organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(5-Chloro-2-hy­droxy­benzyl­­idene)-4-hy­droxy­benzohydrazide

aDepartment of Chemistry, Shangqiu Normal University, Shangqiu 476000, People's Republic of China
*Correspondence e-mail: xiaoyang_qiu@126.com

(Received 30 March 2009; accepted 1 April 2009; online 8 April 2009)

The title Schiff base compound, C14H11ClN2O3, was prepared by the reaction of 5-chloro­salicylaldehyde and 4-hydroxy­benzohydrazide. The mol­ecule exists in a trans configuration with respect to the methyl­idene group. The dihedral angle between the two benzene rings is 40.1 (2)°. An intra­molecular O—H⋯N hydrogen bond helps to stabilize the mol­ecular conformation. In the crystal structure, mol­ecules are linked into a three-dimensional network by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For the biological properties of hydrazone compounds, see: Bedia et al. (2006[Bedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Rollas et al. (2002[Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171-174.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]). For the structures of hydrazone compounds we have reported previously, see: Qiu, Fang et al. (2006[Qiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2685-o2686.]); Qiu, Luo et al., (2006a[Qiu, X.-Y., Luo, Q.-Y., Yang, S.-L. & Liu, W.-S. (2006a). Acta Cryst. E62, o4291-o4292.],b[Qiu, X.-Y., Luo, Z.-G., Yang, S.-L. & Liu, W.-S. (2006b). Acta Cryst. E62, o3531-o3532.]); Qiu, Xu et al. (2006[Qiu, X.-Y., Xu, H.-J., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2304-o2305.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures see: Singh et al. (2007[Singh, N. K., Singh, M., Srivastava, A. K., Shrivastav, A. & Sharma, R. K. (2007). Acta Cryst. E63, o4895.]); Narayana et al. (2007[Narayana, B., Siddaraju, B. P., Raju, C. R., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3522.]); Cui et al. (2007[Cui, J., Yin, H. & Qiao, Y. (2007). Acta Cryst. E63, o3548.]); Diao et al. (2008[Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClN2O3

  • Mr = 290.70

  • Orthorhombic, P n a 21

  • a = 9.423 (1) Å

  • b = 9.839 (1) Å

  • c = 13.770 (1) Å

  • V = 1276.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.955

  • 7398 measured reflections

  • 2231 independent reflections

  • 2144 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.071

  • S = 1.06

  • 2231 reflections

  • 187 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 784 Friedel pairs

  • Flack parameter: −0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.892 (10) 2.121 (11) 3.0065 (18) 172 (3)
O3—H3⋯O2ii 0.82 1.98 2.7479 (19) 157
O1—H1⋯N1 0.82 1.89 2.6057 (19) 145
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [-x+2, -y, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hyrazone compounds, derived from the reaction of aldehydes with hydrazides, have been widely studied due to their excellent biological properties (Bedia et al., 2006; Rollas et al., 2002; Fun et al., 2008). Recently, we have reported several Schiff base hydrazone compounds (Qiu, Fang et al., 2006; Qiu, Luo et al., 2006a,b; Qiu, Xu et al., 2006), and we report herein the crystal structure of the new title compound, (I), Fig. 1.

The molecule in (I) exists in a trans configuration with respect to the methylidene group. The dihedral angle between the two benzene rings is 40.1 (2)°. The bond lengths in (I) are found to have normal values (Allen et al., 1987) and are comparable to the values found in similar compounds (Singh et al., 2007; Narayana et al., 2007; Cui et al., 2007; Diao et al., 2008).

An intramolecular O–H···N hydrogen bond (Table 1) helps to stabilize the molecular conformation. In the crystal structure, molecules are linked into a three-dimensional network by intermolecular N–H···O and O–H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For the biological properties of hydrazone compounds, see: Bedia et al. (2006); Rollas et al. (2002); Fun et al. (2008). For the structures of hydrazone compounds we have reported previously, see: Qiu, Fang et al. (2006); Qiu, Luo et al., (2006a,b); Qiu, Xu et al. (2006). For bond-length data, see: Allen et al. (1987). For related structures see: Singh et al. (2007); Narayana et al. (2007); Cui et al. (2007); Diao et al. (2008).

Experimental top

The title compound was prepared by the Schiff base condensation of equimolar amounts (0.5 mmol each) of 5-chlorosalicylaldehyde and 4-hydroxybenzohydrazide in methanol (20 ml). Excess methanol was removed from the reaction mixture by distillation. The colourless solid was filtered and dried in air. Colourless block-shaped crystals suitable for X-ray diffraction were obtained from a methanol solution.

Refinement top

The imino H atoms were located in a difference map and refined with N–H distances restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically [C–H = 0.93 Å, O–H = 0.82 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the b axis with hydrogen bonds drawn as dashed lines.
N'-(5-Chloro-2-hydroxybenzylidene)-4-hydroxybenzohydrazide top
Crystal data top
C14H11ClN2O3F(000) = 600
Mr = 290.70Dx = 1.513 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4763 reflections
a = 9.423 (1) Åθ = 2.5–30.6°
b = 9.839 (1) ŵ = 0.31 mm1
c = 13.770 (1) ÅT = 298 K
V = 1276.7 (2) Å3Block, colourless
Z = 40.17 × 0.15 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
2231 independent reflections
Radiation source: fine-focus sealed tube2144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.950, Tmax = 0.955k = 1212
7398 measured reflectionsl = 1711
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.1827P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.21 e Å3
2231 reflectionsΔρmin = 0.32 e Å3
187 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.034 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 784 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (6)
Crystal data top
C14H11ClN2O3V = 1276.7 (2) Å3
Mr = 290.70Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.423 (1) ŵ = 0.31 mm1
b = 9.839 (1) ÅT = 298 K
c = 13.770 (1) Å0.17 × 0.15 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
2231 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2144 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.955Rint = 0.022
7398 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071Δρmax = 0.21 e Å3
S = 1.06Δρmin = 0.32 e Å3
2231 reflectionsAbsolute structure: Flack (1983), 784 Friedel pairs
187 parametersAbsolute structure parameter: 0.01 (6)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.74914 (6)0.47741 (5)1.21657 (5)0.05224 (15)
N10.99352 (15)0.30628 (14)0.80967 (10)0.0316 (3)
N20.94949 (14)0.28112 (13)0.71621 (12)0.0319 (3)
O11.19292 (14)0.32175 (17)0.94031 (11)0.0504 (4)
H11.15980.30570.88650.076*
O21.14143 (12)0.14658 (12)0.69247 (10)0.0370 (3)
O30.84616 (17)0.10538 (15)0.27816 (10)0.0505 (4)
H30.87330.03120.25830.076*
C10.94953 (17)0.38640 (15)0.96863 (13)0.0312 (3)
C21.08639 (18)0.35624 (17)1.00215 (14)0.0346 (4)
C31.1165 (2)0.36019 (19)1.10078 (15)0.0403 (4)
H3A1.20720.33861.12250.048*
C41.0133 (2)0.39569 (17)1.16663 (14)0.0391 (4)
H41.03320.39601.23280.047*
C50.87956 (19)0.43088 (17)1.13363 (14)0.0362 (4)
C60.84744 (18)0.42738 (18)1.03619 (14)0.0352 (4)
H60.75730.45241.01520.042*
C70.90835 (18)0.36642 (16)0.86788 (13)0.0325 (3)
H70.82070.39720.84590.039*
C81.03211 (17)0.20101 (16)0.65983 (13)0.0292 (3)
C90.98366 (16)0.17900 (16)0.55911 (12)0.0296 (3)
C101.03520 (17)0.06631 (17)0.50845 (14)0.0335 (4)
H101.09980.00840.53840.040*
C110.99177 (18)0.03955 (17)0.41486 (14)0.0350 (4)
H111.02650.03610.38210.042*
C120.89604 (19)0.12597 (18)0.36973 (13)0.0352 (4)
C130.8457 (2)0.2394 (2)0.41833 (15)0.0450 (5)
H130.78260.29800.38760.054*
C140.8889 (2)0.26545 (18)0.51195 (14)0.0392 (4)
H140.85440.34170.54410.047*
H20.8598 (14)0.303 (3)0.703 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0578 (3)0.0676 (3)0.0313 (2)0.0148 (2)0.0054 (2)0.0062 (3)
N10.0343 (7)0.0371 (7)0.0235 (8)0.0016 (5)0.0046 (6)0.0003 (6)
N20.0319 (7)0.0408 (7)0.0229 (7)0.0001 (5)0.0045 (7)0.0009 (6)
O10.0365 (7)0.0791 (10)0.0354 (8)0.0131 (7)0.0033 (6)0.0060 (7)
O20.0323 (6)0.0466 (6)0.0322 (7)0.0039 (5)0.0061 (5)0.0025 (5)
O30.0679 (10)0.0545 (8)0.0289 (8)0.0089 (6)0.0118 (7)0.0097 (6)
C10.0344 (8)0.0322 (8)0.0271 (9)0.0001 (6)0.0049 (7)0.0006 (6)
C20.0352 (8)0.0376 (8)0.0311 (9)0.0014 (6)0.0033 (8)0.0024 (7)
C30.0400 (10)0.0450 (9)0.0358 (11)0.0036 (7)0.0127 (8)0.0025 (8)
C40.0531 (11)0.0398 (8)0.0244 (9)0.0025 (7)0.0103 (8)0.0032 (7)
C50.0444 (9)0.0359 (8)0.0283 (9)0.0031 (7)0.0005 (7)0.0044 (7)
C60.0350 (8)0.0406 (8)0.0300 (9)0.0035 (7)0.0046 (7)0.0008 (7)
C70.0317 (8)0.0386 (8)0.0271 (9)0.0007 (6)0.0056 (7)0.0011 (7)
C80.0298 (8)0.0318 (7)0.0261 (9)0.0043 (6)0.0007 (6)0.0027 (6)
C90.0304 (7)0.0342 (7)0.0243 (9)0.0013 (6)0.0003 (6)0.0019 (6)
C100.0309 (8)0.0371 (8)0.0327 (10)0.0039 (6)0.0011 (7)0.0011 (7)
C110.0358 (9)0.0370 (8)0.0321 (10)0.0015 (6)0.0030 (7)0.0058 (7)
C120.0392 (9)0.0426 (9)0.0239 (9)0.0033 (7)0.0011 (7)0.0004 (7)
C130.0593 (12)0.0446 (9)0.0311 (10)0.0158 (8)0.0110 (9)0.0004 (8)
C140.0527 (10)0.0360 (8)0.0290 (9)0.0111 (7)0.0052 (8)0.0040 (7)
Geometric parameters (Å, º) top
Cl1—C51.7391 (19)C4—C51.384 (3)
N1—C71.279 (2)C4—H40.9300
N1—N21.375 (2)C5—C61.376 (3)
N2—C81.353 (2)C6—H60.9300
N2—H20.892 (10)C7—H70.9300
O1—C21.359 (2)C8—C91.476 (2)
O1—H10.8200C9—C141.394 (2)
O2—C81.245 (2)C9—C101.397 (2)
O3—C121.361 (2)C10—C111.378 (3)
O3—H30.8200C10—H100.9300
C1—C61.398 (2)C11—C121.387 (2)
C1—C21.402 (2)C11—H110.9300
C1—C71.454 (2)C12—C131.385 (3)
C2—C31.388 (3)C13—C141.376 (3)
C3—C41.374 (3)C13—H130.9300
C3—H3A0.9300C14—H140.9300
C7—N1—N2118.72 (14)N1—C7—C1119.54 (15)
C8—N2—N1117.94 (13)N1—C7—H7120.2
C8—N2—H2125 (2)C1—C7—H7120.2
N1—N2—H2116 (2)O2—C8—N2121.31 (16)
C2—O1—H1109.5O2—C8—C9122.14 (15)
C12—O3—H3109.5N2—C8—C9116.53 (14)
C6—C1—C2118.37 (16)C14—C9—C10118.32 (16)
C6—C1—C7119.37 (15)C14—C9—C8123.12 (15)
C2—C1—C7122.09 (16)C10—C9—C8118.56 (14)
O1—C2—C3117.99 (16)C11—C10—C9121.03 (16)
O1—C2—C1121.73 (17)C11—C10—H10119.5
C3—C2—C1120.28 (16)C9—C10—H10119.5
C4—C3—C2120.55 (16)C10—C11—C12119.69 (16)
C4—C3—H3A119.7C10—C11—H11120.2
C2—C3—H3A119.7C12—C11—H11120.2
C3—C4—C5119.41 (17)O3—C12—C13116.71 (16)
C3—C4—H4120.3O3—C12—C11123.28 (16)
C5—C4—H4120.3C13—C12—C11120.01 (17)
C6—C5—C4120.95 (18)C14—C13—C12120.13 (17)
C6—C5—Cl1119.44 (14)C14—C13—H13119.9
C4—C5—Cl1119.59 (15)C12—C13—H13119.9
C5—C6—C1120.32 (16)C13—C14—C9120.80 (16)
C5—C6—H6119.8C13—C14—H14119.6
C1—C6—H6119.8C9—C14—H14119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.89 (1)2.12 (1)3.0065 (18)172 (3)
O3—H3···O2ii0.821.982.7479 (19)157
O1—H1···N10.821.892.6057 (19)145
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC14H11ClN2O3
Mr290.70
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)9.423 (1), 9.839 (1), 13.770 (1)
V3)1276.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.950, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
7398, 2231, 2144
Rint0.022
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.071, 1.06
No. of reflections2231
No. of parameters187
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.32
Absolute structureFlack (1983), 784 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.892 (10)2.121 (11)3.0065 (18)172 (3)
O3—H3···O2ii0.821.982.7479 (19)156.8
O1—H1···N10.821.892.6057 (19)145.2
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+2, y, z1/2.
 

Acknowledgements

The author acknowledges the Natural Science Foundation of the Education Office of Anhui Province (Project No. 2009 A150020).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, J., Yin, H. & Qiao, Y. (2007). Acta Cryst. E63, o3548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarayana, B., Siddaraju, B. P., Raju, C. R., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2685–o2686.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y., Luo, Q.-Y., Yang, S.-L. & Liu, W.-S. (2006a). Acta Cryst. E62, o4291–o4292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y., Luo, Z.-G., Yang, S.-L. & Liu, W.-S. (2006b). Acta Cryst. E62, o3531–o3532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y., Xu, H.-J., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2304–o2305.  CSD CrossRef IUCr Journals Google Scholar
First citationRollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, N. K., Singh, M., Srivastava, A. K., Shrivastav, A. & Sharma, R. K. (2007). Acta Cryst. E63, o4895.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds