metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m505-m506

Poly[[2-(3-pyridinio)-1H,3H+-benzimidazolium] [μ4-oxido-di-μ3-oxido-tetra-μ2-oxido-hexa­oxido­tetra­molybdenum(VI)]]

aCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China, and bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: ljchen@ms.fjirsm.ac.cn

(Received 30 March 2009; accepted 6 April 2009; online 10 April 2009)

The reaction of MoO3 with 2-(3-pyrid­yl)benzoimidazole and water in the presence of MnSO4·5H2O at 453 K under hydro­thermal conditions afforded the title compound, {(C12H11N2)[Mo4O13]}n, in which infinite molybdenum oxide anionic chains are charge-balanced by diprotonated 2-(3-pyrid­yl)benzoimidazole (H23-PBIM2+) cations. Eight [MoO6] octa­hedra are edge-shared, forming compact octa­molybdate subunits which are connected through pairs of Mo—O—Mo bridges into extended one-dimensional arrays propagating along the a-axis direction. The asymmetric unit of the metal oxide chain contains one half of the octa­molybdate unit, denoted [Mo4O13], the other half being generated by an inversion center. These molybdenum oxide chains are further connected through the 2-(3-pyridinio)benzoimidazolium cations into a three-dimensional network via N—H⋯O hydrogen bonds. In addition, neighbouring diprotonated cations are arranged in a head-to-tail fashion with a plane-to-plane separation of 3.63 (10) Å, indicating the existence of weak aromatic ππ stacking inter­actions.

Related literature

For the properties, applications and reactivity of inorganic-organic hybrid materials, see: Pope (1983[Pope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Berlin: Springer-Verlag.]); Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34-48.]); Kong et al. (2004[Kong, Z. P., Weng, L. H., Tan, D. J., He, H. Y., Zhang, B., Kong, J. L. & Yue, B. (2004). Inorg. Chem. 43, 5676-5680.]). For chain, sheet and framework structural types, see: Hagrman et al. (1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]); Lu et al. (2002[Lu, C. Z., Wu, C. D., Zhuang, H. H. & Huang, J. S. (2002). Chem. Mater. 14, 2649-2655.]). For related structures, see: Chakrabarti & Natarajan (2002[Chakrabarti, S. & Natarajan, S. (2002). Cryst. Growth Des. 2, 333-335.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]); Modec et al. (2004[Modec, B., Brenčič, J. V. & Zubieta, J. (2004). Inorg. Chem. Commun. 6, 506-512.]); Xiao et al. (2005[Xiao, D. R., An, H. Y., Wang, E. B. & Xu, L. (2005). J. Mol. Struct. 738, 217-225.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H11N2)[Mo4O13]

  • Mr = 789.00

  • Triclinic, [P \overline 1]

  • a = 7.947 (3) Å

  • b = 11.503 (5) Å

  • c = 11.630 (5) Å

  • α = 70.038 (14)°

  • β = 76.856 (17)°

  • γ = 75.947 (17)°

  • V = 957.2 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.64 mm−1

  • T = 293 K

  • 0.10 × 0.05 × 0.02 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.763, Tmax = 0.949

  • 6127 measured reflections

  • 3358 independent reflections

  • 2594 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.100

  • S = 1.01

  • 3358 reflections

  • 289 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—O2 1.690 (5)
Mo1—O11 1.776 (5)
Mo1—O9 1.875 (5)
Mo1—O10i 1.956 (5)
Mo1—O6 2.189 (5)
Mo1—O10 2.416 (5)
Mo2—O5 1.693 (5)
Mo2—O4 1.709 (5)
Mo2—O8 1.927 (5)
Mo2—O3 2.004 (5)
Mo2—O10 2.200 (5)
Mo2—O9 2.345 (5)
Mo3—O7 1.699 (5)
Mo3—O13 1.790 (5)
Mo3—O6i 1.880 (5)
Mo3—O3 1.922 (5)
Mo3—O11 2.229 (6)
Mo3—O10 2.242 (5)
Mo4—O1 1.682 (5)
Mo4—O12 1.719 (5)
Mo4—O8 1.965 (5)
Mo4—O13ii 2.012 (5)
Mo4—O6 2.160 (5)
Mo4—O9 2.266 (5)
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3iii 0.86 1.78 2.639 (8) 176
N3—H3A⋯O8 0.86 1.78 2.614 (8) 164
Symmetry code: (iii) x, y-1, z.

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.])'; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The exploration of metal oxide-based inorganic-organic hybrid materials is of contemporary interest in the fields of solid state chemistry, not only because of their fascinating properties and potential applications in many fields, such as catalysis, sorption, electrical conductivity, magnetism and optical materials (Pope & Müller, 1991, Pope, 1983). Owing to their versatile stoichiometry, different structure, and high reactivity (Kong, 2004), molybdenum polyoxoanions are good candidates to function as building blocks for inorganic-organic hybrid materials. Through exploiting the strategy of synergistic interaction between organic and inorganic components, many examples of molybdenum oxide-based solid materials with one-dimensional chain, two-dimensional sheet and three-dimensional framework structures have been successfully synthesized (Hagrman et al., 1999, Lu et al., 2002). The organic components often function as charge compensating cations or as a linking bridges, to extend the molybdenum oxide building units into multi-dimensional networks. We report here the synthesis and crystal structure of the title compound, in which the organic component acts as a charge compensating cation.

The structure of title compound consists of an infinite molybdenum oxide chain which is charge balanced by diprotonated H23-PBIM2+ cations. As shown Fig. 1, every Mo atom is coordinated octahedrally by six O atoms. These can be divided into four groups according to their coordination environments: (i) Mo—O(t), 1.682 (5)–1.718 (5) Å; (ii) Mo—O(µ2-O), 1.776 (5)–2.229 (6) Å; (iii) Mo—O(µ3-O), 1.875 (5)- 2.345 (5) Å; (iv) Mo—O(µ4-O), 1.956 (5)–2.416 (5) Å (Table 1).

The asymmetric unit of the metal oxide chain contains one half of the octamolybdate unit, denoted as [Mo4O13], the other half is generated by the inversion center. Four asymmetric [MoO6] octahedra are edge- shared to form [Mo4O13]2- unit. Two [Mo4O13]2- units are stacked together by edge-sharing to give rise to γ-[Mo8O26]4- octamolybdate clusters, which are linked together to form infinite one- dimensional chains propagating along the a-direction through sharing pairs of common vertices. Therefore, the molybdenum oxide chain may be regarded to be constructed from octamolybdate units joined at two oxo groups or from two groups of cis-edge-sharing tetranuclear units fused at two common corners. The octamolybdate chain in the title compound is structurally analogous to those found in [Me—NC5H5]4[Mo8O26] (Modec et al., 2003), [H2enMe]2[Mo8O26] (Xiao et al., 2005), and [NH3(CH2)2NH3]2[Mo8O26] (Chakrabarti & Natarajan, 2002).

In the solid state of the title compound, the one-dimensional molybdenum oxide chains are held together and extended to three-dimensional framework via strong N—H···O hydrogen bonding and weak aromatic π-π stacking interactions. As illustrated in Fig. 3, one of the imino groups and the pyridyl group in the H23-PBIM2+ ligands participate in the intermolecular hydrogen bonding with two µ2-O atoms of the molybdenum oxide chains. The N···O separations are 2.639 (8) and 2.614 (8) Å with both H···O distances are 1.78 Å, falling into the normal range of the strong hydrogen bond interactions. The bond angles are 176.3 and 163.6 °, respectively. In addition, the neighbouring diprotonated H23-PBIM2+ ligands along the a-direction are arranged in a head-to-tail fashion with a plane-to-plane separation of 3.63 (10) Å, indicating the existence of weak aromatic π-π stacking interactions (Janiak, 2000).

Related literature top

For the properties, applications and reactivity of inorganic-organic hybrid materials, see: Pope (1983); Pope & Müller (1991); Kong et al. (2004). For chain, sheet and framework structural types, see: Hagrman et al. (1999); Lu et al. (2002). For related structures, see: Chakrabarti & Natarajan (2002); Janiak (2000); Modec et al. (2004); Xiao et al. (2005).

Experimental top

A mixture of MoO3, MnSO4.5H2O, 2-(3-pyridyl)benzoimidazole and H2O in the molar ratio 1.0:1.2:1.0:1835 was sealed in a 18 ml Teflon-lined Parr acid digestion bomb and heated for 3 days at 453 K and autogeneous pressure. After allowing the reaction mixture to cool down to room temperature, colorless needle-like crystals of title compound were collected, washed with water and air dried.

Refinement top

The positions of all hydrogen atoms were generated geometrically (C—H and N—H bonds fixed at 0.96 Å and 0.86 Å, respectively), assigned isotropic thermal parameters, and allowed to ride on their respective parent C or N atoms before the final cycle of least-squares refinement.

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999)'; software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A molecular drawing of (I), showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A polyhedral representation of the infinite chain in title compound and the γ-[Mo8O26]4-. All C, N and H atoms were omitted for clarity.
[Figure 3] Fig. 3. Packing diagram of title compound along a axis. Broken lines indicate hydrogen bonds. All H atoms, which do not participate in the bydrogen bonds, have been omitted for clarity.
Poly[[2-(3-pyridinio)-1H,3H+-benzimidazolium] [µ4-oxido-di-µ3-oxido-tetra-µ2-oxido-hexaoxidotetramolybdenum(VI)]] top
Crystal data top
(C12H11N2)[Mo4O13]Z = 2
Mr = 789.00F(000) = 752
Triclinic, P1Dx = 2.738 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.947 (3) ÅCell parameters from 2049 reflections
b = 11.503 (5) Åθ = 3.0–25.0°
c = 11.630 (5) ŵ = 2.64 mm1
α = 70.038 (14)°T = 293 K
β = 76.856 (17)°Prism, colorless
γ = 75.947 (17)°0.10 × 0.05 × 0.02 mm
V = 957.2 (7) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
3358 independent reflections
Radiation source: fine-focus sealed tube2594 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 14.6306 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
k = 1312
Tmin = 0.763, Tmax = 0.949l = 1313
6127 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0416P)2]
where P = (Fo2 + 2Fc2)/3
3358 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.98 e Å3
6 restraintsΔρmin = 1.14 e Å3
Crystal data top
(C12H11N2)[Mo4O13]γ = 75.947 (17)°
Mr = 789.00V = 957.2 (7) Å3
Triclinic, P1Z = 2
a = 7.947 (3) ÅMo Kα radiation
b = 11.503 (5) ŵ = 2.64 mm1
c = 11.630 (5) ÅT = 293 K
α = 70.038 (14)°0.10 × 0.05 × 0.02 mm
β = 76.856 (17)°
Data collection top
Rigaku Mercury CCD
diffractometer
3358 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
2594 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.949Rint = 0.047
6127 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0436 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.01Δρmax = 0.98 e Å3
3358 reflectionsΔρmin = 1.14 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.16871 (9)1.12585 (6)0.46162 (6)0.00650 (17)
Mo20.11157 (9)1.09175 (6)0.19220 (6)0.00741 (17)
Mo30.26045 (9)1.15843 (6)0.40116 (6)0.00665 (17)
Mo40.28939 (9)1.02948 (6)0.25245 (6)0.00758 (18)
O10.3420 (7)0.8971 (5)0.2506 (5)0.0133 (12)
O20.3693 (7)1.1971 (4)0.5145 (5)0.0105 (12)
O30.1859 (7)1.2201 (4)0.2416 (5)0.0085 (11)
O40.0616 (7)1.2015 (5)0.0567 (5)0.0128 (12)
O50.3085 (7)1.0059 (5)0.1528 (5)0.0137 (12)
O60.2454 (7)0.9638 (4)0.4425 (5)0.0104 (12)
O70.2797 (7)1.2922 (5)0.4247 (5)0.0115 (12)
O80.0349 (7)0.9717 (4)0.2159 (5)0.0083 (11)
O90.1648 (7)1.1673 (4)0.2906 (5)0.0096 (11)
O100.1167 (7)1.0169 (4)0.3927 (5)0.0094 (11)
O110.0233 (7)1.2188 (4)0.4667 (5)0.0100 (11)
O120.3228 (7)1.1403 (5)0.1127 (5)0.0139 (12)
O130.4808 (7)1.0993 (5)0.3414 (5)0.0112 (12)
N10.2675 (9)0.4044 (6)0.0410 (6)0.0101 (14)
H1A0.24390.34210.10480.012*
N20.2821 (9)0.5971 (6)0.0789 (6)0.0163 (16)
H2A0.26830.67780.10400.020*
N30.0301 (9)0.7334 (6)0.2313 (6)0.0129 (15)
H3A0.02920.80910.22870.016*
C10.3678 (11)0.5190 (7)0.1506 (7)0.0111 (17)
C20.4479 (11)0.5449 (7)0.2742 (7)0.0164 (19)
H2B0.45290.62670.32510.020*
C30.5193 (11)0.4427 (8)0.3171 (8)0.0184 (19)
H3B0.57570.45560.39860.022*
C40.5087 (10)0.3195 (7)0.2404 (7)0.0134 (17)
H4A0.55610.25350.27380.016*
C50.4315 (11)0.2924 (7)0.1185 (7)0.0161 (18)
H5A0.42890.21010.06820.019*
C60.3569 (10)0.3953 (7)0.0735 (7)0.0121 (17)
C70.2234 (10)0.5267 (7)0.0365 (7)0.0107 (17)
C80.1258 (10)0.5724 (6)0.1383 (7)0.0110 (17)
C90.1228 (10)0.6933 (7)0.1385 (7)0.0075 (16)
H9A0.18630.74620.07290.009*
C100.0629 (12)0.6621 (7)0.3295 (7)0.0176 (19)
H10A0.12660.69430.39310.021*
C110.0631 (11)0.5392 (7)0.3352 (7)0.0152 (18)
H11A0.12410.48760.40380.018*
C120.0270 (12)0.4951 (7)0.2394 (8)0.0182 (19)
H12A0.02340.41440.24060.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0066 (4)0.0062 (3)0.0058 (3)0.0016 (3)0.0010 (3)0.0003 (2)
Mo20.0072 (4)0.0076 (3)0.0064 (3)0.0024 (3)0.0002 (3)0.0007 (2)
Mo30.0067 (4)0.0060 (3)0.0063 (3)0.0027 (3)0.0014 (3)0.0005 (2)
Mo40.0078 (4)0.0079 (3)0.0066 (4)0.0027 (3)0.0011 (3)0.0007 (2)
O10.018 (3)0.012 (3)0.010 (3)0.007 (2)0.004 (2)0.001 (2)
O20.007 (3)0.011 (3)0.012 (3)0.001 (2)0.001 (2)0.002 (2)
O30.009 (3)0.007 (3)0.009 (3)0.001 (2)0.003 (2)0.000 (2)
O40.013 (3)0.013 (3)0.012 (3)0.004 (2)0.004 (2)0.001 (2)
O50.013 (3)0.011 (3)0.015 (3)0.003 (2)0.003 (3)0.006 (2)
O60.010 (3)0.013 (3)0.009 (3)0.003 (2)0.003 (2)0.001 (2)
O70.011 (3)0.014 (3)0.009 (3)0.001 (2)0.001 (2)0.005 (2)
O80.007 (3)0.007 (2)0.009 (3)0.004 (2)0.002 (2)0.000 (2)
O90.013 (3)0.007 (3)0.006 (3)0.002 (2)0.001 (2)0.002 (2)
O100.012 (3)0.007 (3)0.009 (3)0.000 (2)0.006 (2)0.000 (2)
O110.011 (3)0.007 (3)0.012 (3)0.000 (2)0.006 (2)0.002 (2)
O120.015 (3)0.015 (3)0.011 (3)0.004 (2)0.002 (2)0.002 (2)
O130.006 (3)0.017 (3)0.010 (3)0.004 (2)0.003 (2)0.001 (2)
N10.014 (4)0.010 (3)0.004 (3)0.005 (3)0.004 (3)0.002 (2)
N20.023 (4)0.003 (3)0.019 (4)0.005 (3)0.008 (3)0.001 (3)
N30.012 (4)0.006 (3)0.020 (4)0.003 (3)0.007 (3)0.004 (3)
C10.014 (4)0.008 (4)0.010 (4)0.004 (3)0.002 (3)0.000 (3)
C20.021 (5)0.015 (4)0.008 (4)0.008 (4)0.003 (4)0.004 (3)
C30.012 (5)0.023 (5)0.023 (5)0.001 (4)0.008 (4)0.009 (4)
C40.006 (4)0.016 (4)0.018 (5)0.001 (3)0.001 (4)0.007 (3)
C50.024 (5)0.015 (4)0.013 (4)0.010 (4)0.003 (4)0.004 (3)
C60.009 (4)0.016 (4)0.016 (4)0.005 (3)0.006 (4)0.007 (3)
C70.011 (4)0.007 (4)0.013 (4)0.002 (3)0.000 (3)0.003 (3)
C80.010 (4)0.003 (3)0.015 (4)0.003 (3)0.002 (3)0.002 (3)
C90.003 (4)0.011 (4)0.006 (4)0.001 (3)0.001 (3)0.001 (3)
C100.024 (5)0.018 (4)0.009 (4)0.001 (4)0.000 (4)0.007 (3)
C110.019 (5)0.004 (4)0.016 (4)0.003 (3)0.002 (4)0.002 (3)
C120.026 (5)0.013 (4)0.018 (5)0.008 (4)0.009 (4)0.001 (3)
Geometric parameters (Å, º) top
Mo1—O21.690 (5)N1—H1A0.8600
Mo1—O111.776 (5)N2—C71.353 (10)
Mo1—O91.875 (5)N2—C11.386 (10)
Mo1—O10i1.956 (5)N2—H2A0.8600
Mo1—O62.189 (5)N3—C91.317 (10)
Mo1—O102.416 (5)N3—C101.339 (11)
Mo2—O51.693 (5)N3—H3A0.8600
Mo2—O41.709 (5)C1—C21.395 (11)
Mo2—O81.927 (5)C1—C61.410 (10)
Mo2—O32.004 (5)C2—C31.378 (11)
Mo2—O102.200 (5)C2—H2B0.9300
Mo2—O92.345 (5)C3—C41.404 (11)
Mo3—O71.699 (5)C3—H3B0.9300
Mo3—O131.790 (5)C4—C51.371 (11)
Mo3—O6i1.880 (5)C4—H4A0.9300
Mo3—O31.922 (5)C5—C61.402 (11)
Mo3—O112.229 (6)C5—H5A0.9300
Mo3—O102.242 (5)C7—C81.445 (11)
Mo4—O11.682 (5)C8—C91.385 (10)
Mo4—O121.719 (5)C8—C121.413 (11)
Mo4—O81.965 (5)C9—H9A0.9300
Mo4—O13ii2.012 (5)C10—C111.393 (11)
Mo4—O62.160 (5)C10—H10A0.9300
Mo4—O92.266 (5)C11—C121.363 (11)
N1—C71.350 (9)C11—H11A0.9300
N1—C61.384 (10)C12—H12A0.9300
O2—Mo1—O11104.1 (2)Mo3i—O6—Mo4149.5 (3)
O2—Mo1—O9104.5 (2)Mo3i—O6—Mo1107.8 (2)
O11—Mo1—O9101.6 (2)Mo4—O6—Mo1102.4 (2)
O2—Mo1—O10i101.7 (2)Mo2—O8—Mo4116.1 (2)
O11—Mo1—O10i98.2 (2)Mo1—O9—Mo4109.5 (2)
O9—Mo1—O10i142.0 (2)Mo1—O9—Mo2111.1 (2)
O2—Mo1—O698.6 (2)Mo4—O9—Mo291.48 (18)
O11—Mo1—O6156.9 (2)Mo1i—O10—Mo2149.5 (3)
O9—Mo1—O676.6 (2)Mo1i—O10—Mo3103.1 (2)
O10i—Mo1—O672.61 (19)Mo2—O10—Mo396.11 (19)
O2—Mo1—O10177.8 (2)Mo1i—O10—Mo1103.8 (2)
O11—Mo1—O1076.9 (2)Mo2—O10—Mo198.11 (18)
O9—Mo1—O1077.1 (2)Mo3—O10—Mo193.98 (18)
O10i—Mo1—O1076.2 (2)Mo1—O11—Mo3116.2 (2)
O6—Mo1—O1080.29 (19)Mo3—O13—Mo4iii170.5 (3)
O5—Mo2—O4105.2 (3)C7—N1—C6109.3 (6)
O5—Mo2—O898.6 (2)C7—N1—H1A125.4
O4—Mo2—O8102.0 (2)C6—N1—H1A125.4
O5—Mo2—O3101.2 (2)C7—N2—C1109.5 (6)
O4—Mo2—O390.8 (2)C7—N2—H2A125.2
O8—Mo2—O3152.7 (2)C1—N2—H2A125.2
O5—Mo2—O1094.9 (2)C9—N3—C10123.3 (7)
O4—Mo2—O10156.3 (2)C9—N3—H3A118.3
O8—Mo2—O1087.0 (2)C10—N3—H3A118.3
O3—Mo2—O1072.70 (19)N2—C1—C2131.8 (7)
O5—Mo2—O9165.8 (2)N2—C1—C6106.1 (7)
O4—Mo2—O988.3 (2)C2—C1—C6122.1 (7)
O8—Mo2—O973.7 (2)C3—C2—C1116.4 (7)
O3—Mo2—O982.7 (2)C3—C2—H2B121.8
O10—Mo2—O973.09 (18)C1—C2—H2B121.8
O7—Mo3—O13103.0 (2)C2—C3—C4121.5 (8)
O7—Mo3—O6i106.4 (2)C2—C3—H3B119.3
O13—Mo3—O6i97.5 (2)C4—C3—H3B119.3
O7—Mo3—O3102.6 (2)C5—C4—C3122.8 (8)
O13—Mo3—O393.5 (2)C5—C4—H4A118.6
O6i—Mo3—O3145.6 (2)C3—C4—H4A118.6
O7—Mo3—O1182.9 (2)C4—C5—C6116.5 (7)
O13—Mo3—O11173.7 (2)C4—C5—H5A121.7
O6i—Mo3—O1182.6 (2)C6—C5—H5A121.7
O3—Mo3—O1183.0 (2)N1—C6—C5132.6 (7)
O7—Mo3—O10155.7 (2)N1—C6—C1106.7 (7)
O13—Mo3—O10101.2 (2)C5—C6—C1120.6 (8)
O6i—Mo3—O1072.7 (2)N1—C7—N2108.4 (7)
O3—Mo3—O1073.22 (19)N1—C7—C8124.8 (7)
O11—Mo3—O1072.83 (19)N2—C7—C8126.7 (7)
O1—Mo4—O12106.8 (2)C9—C8—C12118.2 (7)
O1—Mo4—O894.3 (2)C9—C8—C7121.4 (7)
O12—Mo4—O899.6 (2)C12—C8—C7120.4 (7)
O1—Mo4—O13ii98.9 (3)N3—C9—C8120.2 (7)
O12—Mo4—O13ii92.9 (2)N3—C9—H9A119.9
O8—Mo4—O13ii158.5 (2)C8—C9—H9A119.9
O1—Mo4—O697.2 (2)N3—C10—C11119.1 (8)
O12—Mo4—O6155.4 (2)N3—C10—H10A120.4
O8—Mo4—O684.1 (2)C11—C10—H10A120.4
O13ii—Mo4—O677.4 (2)C12—C11—C10119.5 (8)
O1—Mo4—O9163.5 (2)C12—C11—H11A120.2
O12—Mo4—O987.6 (2)C10—C11—H11A120.2
O8—Mo4—O974.95 (19)C11—C12—C8119.7 (7)
O13ii—Mo4—O988.2 (2)C11—C12—H12A120.2
O6—Mo4—O969.69 (18)C8—C12—H12A120.2
Mo3—O3—Mo2114.6 (2)
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3iv0.861.782.639 (8)176
N3—H3A···O80.861.782.614 (8)164
Symmetry code: (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula(C12H11N2)[Mo4O13]
Mr789.00
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.947 (3), 11.503 (5), 11.630 (5)
α, β, γ (°)70.038 (14), 76.856 (17), 75.947 (17)
V3)957.2 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.64
Crystal size (mm)0.10 × 0.05 × 0.02
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.763, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
6127, 3358, 2594
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.100, 1.01
No. of reflections3358
No. of parameters289
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 1.14

Computer programs: CrystalClear (Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999)'.

Selected bond lengths (Å) top
Mo1—O21.690 (5)Mo3—O71.699 (5)
Mo1—O111.776 (5)Mo3—O131.790 (5)
Mo1—O91.875 (5)Mo3—O6i1.880 (5)
Mo1—O10i1.956 (5)Mo3—O31.922 (5)
Mo1—O62.189 (5)Mo3—O112.229 (6)
Mo1—O102.416 (5)Mo3—O102.242 (5)
Mo2—O51.693 (5)Mo4—O11.682 (5)
Mo2—O41.709 (5)Mo4—O121.719 (5)
Mo2—O81.927 (5)Mo4—O81.965 (5)
Mo2—O32.004 (5)Mo4—O13ii2.012 (5)
Mo2—O102.200 (5)Mo4—O62.160 (5)
Mo2—O92.345 (5)Mo4—O92.266 (5)
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3iii0.861.782.639 (8)176.3
N3—H3A···O80.861.782.614 (8)163.6
Symmetry code: (iii) x, y1, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Fujian Province (2006 F3141, 2008 J0142).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChakrabarti, S. & Natarajan, S. (2002). Cryst. Growth Des. 2, 333–335.  Web of Science CSD CrossRef CAS Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.  CrossRef Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKong, Z. P., Weng, L. H., Tan, D. J., He, H. Y., Zhang, B., Kong, J. L. & Yue, B. (2004). Inorg. Chem. 43, 5676–5680.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLu, C. Z., Wu, C. D., Zhuang, H. H. & Huang, J. S. (2002). Chem. Mater. 14, 2649–2655.  Web of Science CSD CrossRef CAS Google Scholar
First citationModec, B., Brenčič, J. V. & Zubieta, J. (2004). Inorg. Chem. Commun. 6, 506–512.  Web of Science CSD CrossRef Google Scholar
First citationPope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Berlin: Springer-Verlag.  Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34–48.  CrossRef Web of Science Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, D. R., An, H. Y., Wang, E. B. & Xu, L. (2005). J. Mol. Struct. 738, 217–225.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m505-m506
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds