organic compounds
N′-(5-Chloro-2-hydroxybenzylidene)-4-hydroxybenzohydrazide
aDepartment of Chemistry, Shangqiu Normal University, Shangqiu 476000, People's Republic of China
*Correspondence e-mail: xiaoyang_qiu@126.com
The title Schiff base compound, C14H11ClN2O3, was prepared by the reaction of 5-chlorosalicylaldehyde and 4-hydroxybenzohydrazide. The molecule exists in a trans configuration with respect to the methylidene group. The dihedral angle between the two benzene rings is 40.1 (2)°. An intramolecular O—H⋯N hydrogen bond helps to stabilize the molecular conformation. In the molecules are linked into a three-dimensional network by intermolecular N—H⋯O and O—H⋯O hydrogen bonds.
Related literature
For the biological properties of hydrazone compounds, see: Bedia et al. (2006); Rollas et al. (2002); Fun et al. (2008). For the structures of hydrazone compounds we have reported previously, see: Qiu, Fang et al. (2006); Qiu, Luo et al., (2006a,b); Qiu, Xu et al. (2006). For bond-length data, see: Allen et al. (1987). For related structures see: Singh et al. (2007); Narayana et al. (2007); Cui et al. (2007); Diao et al. (2008).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053680901215X/sj2605sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680901215X/sj2605Isup2.hkl
The title compound was prepared by the Schiff base condensation of equimolar amounts (0.5 mmol each) of 5-chlorosalicylaldehyde and 4-hydroxybenzohydrazide in methanol (20 ml). Excess methanol was removed from the reaction mixture by distillation. The colourless solid was filtered and dried in air. Colourless block-shaped crystals suitable for X-ray diffraction were obtained from a methanol solution.
The imino H atoms were located in a difference map and refined with N–H distances restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically [C–H = 0.93 Å, O–H = 0.82 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H11ClN2O3 | F(000) = 600 |
Mr = 290.70 | Dx = 1.513 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 4763 reflections |
a = 9.423 (1) Å | θ = 2.5–30.6° |
b = 9.839 (1) Å | µ = 0.31 mm−1 |
c = 13.770 (1) Å | T = 298 K |
V = 1276.7 (2) Å3 | Block, colourless |
Z = 4 | 0.17 × 0.15 × 0.15 mm |
Bruker SMART CCD diffractometer | 2231 independent reflections |
Radiation source: fine-focus sealed tube | 2144 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ω scans | θmax = 27.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→11 |
Tmin = 0.950, Tmax = 0.955 | k = −12→12 |
7398 measured reflections | l = −17→11 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.026 | w = 1/[σ2(Fo2) + (0.0409P)2 + 0.1827P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.071 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 0.21 e Å−3 |
2231 reflections | Δρmin = −0.32 e Å−3 |
187 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
2 restraints | Extinction coefficient: 0.034 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 784 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.01 (6) |
C14H11ClN2O3 | V = 1276.7 (2) Å3 |
Mr = 290.70 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 9.423 (1) Å | µ = 0.31 mm−1 |
b = 9.839 (1) Å | T = 298 K |
c = 13.770 (1) Å | 0.17 × 0.15 × 0.15 mm |
Bruker SMART CCD diffractometer | 2231 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2144 reflections with I > 2σ(I) |
Tmin = 0.950, Tmax = 0.955 | Rint = 0.022 |
7398 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.071 | Δρmax = 0.21 e Å−3 |
S = 1.06 | Δρmin = −0.32 e Å−3 |
2231 reflections | Absolute structure: Flack (1983), 784 Friedel pairs |
187 parameters | Absolute structure parameter: −0.01 (6) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.74914 (6) | 0.47741 (5) | 1.21657 (5) | 0.05224 (15) | |
N1 | 0.99352 (15) | 0.30628 (14) | 0.80967 (10) | 0.0316 (3) | |
N2 | 0.94949 (14) | 0.28112 (13) | 0.71621 (12) | 0.0319 (3) | |
O1 | 1.19292 (14) | 0.32175 (17) | 0.94031 (11) | 0.0504 (4) | |
H1 | 1.1598 | 0.3057 | 0.8865 | 0.076* | |
O2 | 1.14143 (12) | 0.14658 (12) | 0.69247 (10) | 0.0370 (3) | |
O3 | 0.84616 (17) | 0.10538 (15) | 0.27816 (10) | 0.0505 (4) | |
H3 | 0.8733 | 0.0312 | 0.2583 | 0.076* | |
C1 | 0.94953 (17) | 0.38640 (15) | 0.96863 (13) | 0.0312 (3) | |
C2 | 1.08639 (18) | 0.35624 (17) | 1.00215 (14) | 0.0346 (4) | |
C3 | 1.1165 (2) | 0.36019 (19) | 1.10078 (15) | 0.0403 (4) | |
H3A | 1.2072 | 0.3386 | 1.1225 | 0.048* | |
C4 | 1.0133 (2) | 0.39569 (17) | 1.16663 (14) | 0.0391 (4) | |
H4 | 1.0332 | 0.3960 | 1.2328 | 0.047* | |
C5 | 0.87956 (19) | 0.43088 (17) | 1.13363 (14) | 0.0362 (4) | |
C6 | 0.84744 (18) | 0.42738 (18) | 1.03619 (14) | 0.0352 (4) | |
H6 | 0.7573 | 0.4524 | 1.0152 | 0.042* | |
C7 | 0.90835 (18) | 0.36642 (16) | 0.86788 (13) | 0.0325 (3) | |
H7 | 0.8207 | 0.3972 | 0.8459 | 0.039* | |
C8 | 1.03211 (17) | 0.20101 (16) | 0.65983 (13) | 0.0292 (3) | |
C9 | 0.98366 (16) | 0.17900 (16) | 0.55911 (12) | 0.0296 (3) | |
C10 | 1.03520 (17) | 0.06631 (17) | 0.50845 (14) | 0.0335 (4) | |
H10 | 1.0998 | 0.0084 | 0.5384 | 0.040* | |
C11 | 0.99177 (18) | 0.03955 (17) | 0.41486 (14) | 0.0350 (4) | |
H11 | 1.0265 | −0.0361 | 0.3821 | 0.042* | |
C12 | 0.89604 (19) | 0.12597 (18) | 0.36973 (13) | 0.0352 (4) | |
C13 | 0.8457 (2) | 0.2394 (2) | 0.41833 (15) | 0.0450 (5) | |
H13 | 0.7826 | 0.2980 | 0.3876 | 0.054* | |
C14 | 0.8889 (2) | 0.26545 (18) | 0.51195 (14) | 0.0392 (4) | |
H14 | 0.8544 | 0.3417 | 0.5441 | 0.047* | |
H2 | 0.8598 (14) | 0.303 (3) | 0.703 (2) | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0578 (3) | 0.0676 (3) | 0.0313 (2) | 0.0148 (2) | 0.0054 (2) | −0.0062 (3) |
N1 | 0.0343 (7) | 0.0371 (7) | 0.0235 (8) | −0.0016 (5) | −0.0046 (6) | −0.0003 (6) |
N2 | 0.0319 (7) | 0.0408 (7) | 0.0229 (7) | 0.0001 (5) | −0.0045 (7) | −0.0009 (6) |
O1 | 0.0365 (7) | 0.0791 (10) | 0.0354 (8) | 0.0131 (7) | −0.0033 (6) | −0.0060 (7) |
O2 | 0.0323 (6) | 0.0466 (6) | 0.0322 (7) | 0.0039 (5) | −0.0061 (5) | 0.0025 (5) |
O3 | 0.0679 (10) | 0.0545 (8) | 0.0289 (8) | 0.0089 (6) | −0.0118 (7) | −0.0097 (6) |
C1 | 0.0344 (8) | 0.0322 (8) | 0.0271 (9) | −0.0001 (6) | −0.0049 (7) | −0.0006 (6) |
C2 | 0.0352 (8) | 0.0376 (8) | 0.0311 (9) | 0.0014 (6) | −0.0033 (8) | −0.0024 (7) |
C3 | 0.0400 (10) | 0.0450 (9) | 0.0358 (11) | 0.0036 (7) | −0.0127 (8) | −0.0025 (8) |
C4 | 0.0531 (11) | 0.0398 (8) | 0.0244 (9) | 0.0025 (7) | −0.0103 (8) | −0.0032 (7) |
C5 | 0.0444 (9) | 0.0359 (8) | 0.0283 (9) | 0.0031 (7) | 0.0005 (7) | −0.0044 (7) |
C6 | 0.0350 (8) | 0.0406 (8) | 0.0300 (9) | 0.0035 (7) | −0.0046 (7) | −0.0008 (7) |
C7 | 0.0317 (8) | 0.0386 (8) | 0.0271 (9) | 0.0007 (6) | −0.0056 (7) | 0.0011 (7) |
C8 | 0.0298 (8) | 0.0318 (7) | 0.0261 (9) | −0.0043 (6) | −0.0007 (6) | 0.0027 (6) |
C9 | 0.0304 (7) | 0.0342 (7) | 0.0243 (9) | −0.0013 (6) | 0.0003 (6) | 0.0019 (6) |
C10 | 0.0309 (8) | 0.0371 (8) | 0.0327 (10) | 0.0039 (6) | −0.0011 (7) | −0.0011 (7) |
C11 | 0.0358 (9) | 0.0370 (8) | 0.0321 (10) | 0.0015 (6) | 0.0030 (7) | −0.0058 (7) |
C12 | 0.0392 (9) | 0.0426 (9) | 0.0239 (9) | −0.0033 (7) | −0.0011 (7) | −0.0004 (7) |
C13 | 0.0593 (12) | 0.0446 (9) | 0.0311 (10) | 0.0158 (8) | −0.0110 (9) | 0.0004 (8) |
C14 | 0.0527 (10) | 0.0360 (8) | 0.0290 (9) | 0.0111 (7) | −0.0052 (8) | −0.0040 (7) |
Cl1—C5 | 1.7391 (19) | C4—C5 | 1.384 (3) |
N1—C7 | 1.279 (2) | C4—H4 | 0.9300 |
N1—N2 | 1.375 (2) | C5—C6 | 1.376 (3) |
N2—C8 | 1.353 (2) | C6—H6 | 0.9300 |
N2—H2 | 0.892 (10) | C7—H7 | 0.9300 |
O1—C2 | 1.359 (2) | C8—C9 | 1.476 (2) |
O1—H1 | 0.8200 | C9—C14 | 1.394 (2) |
O2—C8 | 1.245 (2) | C9—C10 | 1.397 (2) |
O3—C12 | 1.361 (2) | C10—C11 | 1.378 (3) |
O3—H3 | 0.8200 | C10—H10 | 0.9300 |
C1—C6 | 1.398 (2) | C11—C12 | 1.387 (2) |
C1—C2 | 1.402 (2) | C11—H11 | 0.9300 |
C1—C7 | 1.454 (2) | C12—C13 | 1.385 (3) |
C2—C3 | 1.388 (3) | C13—C14 | 1.376 (3) |
C3—C4 | 1.374 (3) | C13—H13 | 0.9300 |
C3—H3A | 0.9300 | C14—H14 | 0.9300 |
C7—N1—N2 | 118.72 (14) | N1—C7—C1 | 119.54 (15) |
C8—N2—N1 | 117.94 (13) | N1—C7—H7 | 120.2 |
C8—N2—H2 | 125 (2) | C1—C7—H7 | 120.2 |
N1—N2—H2 | 116 (2) | O2—C8—N2 | 121.31 (16) |
C2—O1—H1 | 109.5 | O2—C8—C9 | 122.14 (15) |
C12—O3—H3 | 109.5 | N2—C8—C9 | 116.53 (14) |
C6—C1—C2 | 118.37 (16) | C14—C9—C10 | 118.32 (16) |
C6—C1—C7 | 119.37 (15) | C14—C9—C8 | 123.12 (15) |
C2—C1—C7 | 122.09 (16) | C10—C9—C8 | 118.56 (14) |
O1—C2—C3 | 117.99 (16) | C11—C10—C9 | 121.03 (16) |
O1—C2—C1 | 121.73 (17) | C11—C10—H10 | 119.5 |
C3—C2—C1 | 120.28 (16) | C9—C10—H10 | 119.5 |
C4—C3—C2 | 120.55 (16) | C10—C11—C12 | 119.69 (16) |
C4—C3—H3A | 119.7 | C10—C11—H11 | 120.2 |
C2—C3—H3A | 119.7 | C12—C11—H11 | 120.2 |
C3—C4—C5 | 119.41 (17) | O3—C12—C13 | 116.71 (16) |
C3—C4—H4 | 120.3 | O3—C12—C11 | 123.28 (16) |
C5—C4—H4 | 120.3 | C13—C12—C11 | 120.01 (17) |
C6—C5—C4 | 120.95 (18) | C14—C13—C12 | 120.13 (17) |
C6—C5—Cl1 | 119.44 (14) | C14—C13—H13 | 119.9 |
C4—C5—Cl1 | 119.59 (15) | C12—C13—H13 | 119.9 |
C5—C6—C1 | 120.32 (16) | C13—C14—C9 | 120.80 (16) |
C5—C6—H6 | 119.8 | C13—C14—H14 | 119.6 |
C1—C6—H6 | 119.8 | C9—C14—H14 | 119.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O2i | 0.89 (1) | 2.12 (1) | 3.0065 (18) | 172 (3) |
O3—H3···O2ii | 0.82 | 1.98 | 2.7479 (19) | 157 |
O1—H1···N1 | 0.82 | 1.89 | 2.6057 (19) | 145 |
Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) −x+2, −y, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H11ClN2O3 |
Mr | 290.70 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 298 |
a, b, c (Å) | 9.423 (1), 9.839 (1), 13.770 (1) |
V (Å3) | 1276.7 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.17 × 0.15 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.950, 0.955 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7398, 2231, 2144 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.071, 1.06 |
No. of reflections | 2231 |
No. of parameters | 187 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.21, −0.32 |
Absolute structure | Flack (1983), 784 Friedel pairs |
Absolute structure parameter | −0.01 (6) |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O2i | 0.892 (10) | 2.121 (11) | 3.0065 (18) | 172 (3) |
O3—H3···O2ii | 0.82 | 1.98 | 2.7479 (19) | 156.8 |
O1—H1···N1 | 0.82 | 1.89 | 2.6057 (19) | 145.2 |
Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) −x+2, −y, z−1/2. |
Acknowledgements
The author acknowledges the Natural Science Foundation of the Education Office of Anhui Province (Project No. 2009 A150020).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cui, J., Yin, H. & Qiao, Y. (2007). Acta Cryst. E63, o3548. Web of Science CSD CrossRef IUCr Journals Google Scholar
Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101. Web of Science CSD CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595. Web of Science CSD CrossRef IUCr Journals Google Scholar
Narayana, B., Siddaraju, B. P., Raju, C. R., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3522. Web of Science CSD CrossRef IUCr Journals Google Scholar
Qiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2685–o2686. Web of Science CSD CrossRef IUCr Journals Google Scholar
Qiu, X.-Y., Luo, Q.-Y., Yang, S.-L. & Liu, W.-S. (2006a). Acta Cryst. E62, o4291–o4292. Web of Science CSD CrossRef IUCr Journals Google Scholar
Qiu, X.-Y., Luo, Z.-G., Yang, S.-L. & Liu, W.-S. (2006b). Acta Cryst. E62, o3531–o3532. Web of Science CSD CrossRef IUCr Journals Google Scholar
Qiu, X.-Y., Xu, H.-J., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2304–o2305. CSD CrossRef IUCr Journals Google Scholar
Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, N. K., Singh, M., Srivastava, A. K., Shrivastav, A. & Sharma, R. K. (2007). Acta Cryst. E63, o4895. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hyrazone compounds, derived from the reaction of aldehydes with hydrazides, have been widely studied due to their excellent biological properties (Bedia et al., 2006; Rollas et al., 2002; Fun et al., 2008). Recently, we have reported several Schiff base hydrazone compounds (Qiu, Fang et al., 2006; Qiu, Luo et al., 2006a,b; Qiu, Xu et al., 2006), and we report herein the crystal structure of the new title compound, (I), Fig. 1.
The molecule in (I) exists in a trans configuration with respect to the methylidene group. The dihedral angle between the two benzene rings is 40.1 (2)°. The bond lengths in (I) are found to have normal values (Allen et al., 1987) and are comparable to the values found in similar compounds (Singh et al., 2007; Narayana et al., 2007; Cui et al., 2007; Diao et al., 2008).
An intramolecular O–H···N hydrogen bond (Table 1) helps to stabilize the molecular conformation. In the crystal structure, molecules are linked into a three-dimensional network by intermolecular N–H···O and O–H···O hydrogen bonds (Table 1 and Fig. 2).