organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1144-o1145

(E)-1-Methyl-4-[2-(1-naphth­yl)vin­yl]pyridinium 4-bromo­benzene­sulfonate

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 27 March 2009; accepted 22 April 2009; online 30 April 2009)

In the title compound, C18H16N+·C6H4BrO3S, the cation exists in the E configuration and the whole mol­ecule of the cation is disordered with a refined site-occupancy ratio of 0.733 (1):0.267 (1). The naphthalene system is not planar, the inter­planar angle between the two aromatic rings being 5.0 (5)° for the major component and 5.7 (10)° for the minor component. The cation is twisted with dihedral angles between the pyridinium ring and the two aromatic rings of the naphthalene system of 56.3 (5) and 51.4 (5)° (for the major component) and 52.2 (11) and 53.4 (11)° (for the minor component). The pyridinium ring and the benzene ring of the anion are inclined to each other at inter­planar angles of 85.0 (4) and 71.5 (9)° for the major and minor components, respectively. In the crystal packing, the cations and anions are alternately arranged with the cations stacked in an anti­parallel manner along the c axis and the anions linked together into chains along the same direction. The cations are linked to the anions into chains along [102] by weak C—H⋯O inter­actions. The crystal structure is further stabilized by C—H⋯π inter­actions and ππ contacts, with CgCg distances of 3.502 (9) and 3.698 (6) Å. A short Br⋯O contact [3.029 (4) Å] is also present.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to NLO materials research, see: Cheng et al. (1991a[Cheng, L. T., Tam, W., Marder, S. R., Stiegman, A. E., Rikken, G. & Spangler, C. W. (1991a). J. Phys. Chem. 95, 10643-10652.]; 1991b[Cheng, L. T., Tam, W., Stevenson, S. H., Meredith, G. R., Rikken, G. & Marder, S. R. (1991b). J. Phys. Chem. 95, 10631-10643.]); Dittrich et al. (2003[Dittrich, Ph., Bartlome, R., Montemezzani, G. & Günter, P. (2003). Appl. Surface Sci. 220, 88-95.]); Ogawa et al. (2008[Ogawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836-842.]); Weir et al. (2003[Weir, C. A. M., Hadizad, T., Beaudin, A. M. R. & Wang, Z.-Y. (2003). Tetrahedron Lett. 44, 4697-4700.]); Yang et al. (2007[Yang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth. Des. 7, 83-86.]). For related structures, see, Chanawanno et al. (2008[Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882-o1883.]) and Chantrapromma et al. (2006[Chantrapromma, S., Ruanwas, P., Fun, H.-K. & Patil, P. S. (2006). Acta Cryst. E62, o5494-o5496.]; 2007[Chantrapromma, S., Suwanwong, T. & Fun, H.-K. (2007). Acta Cryst. E63, o821-o823.]; 2008[Chantrapromma, S., Laksana, C., Ruanwas, P. & Fun, H.-K. (2008). Acta Cryst. E64, o574-o575.]; 2009[Chantrapromma, S., Jansrisewangwong, P., Musor, R. & Fun, H.-K. (2009). Acta Cryst. E65, o217-o218.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N+·C6H4BrO3S

  • Mr = 482.38

  • Orthorhombic, P n a 21

  • a = 12.2195 (2) Å

  • b = 21.9907 (4) Å

  • c = 7.6256 (1) Å

  • V = 2049.12 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.14 mm−1

  • T = 100 K

  • 0.46 × 0.15 × 0.14 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.437, Tmax = 0.753

  • 15171 measured reflections

  • 5563 independent reflections

  • 3975 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.107

  • S = 1.03

  • 5563 reflections

  • 326 parameters

  • 11 restraints

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.49 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2373 Friedel pairs

  • Flack parameter: −0.003 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2AA⋯O1i 0.95 2.53 3.392 (11) 151
C5A—H5AA⋯O2ii 0.95 2.47 3.362 (10) 157
C11A—H11A⋯O1i 0.95 2.34 3.282 (10) 175
C14A—H14A⋯O2iii 0.95 2.44 3.373 (7) 169
C16A—H16A⋯O3iv 0.95 2.49 3.361 (11) 153
C17A—H17A⋯O1i 0.95 2.35 3.227 (14) 153
C18A—H18A⋯O3iv 0.98 2.57 3.501 (8) 159
C19—H19A⋯O2 0.95 2.56 2.930 (5) 103
C20—H20A⋯O1iv 0.95 2.34 3.252 (5) 161
C22—H22A⋯O3v 0.95 2.51 3.274 (6) 137
C4A—H4AACg2vi 0.95 2.84 3.659 (14) 145
C7A—H7AACg4vii 0.95 2.88 3.657 (9) 140
C4B—H4BACg2vi 0.95 2.90 3.59 (2) 130
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-1]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x, y, z-1; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (vi) [-x, -y+1, z+{\script{1\over 2}}]; (vii) [-x+1, -y+1, z-{\script{1\over 2}}]. Cg2 and Cg4 are the centroids of the C1A–C6A and C19–C24 rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nonlinear optics has been recognized for several decades as a promising field with important applications in the domain of opto-electronics and photonics. Hence, a variety of materials have been investigated for their nonlinear optical (NLO) properties. In order to obtain second-order NLO single crystals, the main requirements should be the choice of molecules with large hyperpolarizability (β) and the alignment of these molecules with optimal orientation into a noncentrosymmetric space group in the crystal. Organic crystals with extensive conjugated π systems with large hyperpolarizability which exhibit NLO properties have been reported (Dittrich et al., 2003; Ogawa et al., 2008; Weir et al., 2004; Yang et al., 2007). Styryl pyridinium derivatives are considered to be good conjugated π-systems (Cheng et al., 1991a, 1991b). We have previously synthesized and reported the crystal structures of several pyridinium salts (Chanawanno et al., 2008; Chantrapromma et al., 2006, 2007, 2008, 2009) in order to study their NLO properties. The title compound (I) was synthesized by introducing a naphthalenyl group into the cation in order to increase the extent of π-conjugation in the system. The title compound crystallizes in the orthorhombic non-centrosymmetric space group Pna21 therefore it should exhibit second-order nonlinear optical properties.

Fig. 1 shows the asymmetric unit of (I) which consists of a C18H16N+ cation and a C6H4BrO3S- anion. The whole molecule of the cation is disordered over two sites; the major component A and the minor component B (Fig. 1 ), with the refined site-occupancy ratio of 0.733 (1)/0.267 (1). The cation exists in the E configuration with respect to the C11C12 double bond. The naphthalenyl moiety is not planar as indicated by the interplanar angle between the two aromatic C1–C6 and C1/C6–C10 rings being 5.0 (5)° (for the major component A) and 5.7 (10)° (for the minor component B). The cation is twisted with the dihedral angle between the pyridinium and the two aromatic C1–C6 and C1/C6–C10 rings being 56.3 (5)° and 51.4 (5)°, respectively (for the major component A); 52.2 (11)° and 53.4 (11)°, respectively (for the minor component B) and the torsion angles C19–C10–C11–C12 = -26.5 (14)° and C11–C12–C13–C17 = -9.3 (15)° for the major component A; whereas the corresponding values are -6(2)° and 4(3)° for the minor component B. The cation and anion are inclined to each other with interplanar angles of 85.0 (4)° and 71.5 (9)° respectively between the benzene ring and the pyridinium units of the major and minor disorder components. The bond lengths in (I) are in normal ranges (Allen et al., 1987) and comparable to those in related structures (Chanawanno et al., 2008; Chantrapromma et al., 2006, 2007, 2008, 2009).

In the crystal packing (Fig. 2), all O atoms of the sulfonate group are involved in weak C—H···O interactions (Table 1). The cations and anions are alternately arranged with the cations (both the major A and minor B components) stacked in an antiparallel manner along the c axis and the anions linked together into chains along the same direction. The cations are linked to the anions into chains along the [1 0 2] direction by weak C—H···O interactions (Table 1). The crystal structure is further stabilized by C—H···π interactions (Table 1). ππ interaction with the distances Cg1···Cg2 = 3.698 (6) Å and Cg1···Cg3 = 3.502 (9) Å are also observed (symmetry code for both Cg···Cg interactions: 1-x, 1-y,-1/2+z); Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1A/C13A–C17A, C1A–C6A, C1B–C6B and C19–C24 rings, respectively. A short Br1···O3 [3.029 (4) Å] contact is also present.

Related literature top

For bond-length data, see: Allen et al. (1987). For background to NLO materials research, see: Cheng et al. (1991a; 1991b); Dittrich et al. (2003); Ogawa et al. (2008); Weir et al. (2003); Yang et al. (2007). For related structures, see, Chanawanno et al. (2008) and Chantrapromma et al. (2006; 2007; 2008; 2009). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986). Cg2 and Cg4 are the centroids of the C1A–C6A and C19–C24 rings, respectively.

Experimental top

(E)-1-methyl-4-(2-(naphthalen-1-yl)vinyl)pyridinium iodide (compound A) was prepared by mixing solutions of 1,4-dimethylpyridinium iodide (2 g, 8.5 mmol), 1-naphthaldehyde (1.16 ml, 8.5 mmol) and piperidine 0.84 ml, 8.5 mmol) in methanol (40 ml). The resulting solution was refluxed for 3 h under a nitrogen atmosphere. The solid which formed was filtered and washed with chloroform. After purification, the yellow solid of compound A (0.22 g, 0.58 mmol) was mixed with silver 4-bromobenzenesulfonate (Chantrapromma et al., 2006) (0.20 g, 0.58 mmol) in methanol (100 ml) and stirred for 0.5 h. The precipitate of silver iodide was filtered and the filtrate was evaporated to give the title compound as a yellow solid. Yellow needle-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from methanol by slow evaporation at room temperature over a few weeks, Mp. 495-496 K.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.95 Å for aromatic and CH and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.90 Å from C11A and the deepest hole is located at 0.32 Å from C11A. The cation is disordered over two sites with occupancies 0.733 (1) and 0.267 (1) respectively. All atoms of the minor component B were refined isotropically. Initially rigid, similarity restraints were applied to the minor component B. After a steady state was reached, these restraints were removed before the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show the minor component.
[Figure 2] Fig. 2. The crystal packing of the major component of the title compound viewed down the a axis. Weak C—H···O interactions are shown as dashed lines.
(E)-1-Methyl-4-[2-(1-naphthyl)vinyl]pyridinium 4-bromobenzenesulfonate top
Crystal data top
C18H16N+·C6H4BrO3SDx = 1.564 Mg m3
Mr = 482.38Melting point = 495–496 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5563 reflections
a = 12.2195 (2) Åθ = 2.5–30.0°
b = 21.9907 (4) ŵ = 2.14 mm1
c = 7.6256 (1) ÅT = 100 K
V = 2049.12 (6) Å3Needle, yellow
Z = 40.46 × 0.15 × 0.14 mm
F(000) = 984
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5563 independent reflections
Radiation source: sealed tube3975 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 30.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1217
Tmin = 0.437, Tmax = 0.753k = 3025
15171 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0268P)2 + 1.3478P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
5563 reflectionsΔρmax = 1.11 e Å3
326 parametersΔρmin = 0.49 e Å3
11 restraintsAbsolute structure: Flack (1983), 2373 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (11)
Crystal data top
C18H16N+·C6H4BrO3SV = 2049.12 (6) Å3
Mr = 482.38Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.2195 (2) ŵ = 2.14 mm1
b = 21.9907 (4) ÅT = 100 K
c = 7.6256 (1) Å0.46 × 0.15 × 0.14 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5563 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3975 reflections with I > 2σ(I)
Tmin = 0.437, Tmax = 0.753Rint = 0.044
15171 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.107Δρmax = 1.11 e Å3
S = 1.03Δρmin = 0.49 e Å3
5563 reflectionsAbsolute structure: Flack (1983), 2373 Friedel pairs
326 parametersAbsolute structure parameter: 0.003 (11)
11 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br11.09367 (3)0.735910 (17)0.33953 (7)0.03638 (11)
S10.77513 (7)0.83524 (5)0.94982 (13)0.0282 (2)
O10.8448 (2)0.85394 (18)1.0921 (4)0.0511 (9)
O20.7122 (2)0.88360 (13)0.8744 (4)0.0441 (8)
O30.7095 (3)0.78212 (14)0.9922 (5)0.0518 (9)
N1A0.7710 (6)0.6185 (4)0.1666 (13)0.0408 (19)0.708 (6)
C1A0.2235 (8)0.4733 (4)0.2313 (16)0.0658 (14)0.708 (6)
C2A0.2047 (9)0.5344 (4)0.3012 (16)0.061 (3)0.708 (6)
H2AA0.25830.56500.28270.073*0.708 (6)
C3A0.1123 (9)0.5484 (5)0.3922 (16)0.0658 (14)0.708 (6)
H3AA0.10220.58830.43700.079*0.708 (6)
C4A0.0335 (10)0.5048 (4)0.4194 (18)0.0658 (14)0.708 (6)
H4AA0.02820.51560.48850.079*0.708 (6)
C5A0.0378 (8)0.4470 (5)0.3538 (16)0.054 (3)0.708 (6)
H5AA0.02080.41900.36850.065*0.708 (6)
C6A0.1369 (10)0.4309 (5)0.2605 (17)0.047 (3)0.708 (6)
C7A0.1552 (9)0.3698 (4)0.1942 (13)0.057 (3)0.708 (6)
H7AA0.09890.34010.20240.069*0.708 (6)
C8A0.2557 (7)0.3547 (3)0.1185 (10)0.0410 (18)0.708 (6)
H8AA0.26820.31420.08000.049*0.708 (6)
C9A0.3383 (7)0.3982 (3)0.0984 (10)0.0401 (18)0.708 (6)
H9AA0.40570.38680.04590.048*0.708 (6)
C10A0.3236 (5)0.4569 (3)0.1531 (12)0.055 (2)0.708 (6)
C11A0.4093 (6)0.5027 (4)0.1523 (13)0.0658 (14)0.708 (6)
H11A0.38940.54430.14290.079*0.708 (6)
C12A0.5166 (7)0.4881 (3)0.1644 (12)0.0658 (14)0.708 (6)
H12A0.53610.44700.18580.079*0.708 (6)
C13A0.6044 (5)0.5338 (3)0.1455 (9)0.0354 (15)0.708 (6)
C14A0.7055 (6)0.5194 (3)0.2165 (8)0.0304 (14)0.708 (6)
H14A0.71790.47950.25970.036*0.708 (6)
C15A0.7866 (6)0.5609 (4)0.2254 (11)0.0426 (19)0.708 (6)
H15A0.85550.54970.27340.051*0.708 (6)
C16A0.6701 (8)0.6347 (5)0.0899 (16)0.032 (2)0.708 (6)
H16A0.65910.67370.03940.038*0.708 (6)
C17A0.5912 (11)0.5933 (6)0.091 (2)0.034 (2)0.708 (6)
H17A0.52070.60530.05170.041*0.708 (6)
C18A0.8611 (5)0.6636 (3)0.1790 (13)0.049 (2)0.708 (6)
H18A0.83570.70300.13450.074*0.708 (6)
H18B0.92350.64970.10890.074*0.708 (6)
H18C0.88350.66790.30170.074*0.708 (6)
N1B0.7857 (17)0.6237 (10)0.118 (3)0.028 (5)*0.292 (6)
C1B0.2380 (11)0.4829 (7)0.2936 (15)0.028 (4)*0.292 (6)
C2B0.2071 (16)0.5389 (8)0.3799 (19)0.027 (4)*0.292 (6)
H2BA0.25760.57110.39810.032*0.292 (6)
C3B0.0975 (14)0.5426 (9)0.435 (2)0.029 (4)*0.292 (6)
H3BA0.07260.57970.48490.035*0.292 (6)
C4B0.0193 (17)0.4919 (8)0.420 (3)0.032 (4)*0.292 (6)
H4BA0.05240.49210.46820.038*0.292 (6)
C5B0.0648 (15)0.4427 (10)0.324 (3)0.020 (4)*0.292 (6)
H5BA0.01630.41000.29960.024*0.292 (6)
C6B0.1667 (19)0.4362 (14)0.264 (4)0.028 (6)*0.292 (6)
C7B0.1927 (16)0.3832 (10)0.183 (3)0.037 (5)*0.292 (6)
H7BA0.14100.35140.16900.044*0.292 (6)
C8B0.3015 (16)0.3782 (11)0.119 (2)0.025 (4)*0.292 (6)
H8BA0.32180.34470.04720.030*0.292 (6)
C9B0.3804 (14)0.4237 (8)0.164 (2)0.038 (4)*0.292 (6)
H9BA0.45330.41900.12230.045*0.292 (6)
C10B0.3572 (12)0.4713 (7)0.258 (2)0.034 (4)*0.292 (6)
C11B0.4442 (9)0.5144 (5)0.345 (2)0.027 (3)*0.292 (6)
H11B0.42220.55060.40330.032*0.292 (6)
C12B0.5668 (9)0.4966 (6)0.334 (3)0.035 (3)*0.292 (6)
H12B0.59460.46220.39480.042*0.292 (6)
C13B0.6410 (16)0.5363 (7)0.221 (2)0.027 (3)*0.292 (6)
C14B0.7498 (16)0.5288 (9)0.241 (2)0.025 (4)*0.292 (6)
H14B0.77510.49100.28650.030*0.292 (6)
C15B0.8236 (15)0.5706 (8)0.202 (2)0.028 (4)*0.292 (6)
H15B0.89880.56520.22990.034*0.292 (6)
C16B0.692 (2)0.6327 (14)0.111 (4)0.025 (7)*0.292 (6)
H16B0.67270.67390.08920.030*0.292 (6)
C17B0.601 (4)0.594 (2)0.131 (5)0.041 (11)*0.292 (6)
H17B0.52810.60170.09440.049*0.292 (6)
C18B0.8654 (16)0.6754 (9)0.083 (3)0.040 (4)*0.292 (6)
H18D0.83520.70230.00770.061*0.292 (6)
H18E0.93530.65870.04180.061*0.292 (6)
H18F0.87720.69850.19080.061*0.292 (6)
C190.8411 (3)0.82014 (19)0.6071 (6)0.0318 (9)
H19A0.77740.84260.57760.038*
C200.9073 (3)0.79817 (19)0.4741 (6)0.0336 (9)
H20A0.88920.80480.35450.040*
C211.0008 (3)0.76615 (19)0.5203 (6)0.0336 (9)
C221.0283 (3)0.7563 (2)0.6960 (6)0.0342 (9)
H22A1.09280.73440.72540.041*
C230.9611 (3)0.77848 (16)0.8261 (7)0.0322 (8)
H23A0.97940.77230.94580.039*
C240.8656 (3)0.81016 (17)0.7818 (5)0.0265 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03289 (17)0.0388 (2)0.0375 (2)0.00330 (17)0.0114 (2)0.0081 (3)
S10.0279 (4)0.0316 (5)0.0250 (4)0.0001 (4)0.0058 (4)0.0027 (4)
O10.0363 (16)0.085 (3)0.0320 (17)0.0042 (17)0.0021 (15)0.0159 (18)
O20.0474 (16)0.0455 (18)0.039 (2)0.0191 (14)0.0116 (15)0.0103 (14)
O30.059 (2)0.0385 (18)0.058 (2)0.0128 (15)0.0293 (18)0.0001 (16)
N1A0.025 (3)0.037 (4)0.060 (6)0.002 (3)0.007 (4)0.006 (4)
C1A0.068 (3)0.033 (2)0.096 (4)0.0093 (18)0.032 (2)0.003 (2)
C2A0.074 (6)0.034 (4)0.074 (7)0.005 (3)0.048 (5)0.003 (4)
C3A0.068 (3)0.033 (2)0.096 (4)0.0093 (18)0.032 (2)0.003 (2)
C4A0.068 (3)0.033 (2)0.096 (4)0.0093 (18)0.032 (2)0.003 (2)
C5A0.054 (6)0.062 (6)0.046 (6)0.019 (5)0.007 (5)0.001 (5)
C6A0.051 (7)0.033 (5)0.057 (6)0.002 (5)0.004 (6)0.013 (3)
C7A0.074 (6)0.034 (5)0.064 (6)0.018 (5)0.011 (5)0.007 (4)
C8A0.057 (4)0.019 (3)0.047 (4)0.014 (3)0.001 (4)0.006 (3)
C9A0.049 (4)0.025 (4)0.046 (4)0.014 (3)0.018 (4)0.006 (3)
C10A0.043 (4)0.015 (3)0.105 (7)0.002 (3)0.046 (4)0.001 (4)
C11A0.068 (3)0.033 (2)0.096 (4)0.0093 (18)0.032 (2)0.003 (2)
C12A0.068 (3)0.033 (2)0.096 (4)0.0093 (18)0.032 (2)0.003 (2)
C13A0.026 (3)0.040 (4)0.040 (4)0.010 (3)0.015 (3)0.016 (3)
C14A0.029 (3)0.028 (4)0.034 (3)0.005 (3)0.006 (3)0.002 (3)
C15A0.020 (3)0.046 (5)0.063 (5)0.002 (3)0.001 (3)0.015 (4)
C16A0.018 (4)0.038 (5)0.040 (5)0.008 (4)0.003 (4)0.014 (3)
C17A0.028 (4)0.039 (5)0.035 (6)0.001 (3)0.006 (5)0.011 (5)
C18A0.028 (3)0.043 (4)0.076 (6)0.007 (3)0.007 (4)0.002 (4)
C190.032 (2)0.033 (2)0.030 (2)0.0022 (17)0.0073 (18)0.0056 (18)
C200.038 (2)0.035 (2)0.028 (2)0.0010 (18)0.0026 (19)0.0005 (17)
C210.0284 (18)0.034 (2)0.038 (2)0.0001 (18)0.0107 (17)0.0008 (19)
C220.0301 (19)0.038 (2)0.034 (2)0.0012 (18)0.0032 (18)0.0035 (18)
C230.0283 (15)0.036 (2)0.032 (2)0.0015 (14)0.004 (2)0.005 (2)
C240.0283 (16)0.024 (2)0.0275 (19)0.0038 (16)0.0047 (15)0.0039 (15)
Geometric parameters (Å, º) top
Br1—C211.905 (4)C1B—C6B1.37 (3)
S1—O21.433 (3)C1B—C2B1.45 (2)
S1—O11.439 (3)C1B—C10B1.50 (2)
S1—O31.453 (3)C2B—C3B1.41 (3)
S1—C241.780 (4)C2B—H2BA0.9500
N1A—C15A1.357 (12)C3B—C4B1.47 (2)
N1A—C16A1.410 (13)C3B—H3BA0.9500
N1A—C18A1.485 (10)C4B—C5B1.42 (3)
C1A—C10A1.407 (13)C4B—H4BA0.9500
C1A—C6A1.428 (14)C5B—C6B1.33 (3)
C1A—C2A1.465 (12)C5B—H5BA0.9500
C2A—C3A1.361 (15)C6B—C7B1.36 (4)
C2A—H2AA0.9500C7B—C8B1.42 (3)
C3A—C4A1.374 (15)C7B—H7BA0.9500
C3A—H3AA0.9500C8B—C9B1.43 (3)
C4A—C5A1.368 (14)C8B—H8BA0.9500
C4A—H4AA0.9500C9B—C10B1.30 (2)
C5A—C6A1.448 (15)C9B—H9BA0.9500
C5A—H5AA0.9500C10B—C11B1.57 (2)
C6A—C7A1.453 (16)C11B—C12B1.552 (15)
C7A—C8A1.398 (13)C11B—H11B0.9500
C7A—H7AA0.9500C12B—C13B1.52 (2)
C8A—C9A1.398 (9)C12B—H12B0.9500
C8A—H8AA0.9500C13B—C14B1.35 (2)
C9A—C10A1.369 (10)C13B—C17B1.52 (5)
C9A—H9AA0.9500C14B—C15B1.32 (2)
C10A—C11A1.454 (10)C14B—H14B0.9500
C11A—C12A1.353 (10)C15B—H15B0.9500
C11A—H11A0.9500C16B—C17B1.41 (5)
C12A—C13A1.477 (10)C16B—H16B0.9500
C12A—H12A0.9500C17B—H17B0.9500
C13A—C17A1.382 (17)C18B—H18D0.9800
C13A—C14A1.385 (9)C18B—H18E0.9800
C14A—C15A1.350 (10)C18B—H18F0.9800
C14A—H14A0.9500C19—C241.383 (6)
C15A—H15A0.9500C19—C201.383 (6)
C16A—C17A1.327 (18)C19—H19A0.9500
C16A—H16A0.9500C20—C211.388 (6)
C17A—H17A0.9500C20—H20A0.9500
C18A—H18A0.9800C21—C221.398 (6)
C18A—H18B0.9800C22—C231.378 (6)
C18A—H18C0.9800C22—H22A0.9500
N1B—C16B1.17 (3)C23—C241.399 (5)
N1B—C15B1.41 (3)C23—H23A0.9500
N1B—C18B1.52 (3)
O2—S1—O1114.1 (2)C2B—C3B—C4B123.4 (18)
O2—S1—O3112.96 (19)C2B—C3B—H3BA118.3
O1—S1—O3112.9 (2)C4B—C3B—H3BA118.3
O2—S1—C24105.91 (18)C5B—C4B—C3B111.3 (17)
O1—S1—C24105.27 (17)C5B—C4B—H4BA124.3
O3—S1—C24104.71 (18)C3B—C4B—H4BA124.3
C15A—N1A—C16A119.7 (8)C6B—C5B—C4B129 (2)
C15A—N1A—C18A119.9 (7)C6B—C5B—H5BA115.7
C16A—N1A—C18A120.4 (8)C4B—C5B—H5BA115.7
C10A—C1A—C6A122.9 (9)C5B—C6B—C7B118 (2)
C10A—C1A—C2A121.7 (9)C5B—C6B—C1B117 (3)
C6A—C1A—C2A115.2 (10)C7B—C6B—C1B125 (2)
C3A—C2A—C1A121.5 (10)C6B—C7B—C8B116 (2)
C3A—C2A—H2AA119.2C6B—C7B—H7BA121.8
C1A—C2A—H2AA119.2C8B—C7B—H7BA121.8
C2A—C3A—C4A120.1 (10)C7B—C8B—C9B119.6 (18)
C2A—C3A—H3AA119.9C7B—C8B—H8BA120.2
C4A—C3A—H3AA119.9C9B—C8B—H8BA120.2
C5A—C4A—C3A124.5 (12)C10B—C9B—C8B123.2 (17)
C5A—C4A—H4AA117.8C10B—C9B—H9BA118.4
C3A—C4A—H4AA117.8C8B—C9B—H9BA118.4
C4A—C5A—C6A116.0 (11)C9B—C10B—C1B116.6 (16)
C4A—C5A—H5AA122.0C9B—C10B—C11B124.9 (15)
C6A—C5A—H5AA122.0C1B—C10B—C11B118.5 (12)
C1A—C6A—C5A122.5 (10)C12B—C11B—C10B118.5 (11)
C1A—C6A—C7A115.8 (10)C12B—C11B—H11B120.7
C5A—C6A—C7A121.7 (10)C10B—C11B—H11B120.7
C8A—C7A—C6A119.9 (9)C13B—C12B—C11B117.4 (13)
C8A—C7A—H7AA120.0C13B—C12B—H12B121.3
C6A—C7A—H7AA120.0C11B—C12B—H12B121.3
C7A—C8A—C9A121.1 (7)C14B—C13B—C17B118 (2)
C7A—C8A—H8AA119.4C14B—C13B—C12B116.9 (16)
C9A—C8A—H8AA119.4C17B—C13B—C12B123 (2)
C10A—C9A—C8A121.1 (8)C15B—C14B—C13B124.2 (18)
C10A—C9A—H9AA119.4C15B—C14B—H14B117.9
C8A—C9A—H9AA119.4C13B—C14B—H14B117.9
C9A—C10A—C1A119.0 (7)C14B—C15B—N1B117.0 (17)
C9A—C10A—C11A123.9 (8)C14B—C15B—H15B121.5
C1A—C10A—C11A116.8 (7)N1B—C15B—H15B121.5
C12A—C11A—C10A122.2 (7)N1B—C16B—C17B132 (3)
C12A—C11A—H11A118.9N1B—C16B—H16B114.1
C10A—C11A—H11A118.9C17B—C16B—H16B114.1
C11A—C12A—C13A122.4 (7)C16B—C17B—C13B108 (3)
C11A—C12A—H12A118.8C16B—C17B—H17B126.2
C13A—C12A—H12A118.8C13B—C17B—H17B126.2
C17A—C13A—C14A116.0 (8)N1B—C18B—H18D109.5
C17A—C13A—C12A126.0 (8)N1B—C18B—H18E109.5
C14A—C13A—C12A117.0 (6)H18D—C18B—H18E109.5
C15A—C14A—C13A121.3 (6)N1B—C18B—H18F109.5
C15A—C14A—H14A119.3H18D—C18B—H18F109.5
C13A—C14A—H14A119.3H18E—C18B—H18F109.5
C14A—C15A—N1A120.7 (6)C24—C19—C20121.6 (4)
C14A—C15A—H15A119.6C24—C19—H19A119.2
N1A—C15A—H15A119.6C20—C19—H19A119.2
C17A—C16A—N1A117.4 (11)C19—C20—C21118.2 (4)
C17A—C16A—H16A121.3C19—C20—H20A120.9
N1A—C16A—H16A121.3C21—C20—H20A120.9
C16A—C17A—C13A124.5 (13)C20—C21—C22121.3 (4)
C16A—C17A—H17A117.7C20—C21—Br1119.0 (3)
C13A—C17A—H17A117.7C22—C21—Br1119.7 (3)
C16B—N1B—C15B119 (2)C23—C22—C21119.4 (4)
C16B—N1B—C18B120 (2)C23—C22—H22A120.3
C15B—N1B—C18B119.2 (18)C21—C22—H22A120.3
C6B—C1B—C2B123.2 (18)C22—C23—C24120.0 (5)
C6B—C1B—C10B117.5 (17)C22—C23—H23A120.0
C2B—C1B—C10B118.7 (14)C24—C23—H23A120.0
C3B—C2B—C1B115.8 (17)C19—C24—C23119.4 (4)
C3B—C2B—H2BA122.1C19—C24—S1120.7 (3)
C1B—C2B—H2BA122.1C23—C24—S1119.9 (3)
C10A—C1A—C2A—C3A173.3 (10)C10B—C1B—C6B—C5B168.5 (19)
C6A—C1A—C2A—C3A2.1 (15)C2B—C1B—C6B—C7B179.5 (19)
C1A—C2A—C3A—C4A0.4 (16)C10B—C1B—C6B—C7B10 (3)
C2A—C3A—C4A—C5A3.1 (17)C5B—C6B—C7B—C8B179 (2)
C3A—C4A—C5A—C6A4.5 (17)C1B—C6B—C7B—C8B2 (4)
C10A—C1A—C6A—C5A174.8 (10)C6B—C7B—C8B—C9B9 (3)
C2A—C1A—C6A—C5A0.5 (16)C7B—C8B—C9B—C10B2 (3)
C10A—C1A—C6A—C7A3.7 (16)C8B—C9B—C10B—C1B11 (2)
C2A—C1A—C6A—C7A179.0 (9)C8B—C9B—C10B—C11B165.7 (15)
C4A—C5A—C6A—C1A2.6 (17)C6B—C1B—C10B—C9B16 (2)
C4A—C5A—C6A—C7A175.9 (10)C2B—C1B—C10B—C9B172.8 (12)
C1A—C6A—C7A—C8A4.2 (14)C6B—C1B—C10B—C11B160.3 (17)
C5A—C6A—C7A—C8A174.4 (10)C2B—C1B—C10B—C11B10.7 (16)
C6A—C7A—C8A—C9A2.7 (13)C9B—C10B—C11B—C12B6 (2)
C7A—C8A—C9A—C10A0.3 (11)C1B—C10B—C11B—C12B170.2 (13)
C8A—C9A—C10A—C1A0.2 (12)C10B—C11B—C12B—C13B111.9 (15)
C8A—C9A—C10A—C11A173.6 (8)C11B—C12B—C13B—C14B166.2 (15)
C6A—C1A—C10A—C9A1.6 (14)C11B—C12B—C13B—C17B4 (3)
C2A—C1A—C10A—C9A176.6 (9)C17B—C13B—C14B—C15B7 (3)
C6A—C1A—C10A—C11A172.3 (9)C12B—C13B—C14B—C15B156.7 (17)
C2A—C1A—C10A—C11A2.8 (13)C13B—C14B—C15B—N1B7 (3)
C9A—C10A—C11A—C12A26.5 (14)C16B—N1B—C15B—C14B12 (3)
C1A—C10A—C11A—C12A147.0 (10)C18B—N1B—C15B—C14B175.3 (17)
C10A—C11A—C12A—C13A173.6 (8)C15B—N1B—C16B—C17B20 (5)
C11A—C12A—C13A—C17A9.3 (15)C18B—N1B—C16B—C17B177 (3)
C11A—C12A—C13A—C14A158.9 (8)N1B—C16B—C17B—C13B18 (5)
C17A—C13A—C14A—C15A2.2 (10)C14B—C13B—C17B—C16B9 (3)
C12A—C13A—C14A—C15A171.6 (7)C12B—C13B—C17B—C16B153 (2)
C13A—C14A—C15A—N1A0.8 (11)C24—C19—C20—C210.9 (6)
C16A—N1A—C15A—C14A2.1 (14)C19—C20—C21—C220.1 (6)
C18A—N1A—C15A—C14A179.5 (7)C19—C20—C21—Br1179.6 (3)
C15A—N1A—C16A—C17A5.0 (16)C20—C21—C22—C230.3 (7)
C18A—N1A—C16A—C17A176.6 (10)Br1—C21—C22—C23179.7 (3)
N1A—C16A—C17A—C13A7.0 (19)C21—C22—C23—C240.6 (6)
C14A—C13A—C17A—C16A5.6 (17)C20—C19—C24—C231.7 (6)
C12A—C13A—C17A—C16A173.9 (11)C20—C19—C24—S1176.4 (3)
C6B—C1B—C2B—C3B0.6 (16)C22—C23—C24—C191.6 (6)
C10B—C1B—C2B—C3B169.9 (11)C22—C23—C24—S1176.6 (3)
C1B—C2B—C3B—C4B4.4 (14)O2—S1—C24—C1923.2 (4)
C2B—C3B—C4B—C5B7 (2)O1—S1—C24—C19144.4 (3)
C3B—C4B—C5B—C6B6 (3)O3—S1—C24—C1996.4 (4)
C4B—C5B—C6B—C7B177 (2)O2—S1—C24—C23158.7 (3)
C4B—C5B—C6B—C1B2 (4)O1—S1—C24—C2337.5 (4)
C2B—C1B—C6B—C5B2 (3)O3—S1—C24—C2381.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2AA···O1i0.952.533.392 (11)151
C5A—H5AA···O2ii0.952.473.362 (10)157
C11A—H11A···O1i0.952.343.282 (10)175
C14A—H14A···O2iii0.952.443.373 (7)169
C16A—H16A···O3iv0.952.493.361 (11)153
C17A—H17A···O1i0.952.353.227 (14)153
C18A—H18A···O3iv0.982.573.501 (8)159
C19—H19A···O20.952.562.930 (5)103
C20—H20A···O1iv0.952.343.252 (5)161
C22—H22A···O3v0.952.513.274 (6)137
C4A—H4AA···Cg2vi0.952.843.659 (14)145
C7A—H7AA···Cg4vii0.952.883.657 (9)140
C4B—H4BA···Cg2vi0.952.903.59 (2)130
Symmetry codes: (i) x1/2, y+3/2, z1; (ii) x+1/2, y1/2, z1/2; (iii) x+3/2, y1/2, z1/2; (iv) x, y, z1; (v) x+1/2, y+3/2, z; (vi) x, y+1, z+1/2; (vii) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC18H16N+·C6H4BrO3S
Mr482.38
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)12.2195 (2), 21.9907 (4), 7.6256 (1)
V3)2049.12 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.14
Crystal size (mm)0.46 × 0.15 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.437, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
15171, 5563, 3975
Rint0.044
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.107, 1.03
No. of reflections5563
No. of parameters326
No. of restraints11
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 0.49
Absolute structureFlack (1983), 2373 Friedel pairs
Absolute structure parameter0.003 (11)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2AA···O1i0.952.533.392 (11)151
C5A—H5AA···O2ii0.952.473.362 (10)157
C11A—H11A···O1i0.952.343.282 (10)175
C14A—H14A···O2iii0.952.443.373 (7)169
C16A—H16A···O3iv0.952.493.361 (11)153
C17A—H17A···O1i0.952.353.227 (14)153
C18A—H18A···O3iv0.982.573.501 (8)159
C19—H19A···O20.952.562.930 (5)103
C20—H20A···O1iv0.952.343.252 (5)161
C22—H22A···O3v0.952.513.274 (6)137
C4A—H4AA···Cg2vi0.952.843.659 (14)145
C7A—H7AA···Cg4vii0.952.883.657 (9)140
C4B—H4BA···Cg2vi0.952.903.59 (2)130
Symmetry codes: (i) x1/2, y+3/2, z1; (ii) x+1/2, y1/2, z1/2; (iii) x+3/2, y1/2, z1/2; (iv) x, y, z1; (v) x+1/2, y+3/2, z; (vi) x, y+1, z+1/2; (vii) x+1, y+1, z1/2.
 

Footnotes

This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of Science in Thailand.

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my; Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

KC thanks the Development and Promotion of Science and Technology Talents Project (DPST) for a study grant. Partial financial support from the Graduate School, Prince of Songkla University is gratefully acknowledged. The authors also thank Prince of Songkla University for financial support through the Crystal Materials Research Unit and the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882–o1883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Laksana, C., Ruanwas, P. & Fun, H.-K. (2008). Acta Cryst. E64, o574–o575.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jansrisewangwong, P., Musor, R. & Fun, H.-K. (2009). Acta Cryst. E65, o217–o218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Ruanwas, P., Fun, H.-K. & Patil, P. S. (2006). Acta Cryst. E62, o5494–o5496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Suwanwong, T. & Fun, H.-K. (2007). Acta Cryst. E63, o821–o823.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCheng, L. T., Tam, W., Marder, S. R., Stiegman, A. E., Rikken, G. & Spangler, C. W. (1991a). J. Phys. Chem. 95, 10643–10652.  CrossRef CAS Web of Science Google Scholar
First citationCheng, L. T., Tam, W., Stevenson, S. H., Meredith, G. R., Rikken, G. & Marder, S. R. (1991b). J. Phys. Chem. 95, 10631–10643.  CrossRef CAS Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDittrich, Ph., Bartlome, R., Montemezzani, G. & Günter, P. (2003). Appl. Surface Sci. 220, 88–95.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOgawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836–842.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeir, C. A. M., Hadizad, T., Beaudin, A. M. R. & Wang, Z.-Y. (2003). Tetrahedron Lett. 44, 4697–4700.  Web of Science CrossRef CAS Google Scholar
First citationYang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth. Des. 7, 83–86.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1144-o1145
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds