.4 (3)
C5—Mo1—C758.61 (15)C10—N1—C12110.0 (3)
C3—Mo1—C8113.36 (15)N1—C11—H11A109.5
C1—Mo1—C8149.29 (16)N1—C11—H11B109.5
C2—Mo1—C8117.21 (16)H11A—C11—H11B109.5
C6—Mo1—C858.71 (16)N1—C11—H11C109.5
C5—Mo1—C858.52 (15)H11A—C11—H11C109.5
C7—Mo1—C835.02 (15)H11B—C11—H11C109.5
C3—Mo1—C4148.50 (15)N1—C12—H12A109.5
C1—Mo1—C4124.20 (15)N1—C12—H12B109.5
C2—Mo1—C494.55 (15)H12A—C12—H12B109.5
C6—Mo1—C459.16 (14)N1—C12—H12C109.5
C5—Mo1—C435.09 (14)H12A—C12—H12C109.5
C7—Mo1—C458.64 (14)H12B—C12—H12C109.5
C8—Mo1—C435.36 (13)C13—Sn1—C19106.86 (14)
C3—Mo1—Sn171.39 (11)C13—Sn1—Cl1100.30 (11)
C1—Mo1—Sn1129.99 (12)C19—Sn1—Cl1101.25 (11)
C2—Mo1—Sn172.45 (11)C13—Sn1—Mo1116.32 (10)
C6—Mo1—Sn1135.31 (13)C19—Sn1—Mo1120.34 (11)
C5—Mo1—Sn1133.76 (11)Cl1—Sn1—Mo1108.86 (3)
C7—Mo1—Sn1100.50 (12)C14—C13—C18118.4 (4)
C8—Mo1—Sn180.70 (10)C14—C13—Sn1122.3 (3)
C4—Mo1—Sn198.79 (10)C18—C13—Sn1119.3 (3)
O1—C1—Mo1179.4 (4)C13—C14—C15121.0 (4)
O2—C2—Mo1175.7 (4)C13—C14—H14A119.5
O3—C3—Mo1175.6 (3)C15—C14—H14A119.5
C5—C4—C8107.1 (4)C16—C15—C14120.0 (4)
C5—C4—C9127.1 (4)C16—C15—H15A120.0
C8—C4—C9125.3 (4)C14—C15—H15A120.0
C5—C4—Mo171.0 (2)C15—C16—C17120.5 (4)
C8—C4—Mo172.2 (2)C15—C16—H16A119.8
C9—C4—Mo1128.7 (3)C17—C16—H16A119.8
C4—C5—C6108.7 (4)C16—C17—C18119.8 (4)
C4—C5—Mo173.9 (2)C16—C17—H17A120.1
C6—C5—Mo171.7 (2)C18—C17—H17A120.1
C4—C5—H5A125.7C17—C18—C13120.4 (4)
C6—C5—H5A125.7C17—C18—H18A119.8
Mo1—C5—H5A120.5C13—C18—H18A119.8
C7—C6—C5107.4 (4)C20—C19—C24117.8 (4)
C7—C6—Mo173.4 (2)C20—C19—Sn1122.2 (3)
C5—C6—Mo172.4 (2)C24—C19—Sn1119.8 (3)
C7—C6—H6A126.3C19—C20—C21121.1 (4)
C5—C6—H6A126.3C19—C20—H20A119.4
Mo1—C6—H6A119.8C21—C20—H20A119.4
C6—C7—C8108.9 (4)C22—C21—C20120.4 (4)
C6—C7—Mo171.6 (2)C22—C21—H21A119.8
C8—C7—Mo173.2 (2)C20—C21—H21A119.8
C6—C7—H7A125.5C21—C22—C23119.6 (4)
C8—C7—H7A125.5C21—C22—H22A120.2
Mo1—C7—H7A121.3C23—C22—H22A120.2
C7—C8—C4107.9 (4)C22—C23—C24120.3 (4)
C7—C8—Mo171.7 (2)C22—C23—H23A119.9
C4—C8—Mo172.4 (2)C24—C23—H23A119.9
C7—C8—H8A126.0C23—C24—C19120.9 (4)
C4—C8—H8A126.0C23—C24—H24A119.6
Mo1—C8—H8A121.5C19—C24—H24A119.6
C3—Mo1—C1—O1152 (36)C4—Mo1—C7—C679.8 (3)
C2—Mo1—C1—O196 (36)Sn1—Mo1—C7—C6173.8 (2)
C6—Mo1—C1—O146 (36)C3—Mo1—C7—C8128.2 (3)
C5—Mo1—C1—O110 (36)C1—Mo1—C7—C8150.6 (2)
C7—Mo1—C1—O164 (36)C2—Mo1—C7—C815.9 (5)
C8—Mo1—C1—O131 (36)C6—Mo1—C7—C8117.2 (4)
C4—Mo1—C1—O17 (36)C5—Mo1—C7—C878.7 (3)
Sn1—Mo1—C1—O1152 (36)C4—Mo1—C7—C837.4 (2)
C3—Mo1—C2—O2157 (5)Sn1—Mo1—C7—C856.6 (2)
C1—Mo1—C2—O281 (5)C6—C7—C8—C40.8 (4)
C6—Mo1—C2—O21 (5)Mo1—C7—C8—C463.9 (3)
C5—Mo1—C2—O29 (5)C6—C7—C8—Mo163.1 (3)
C7—Mo1—C2—O261 (5)C5—C4—C8—C70.5 (4)
C8—Mo1—C2—O272 (5)C9—C4—C8—C7171.4 (4)
C4—Mo1—C2—O243 (5)Mo1—C4—C8—C763.4 (3)
Sn1—Mo1—C2—O2141 (5)C5—C4—C8—Mo162.9 (3)
C1—Mo1—C3—O398 (4)C9—C4—C8—Mo1125.2 (4)
C2—Mo1—C3—O3173 (4)C3—Mo1—C8—C758.8 (3)
C6—Mo1—C3—O39 (4)C1—Mo1—C8—C754.5 (4)
C5—Mo1—C3—O314 (4)C2—Mo1—C8—C7171.6 (3)
C7—Mo1—C3—O324 (4)C6—Mo1—C8—C736.7 (2)
C8—Mo1—C3—O354 (4)C5—Mo1—C8—C779.0 (3)
C4—Mo1—C3—O348 (4)C4—Mo1—C8—C7116.4 (4)
Sn1—Mo1—C3—O3125 (4)Sn1—Mo1—C8—C7123.7 (2)
C3—Mo1—C4—C5107.3 (3)C3—Mo1—C8—C4175.1 (2)
C1—Mo1—C4—C531.1 (3)C1—Mo1—C8—C461.9 (4)
C2—Mo1—C4—C5111.3 (3)C2—Mo1—C8—C455.2 (3)
C6—Mo1—C4—C537.6 (3)C6—Mo1—C8—C479.6 (3)
C7—Mo1—C4—C578.8 (3)C5—Mo1—C8—C437.3 (2)
C8—Mo1—C4—C5115.9 (3)C7—Mo1—C8—C4116.4 (4)
Sn1—Mo1—C4—C5175.8 (2)Sn1—Mo1—C8—C4119.9 (2)
C3—Mo1—C4—C88.6 (4)C5—C4—C9—C1084.0 (5)
C1—Mo1—C4—C8147.0 (3)C8—C4—C9—C1086.2 (5)
C2—Mo1—C4—C8132.9 (3)Mo1—C4—C9—C10178.8 (3)
C6—Mo1—C4—C878.2 (3)C4—C9—C10—N1172.7 (3)
C5—Mo1—C4—C8115.9 (3)C9—C10—N1—C1171.6 (4)
C7—Mo1—C4—C837.0 (2)C9—C10—N1—C12166.5 (4)
Sn1—Mo1—C4—C860.0 (2)C3—Mo1—Sn1—C1369.08 (17)
C3—Mo1—C4—C9129.9 (4)C1—Mo1—Sn1—C13129.3 (2)
C1—Mo1—C4—C991.7 (4)C2—Mo1—Sn1—C13172.07 (17)
C2—Mo1—C4—C911.6 (4)C6—Mo1—Sn1—C1325.59 (19)
C6—Mo1—C4—C9160.4 (4)C5—Mo1—Sn1—C1376.73 (19)
C5—Mo1—C4—C9122.8 (5)C7—Mo1—Sn1—C1320.51 (16)
C7—Mo1—C4—C9158.3 (4)C8—Mo1—Sn1—C1349.54 (16)
C8—Mo1—C4—C9121.3 (5)C4—Mo1—Sn1—C1380.05 (15)
Sn1—Mo1—C4—C961.3 (4)C3—Mo1—Sn1—C1962.57 (17)
C8—C4—C5—C60.1 (4)C1—Mo1—Sn1—C192.39 (19)
C9—C4—C5—C6171.6 (4)C2—Mo1—Sn1—C1956.28 (17)
Mo1—C4—C5—C663.8 (3)C6—Mo1—Sn1—C19157.24 (19)
C8—C4—C5—Mo163.7 (3)C5—Mo1—Sn1—C19151.62 (19)
C9—C4—C5—Mo1124.6 (4)C7—Mo1—Sn1—C19152.15 (16)
C3—Mo1—C5—C4126.0 (3)C8—Mo1—Sn1—C19178.81 (16)
C1—Mo1—C5—C4154.7 (3)C4—Mo1—Sn1—C19148.31 (16)
C2—Mo1—C5—C474.9 (3)C3—Mo1—Sn1—Cl1178.60 (12)
C6—Mo1—C5—C4116.5 (4)C1—Mo1—Sn1—Cl1118.42 (16)
C7—Mo1—C5—C478.9 (3)C2—Mo1—Sn1—Cl159.75 (12)
C8—Mo1—C5—C437.6 (2)C6—Mo1—Sn1—Cl186.73 (15)
Sn1—Mo1—C5—C45.7 (3)C5—Mo1—Sn1—Cl135.59 (15)
C3—Mo1—C5—C69.5 (4)C7—Mo1—Sn1—Cl191.81 (11)
C1—Mo1—C5—C688.8 (3)C8—Mo1—Sn1—Cl162.78 (11)
C2—Mo1—C5—C6168.5 (3)C4—Mo1—Sn1—Cl132.28 (10)
C7—Mo1—C5—C637.6 (3)C19—Sn1—C13—C14123.0 (3)
C8—Mo1—C5—C678.9 (3)Cl1—Sn1—C13—C1417.8 (3)
C4—Mo1—C5—C6116.5 (4)Mo1—Sn1—C13—C1499.3 (3)
Sn1—Mo1—C5—C6110.8 (3)C19—Sn1—C13—C1854.6 (3)
C4—C5—C6—C70.4 (5)Cl1—Sn1—C13—C18159.8 (3)
Mo1—C5—C6—C765.5 (3)Mo1—Sn1—C13—C1883.1 (3)
C4—C5—C6—Mo165.1 (3)C18—C13—C14—C150.5 (6)
C3—Mo1—C6—C771.1 (3)Sn1—C13—C14—C15177.1 (3)
C1—Mo1—C6—C7152.3 (3)C13—C14—C15—C160.9 (7)
C2—Mo1—C6—C7132.6 (3)C14—C15—C16—C171.7 (7)
C5—Mo1—C6—C7115.0 (4)C15—C16—C17—C181.2 (7)
C8—Mo1—C6—C736.7 (2)C16—C17—C18—C130.2 (7)
C4—Mo1—C6—C778.2 (3)C14—C13—C18—C171.1 (6)
Sn1—Mo1—C6—C78.7 (3)Sn1—C13—C18—C17176.6 (3)
C3—Mo1—C6—C5173.9 (3)C13—Sn1—C19—C2096.5 (4)
C1—Mo1—C6—C592.7 (3)Cl1—Sn1—C19—C20158.9 (3)
C2—Mo1—C6—C517.6 (4)Mo1—Sn1—C19—C2039.0 (4)
C7—Mo1—C6—C5115.0 (4)C13—Sn1—C19—C2478.2 (3)
C8—Mo1—C6—C578.3 (3)Cl1—Sn1—C19—C2426.4 (3)
C4—Mo1—C6—C536.8 (2)Mo1—Sn1—C19—C24146.3 (3)
Sn1—Mo1—C6—C5106.3 (3)C24—C19—C20—C210.3 (7)
C5—C6—C7—C80.7 (5)Sn1—C19—C20—C21175.1 (3)
Mo1—C6—C7—C864.2 (3)C19—C20—C21—C220.4 (7)
C5—C6—C7—Mo164.9 (3)C20—C21—C22—C230.9 (7)
C3—Mo1—C7—C6114.6 (3)C21—C22—C23—C241.2 (7)
C1—Mo1—C7—C633.4 (3)C22—C23—C24—C191.0 (6)
C2—Mo1—C7—C6101.3 (4)C20—C19—C24—C230.6 (6)
C5—Mo1—C7—C638.5 (2)Sn1—C19—C24—C23175.5 (3)
C8—Mo1—C7—C6117.2 (4)

Experimental details

Crystal data
Chemical formula[MoSn(C6H5)2Cl(C9H14N)(CO)3]
Mr624.52
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.8096 (8), 9.3458 (8), 16.1258 (14)
α, β, γ (°)89.392 (2), 85.269 (2), 63.856 (1)
V3)1187.29 (18)
Z2
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.25 × 0.12 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.673, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
14425, 5431, 4081
Rint0.056
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.083, 1.00
No. of reflections5431
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.56

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mo1—Sn12.7584 (5)Sn1—C192.146 (4)
Sn1—C132.144 (4)Sn1—Cl12.3914 (11)
 

Acknowledgements

The donors of the Petroleum Research Fund, administered by the American Chemical Society (grant No. ACS-PRF 46626-B), and an award from Research Corporation (grant No. CC5932) supported this research.

References

First citationBraunschweig, H., Bera, H., Geibel, B., Dörfler, R., Götz, D., Seeler, F., Kupfer, T. & Radacki, K. (2007). Eur. J. Inorg. Chem. pp. 3416–3424.  Web of Science CSD CrossRef Google Scholar
First citationBraunschweig, H., Dörfler, R., Mager, J., Radacki, K. & Seeler, F. (2009). J. Organomet. Chem. 694, 1134–1137.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFischer, P. J., Krohn, K. M., Mwenda, E. T. & Young, V. G. Jr (2005). Organometallics, 24, 1776–1779.  Web of Science CSD CrossRef CAS Google Scholar
First citationKubácek, P., Hoffmann, R. & Havias, Z. (1982). Organometallics, 1, 180–188.  Google Scholar
First citationMarks, T. J. & Seyam, A. M. (1974). Inorg. Chem. 13, 1624–1627.  CrossRef CAS Web of Science Google Scholar
First citationPatil, H. R. H. & Graham, W. A. G. (1966). Inorg. Chem. 5, 1401–1405.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, L.-F., Zhao, X.-M., Zou, H.-B., Song, H.-B. & Zhai, Y.-P. (2005). J. Organomet. Chem. 690, 4124–4131.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m558-m559
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds