organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1073

4-(4-Bromo­benzene­sulfonamido)benzoic acid

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: mnachemist@hotmail.com

(Received 3 April 2009; accepted 13 April 2009; online 18 April 2009)

The title compound, C13H10BrNO4S, belongs to the sulfonamide class of organic compounds. The two aromatic rings are inclined at 34.30 (15)° to one another, and the carboxyl substituent lies in the plane of the benzene ring to which it is bound (maximum deviation = 0.004 Å). In the crystal structure, charactersitic carboxylic acid dimers are formed through O—H⋯O hydrogen bonds. These dimers are linked into rows down a by N—H⋯O inter­actions. Additional C—H⋯O contacts further stabilize the structure, and a close Br⋯Br(x, −y + 1, −z + 1) contact of 3.5199 (9) Å is also observed.

Related literature

For details of the biological activity and pharmaceutical applications of sulfonamide derivatives, see: Pandya et al. (2003[Pandya, R., Murashima, T., Tedeschi, L. & Barrett, A. G. M. (2003). J. Org. Chem. 68, 8274-8276.]); Supuran & Scozzafava (2000[Supuran, C. T. & Scozzafava, A. (2000). J. Enzyme Inhib. Med. Chem. 15, 597-610.]); Arshad, Khan & Zia-ur-Rehman (2008[Arshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283-o2284.]). For thia­zine-related heterocycles, see: Arshad, Tahir et al. (2008[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.]). For a related structure, see: Nan & Xing (2006[Nan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978-o1979.]). For bond-length information, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.]). For the synthesis, see: Deng & Mani (2006[Deng, X. & Mani, N. S. (2006). Green Chem. 8, 835-838.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10BrNO4S

  • Mr = 356.19

  • Monoclinic, P 21 /c

  • a = 5.1344 (5) Å

  • b = 13.1713 (11) Å

  • c = 20.0224 (19) Å

  • β = 91.730 (5)°

  • V = 1353.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.20 mm−1

  • T = 296 K

  • 0.35 × 0.21 × 0.09 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.448, Tmax = 0.754

  • 14856 measured reflections

  • 3352 independent reflections

  • 1838 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.128

  • S = 1.01

  • 3352 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −1.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 1.80 2.606 (4) 171
N1—H1⋯O4ii 0.86 2.57 3.001 (3) 112
C2—H2⋯O1iii 0.93 2.46 3.361 (5) 164
C3—H3⋯O2iv 0.93 2.53 3.314 (5) 143
C11—H11⋯O3v 0.93 2.58 3.395 (5) 146
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z; (iii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Sulfonamide derivatives have been reported as antibacterial agents (Pandya et al., 2003) as well as enzyme inhibitors. The studies also revealed that aromatic sulfonamides are inhibitors of the growth of tumor cells (Supuran, & Scozzafava, 2000). Herein we report the structure of the title compound I, Fig, 1, as a continuation of our work on the synthesis and structure of sulfonamides (Arshad, Khan & Zia-ur-Rehman et al., 2008a) and thiazine related heterocycles (Arshad, Tahir et al., 2008b).

The structure of the title compound I can be compared with that of 4-(tosylamino)benzoic acid (Nan and Xing, 2006) which differs only in respect that I has bromo substituent in the para position instead of methyl group. The carboxylic acid substituent lies in the plane of the benzene ring to which it is bound (maximum deviation 0.004 Å) and the phenyl rings (C1—C6) and (C7—C12) are oriented at an angle of 34.30 (0.15) ° to each other. Bond lengths in the molecule are normal (Allen et al., 1987). The carboxylic acid substituent forms dimers via intermolecular O—H···O hydrogen bonds. These dimers are further linked through N–H···O hydrogen bonds between the N–H and the oxygen of the sulfonyl group (SO2) along the a axis. Moreover the structure is further stabilized by C–H···O intermolecular interactions, Table 1, by forming seven and ten membered ring motifs Fig. 3.

Related literature top

For details of the biological activity and pharmaceutical applications of sulfonamide derivatives, see: Pandya et al. (2003); Supuran & Scozzafava (2000); Arshad, Khan & Zia-ur-Rehman (2008). For thiazine-related heterocycles, see: Arshad, Tahir et al. (2008). For a related structure, see: Nan & Xing (2006). For bond-length information, see: Allen et al. (1987). For the synthesis, see: Deng & Mani (2006).

Experimental top

The title compound was synthesized following the method (Deng & Mani, 2006). and recrystallized from ethanol for X-ray studies.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.82 Å, Uiso = 1.5Ueq (O) for the OH group and 0.86 Å, Uiso = 1.2Ueq (N) for the NH group.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for the non-hydrogenatoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing for (I) showing the formation of rows of dimers with hydrogen bonds drawn as dashed lines and H atoms not involved in hydrogen bonding omitted.
[Figure 3] Fig. 3. Unit cell packing for (I) showing additional C–H···O hydrogen bonds drawn as dashed lines and H atoms not involved in hydrogen bonding omitted.
4-(4-Bromobenzenesulfonamido)benzoic acid top
Crystal data top
C13H10BrNO4SF(000) = 712
Mr = 356.19Dx = 1.748 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc 1Cell parameters from 2704 reflections
a = 5.1344 (5) Åθ = 2.6–22.0°
b = 13.1713 (11) ŵ = 3.20 mm1
c = 20.0224 (19) ÅT = 296 K
β = 91.730 (5)°Irregular fragment, white
V = 1353.4 (2) Å30.35 × 0.21 × 0.09 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3352 independent reflections
Radiation source: fine-focus sealed tube1838 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 66
Tmin = 0.448, Tmax = 0.754k = 1710
14856 measured reflectionsl = 2623
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.1787P]
where P = (Fo2 + 2Fc2)/3
3352 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = 1.09 e Å3
Crystal data top
C13H10BrNO4SV = 1353.4 (2) Å3
Mr = 356.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.1344 (5) ŵ = 3.20 mm1
b = 13.1713 (11) ÅT = 296 K
c = 20.0224 (19) Å0.35 × 0.21 × 0.09 mm
β = 91.730 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3352 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1838 reflections with I > 2σ(I)
Tmin = 0.448, Tmax = 0.754Rint = 0.061
14856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.01Δρmax = 1.43 e Å3
3352 reflectionsΔρmin = 1.09 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.06086 (10)0.39989 (3)0.44439 (2)0.0693 (2)
S10.41495 (17)0.01866 (7)0.27290 (5)0.0348 (2)
O10.6125 (5)0.38278 (19)0.01376 (14)0.0509 (8)
O20.2589 (5)0.4559 (2)0.05304 (15)0.0528 (8)
H2A0.30840.50240.02930.079*
O30.3343 (5)0.07285 (18)0.30378 (14)0.0459 (7)
O40.6772 (4)0.0308 (2)0.25256 (13)0.0458 (7)
N10.2274 (5)0.0325 (2)0.20612 (15)0.0353 (7)
H10.10850.01160.19650.042*
C10.1820 (8)0.2852 (3)0.3973 (2)0.0448 (10)
C20.0653 (8)0.1929 (3)0.4067 (2)0.0498 (11)
H20.06660.18620.43720.060*
C30.1449 (7)0.1108 (3)0.3707 (2)0.0434 (10)
H30.06780.04780.37700.052*
C40.3401 (6)0.1213 (3)0.32476 (18)0.0339 (9)
C50.4571 (8)0.2152 (3)0.3160 (2)0.0472 (10)
H50.58860.22220.28540.057*
C60.3796 (8)0.2975 (3)0.3523 (2)0.0548 (12)
H60.45820.36040.34680.066*
C70.2632 (6)0.1189 (2)0.16378 (18)0.0310 (8)
C80.4623 (7)0.1184 (3)0.1193 (2)0.0399 (9)
H80.56520.06080.11480.048*
C90.5087 (7)0.2035 (3)0.08134 (19)0.0398 (9)
H90.64590.20370.05210.048*
C100.3537 (7)0.2881 (3)0.08650 (18)0.0324 (8)
C110.1471 (7)0.2863 (3)0.1297 (2)0.0412 (10)
H110.03780.34240.13260.049*
C120.1038 (7)0.2019 (3)0.16820 (19)0.0411 (9)
H120.03400.20110.19730.049*
C130.4143 (7)0.3801 (3)0.04823 (18)0.0372 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0983 (4)0.0484 (3)0.0624 (4)0.0061 (2)0.0194 (3)0.0097 (2)
S10.0293 (5)0.0328 (5)0.0428 (6)0.0016 (4)0.0084 (4)0.0072 (4)
O10.0523 (17)0.0412 (16)0.061 (2)0.0101 (12)0.0304 (15)0.0144 (13)
O20.0589 (17)0.0363 (16)0.065 (2)0.0145 (14)0.0293 (15)0.0186 (14)
O30.0485 (16)0.0331 (15)0.0567 (19)0.0037 (12)0.0135 (13)0.0141 (13)
O40.0271 (13)0.0532 (18)0.0579 (19)0.0035 (11)0.0117 (12)0.0064 (13)
N10.0321 (16)0.0332 (17)0.041 (2)0.0093 (12)0.0037 (14)0.0058 (14)
C10.056 (3)0.040 (2)0.039 (2)0.0045 (19)0.0048 (19)0.0047 (18)
C20.053 (3)0.051 (3)0.047 (3)0.003 (2)0.021 (2)0.001 (2)
C30.047 (2)0.037 (2)0.047 (3)0.0076 (17)0.014 (2)0.0067 (18)
C40.0300 (19)0.034 (2)0.038 (2)0.0021 (15)0.0045 (16)0.0050 (16)
C50.048 (2)0.044 (2)0.051 (3)0.0081 (18)0.019 (2)0.001 (2)
C60.064 (3)0.037 (2)0.064 (3)0.014 (2)0.017 (2)0.000 (2)
C70.0308 (18)0.0265 (19)0.036 (2)0.0010 (14)0.0040 (16)0.0025 (15)
C80.044 (2)0.031 (2)0.046 (2)0.0101 (16)0.0135 (18)0.0014 (17)
C90.043 (2)0.035 (2)0.042 (2)0.0037 (17)0.0171 (18)0.0011 (18)
C100.0332 (19)0.030 (2)0.034 (2)0.0001 (15)0.0058 (16)0.0006 (16)
C110.035 (2)0.034 (2)0.056 (3)0.0119 (15)0.0147 (18)0.0088 (19)
C120.034 (2)0.042 (2)0.048 (3)0.0069 (16)0.0162 (18)0.0083 (19)
C130.036 (2)0.035 (2)0.040 (2)0.0002 (17)0.0072 (18)0.0029 (17)
Geometric parameters (Å, º) top
Br1—C11.896 (4)C4—C51.388 (5)
S1—O31.422 (2)C5—C61.370 (5)
S1—O41.427 (2)C5—H50.9300
S1—N11.634 (3)C6—H60.9300
S1—C41.754 (4)C7—C121.370 (5)
O1—C131.247 (4)C7—C81.376 (5)
O2—C131.284 (4)C8—C91.379 (5)
O2—H2A0.8200C8—H80.9300
N1—C71.434 (4)C9—C101.374 (5)
N1—H10.8600C9—H90.9300
C1—C21.371 (5)C10—C111.389 (5)
C1—C61.387 (5)C10—C131.472 (5)
C2—C31.370 (5)C11—C121.375 (5)
C2—H20.9300C11—H110.9300
C3—C41.388 (5)C12—H120.9300
C3—H30.9300
O3—S1—O4120.55 (15)C5—C6—C1118.8 (4)
O3—S1—N1106.15 (15)C5—C6—H6120.6
O4—S1—N1106.97 (15)C1—C6—H6120.6
O3—S1—C4108.90 (16)C12—C7—C8120.2 (3)
O4—S1—C4107.95 (16)C12—C7—N1120.5 (3)
N1—S1—C4105.33 (16)C8—C7—N1119.3 (3)
C13—O2—H2A109.5C7—C8—C9119.8 (3)
C7—N1—S1119.3 (2)C7—C8—H8120.1
C7—N1—H1120.4C9—C8—H8120.1
S1—N1—H1120.4C10—C9—C8120.5 (3)
C2—C1—C6121.6 (4)C10—C9—H9119.8
C2—C1—Br1119.1 (3)C8—C9—H9119.8
C6—C1—Br1119.2 (3)C9—C10—C11119.2 (3)
C3—C2—C1119.3 (4)C9—C10—C13119.7 (3)
C3—C2—H2120.3C11—C10—C13121.0 (3)
C1—C2—H2120.3C12—C11—C10120.1 (3)
C2—C3—C4120.2 (3)C12—C11—H11119.9
C2—C3—H3119.9C10—C11—H11119.9
C4—C3—H3119.9C7—C12—C11120.1 (3)
C5—C4—C3119.8 (3)C7—C12—H12119.9
C5—C4—S1120.6 (3)C11—C12—H12119.9
C3—C4—S1119.4 (3)O1—C13—O2122.6 (3)
C6—C5—C4120.3 (4)O1—C13—C10120.0 (3)
C6—C5—H5119.8O2—C13—C10117.4 (3)
C4—C5—H5119.8
O3—S1—N1—C7179.7 (2)Br1—C1—C6—C5176.8 (3)
O4—S1—N1—C749.8 (3)S1—N1—C7—C1299.7 (4)
C4—S1—N1—C764.9 (3)S1—N1—C7—C879.3 (4)
C6—C1—C2—C30.2 (7)C12—C7—C8—C93.0 (6)
Br1—C1—C2—C3177.3 (3)N1—C7—C8—C9175.9 (3)
C1—C2—C3—C40.5 (6)C7—C8—C9—C101.5 (6)
C2—C3—C4—C50.8 (6)C8—C9—C10—C110.9 (6)
C2—C3—C4—S1173.2 (3)C8—C9—C10—C13176.9 (4)
O3—S1—C4—C5162.7 (3)C9—C10—C11—C121.9 (6)
O4—S1—C4—C530.2 (4)C13—C10—C11—C12175.8 (4)
N1—S1—C4—C583.8 (3)C8—C7—C12—C112.0 (6)
O3—S1—C4—C323.2 (3)N1—C7—C12—C11176.9 (3)
O4—S1—C4—C3155.7 (3)C10—C11—C12—C70.5 (6)
N1—S1—C4—C390.3 (3)C9—C10—C13—O13.4 (6)
C3—C4—C5—C60.3 (6)C11—C10—C13—O1174.4 (3)
S1—C4—C5—C6173.7 (3)C9—C10—C13—O2177.8 (4)
C4—C5—C6—C10.4 (6)C11—C10—C13—O24.5 (5)
C2—C1—C6—C50.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.802.606 (4)171
N1—H1···O4ii0.862.573.001 (3)112
C2—H2···O1iii0.932.463.361 (5)164
C3—H3···O2iv0.932.533.314 (5)143
C11—H11···O3v0.932.583.395 (5)146
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x1, y+1/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H10BrNO4S
Mr356.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.1344 (5), 13.1713 (11), 20.0224 (19)
β (°) 91.730 (5)
V3)1353.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.20
Crystal size (mm)0.35 × 0.21 × 0.09
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.448, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
14856, 3352, 1838
Rint0.061
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.128, 1.01
No. of reflections3352
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 1.09

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.802.606 (4)170.64
N1—H1···O4ii0.862.573.001 (3)111.70
C2—H2···O1iii0.932.463.361 (5)163.8
C3—H3···O2iv0.932.533.314 (5)142.7
C11—H11···O3v0.932.583.395 (5)146.2
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x1, y+1/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x, y+1/2, z+1/2.
 

Acknowledgements

MNA acknowledges the Higher Education Commission, Pakistan, for providing a PhD Scholarship under the PIN 042-120607-PS2-183 scheme and also acknowledges Professor Dr M. Nawaz Tahir, Chairman, Department of Physics, University of Sargodha, Pakistan, for his kind guidance in crystallography.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283–o2284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, X. & Mani, N. S. (2006). Green Chem. 8, 835–838.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978–o1979.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPandya, R., Murashima, T., Tedeschi, L. & Barrett, A. G. M. (2003). J. Org. Chem. 68, 8274–8276.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T. & Scozzafava, A. (2000). J. Enzyme Inhib. Med. Chem. 15, 597–610.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1073
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds