organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1070

4-Chloro-2-[(E)-2-(4-meth­oxy­phen­yl)ethyl­imino­meth­yl]phenol

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 April 2009; accepted 8 April 2009; online 18 April 2009)

In the title Schiff base, C16H16ClNO2, the 2-(4-methoxy­phen­yl)ethyl (CH3OC6H4CH2CH2–; r.m.s. deviation = 0.10 Å) and 4-chloro-2-(imino­meth­yl)phenol (N=CHC6H3ClOH; r.m.s. deviation = 0.01 Å) portions are both essentially planar, the two parts being inclined at an angle of 61.8 (1)°. The hydroxy group forms a hydrogen bond to the imino N atom.

Related literature

The crystal structures of several Schiff bases derived by condensing aryl-2-ethyl­amines and substituted salicylaldehydes have been reported; see: Chatziefthimiou et al. (2006[Chatziefthimiou, S. D., Lazarou, Y. G., Hadjoudis, E., Dziembowska, T. & Mavridis, I. M. (2006). J. Chem. Phys. B, 110, 23701-23709.]); Chohan et al. (2008[Chohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o725.]); Coombs et al. (2005[Coombs, R. R., Ringer, M. K., Blacquiere, J. M., Smith, J. S., Neilson, J. S., Uh, Y.-S., Gilbert, J. B., Leger, L. J., Zhang, H.-W., Irving, A. M., Wheaton, S. L., Wheaton, S. L., Vogels, C. M., Westcott, S. A., Decken, A. & Baerlocher, F. J. (2005). Transition Met. Chem. 30, 411-418.]); Li et al. (2006[Li, Y.-G., Zhu, H.-L., Huang, W.-Q. & Ai, L. (2006). Acta Cryst. E62, o689-o690.]); Räisänen et al. (2007[Räisänen, M. T., Leskelä, M. & Repo, T. (2007). Acta Cryst. E63, o1816-o1817.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16ClNO2

  • Mr = 289.75

  • Triclinic, [P \overline 1]

  • a = 5.7610 (2) Å

  • b = 7.7115 (3) Å

  • c = 15.7814 (5) Å

  • α = 82.420 (2)°

  • β = 89.320 (2)°

  • γ = 85.313 (2)°

  • V = 692.65 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.03 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.934, Tmax = 0.992

  • 5284 measured reflections

  • 3036 independent reflections

  • 2235 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.099

  • S = 1.03

  • 3036 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.85 (1) 1.79 (2) 2.567 (2) 152 (3)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

The crystal structures of several Schiff bases derived by condensing aryl-2-ethylamines and substituted salicylaldehydes have been reported; see: Chatziefthimiou et al. (2006); Chohan et al. (2008); Coombs et al. (2005); Li et al. (2006); Räisänen et al. (2007).

Experimental top

2-(4-Methoxyphenyl)ethylamine (0.30 g, 2 mmol) and 5-chlorosalicylaldehyde (0.31 g, 2 mmol) were heated in ethanol (20 ml) for 1 h. The solution was set aside for the growth of crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) fixed at 1.2–1.5U(C).

The hydroxy H-atom was located in a difference Fourier map, and was refined with a distance restraint of O–H 0.84±0.01 Å; its temperature factor was refined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of C16H16ClNO2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-Chloro-2-[(E)-2-(4-methoxyphenyl)ethyliminomethyl]phenol top
Crystal data top
C16H16ClNO2Z = 2
Mr = 289.75F(000) = 304
Triclinic, P1Dx = 1.389 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7610 (2) ÅCell parameters from 1628 reflections
b = 7.7115 (3) Åθ = 2.7–28.2°
c = 15.7814 (5) ŵ = 0.28 mm1
α = 82.420 (2)°T = 100 K
β = 89.320 (2)°Plate, yellow
γ = 85.313 (2)°0.25 × 0.25 × 0.03 mm
V = 692.65 (4) Å3
Data collection top
Bruker SMART APEX
diffractometer
3036 independent reflections
Radiation source: fine-focus sealed tube2235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.934, Tmax = 0.992k = 109
5284 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.033P)2 + 0.4582P]
where P = (Fo2 + 2Fc2)/3
3036 reflections(Δ/σ)max = 0.001
186 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.28 e Å3
Crystal data top
C16H16ClNO2γ = 85.313 (2)°
Mr = 289.75V = 692.65 (4) Å3
Triclinic, P1Z = 2
a = 5.7610 (2) ÅMo Kα radiation
b = 7.7115 (3) ŵ = 0.28 mm1
c = 15.7814 (5) ÅT = 100 K
α = 82.420 (2)°0.25 × 0.25 × 0.03 mm
β = 89.320 (2)°
Data collection top
Bruker SMART APEX
diffractometer
3036 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2235 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.992Rint = 0.025
5284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.28 e Å3
3036 reflectionsΔρmin = 0.28 e Å3
186 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.72711 (10)0.19401 (7)0.02737 (3)0.02303 (15)
O10.4122 (3)0.0304 (2)0.38188 (9)0.0209 (3)
H10.509 (4)0.068 (4)0.4137 (15)0.042 (8)*
O20.9991 (2)0.43513 (19)0.88357 (8)0.0184 (3)
N10.7683 (3)0.1729 (2)0.42911 (10)0.0157 (4)
C10.4895 (3)0.0673 (3)0.30093 (12)0.0147 (4)
C20.3616 (3)0.0202 (3)0.23431 (13)0.0168 (4)
H20.22430.03890.24650.020*
C30.4334 (4)0.0592 (3)0.15057 (13)0.0177 (4)
H30.34490.02820.10530.021*
C40.6357 (4)0.1440 (3)0.13294 (12)0.0161 (4)
C50.7667 (3)0.1895 (3)0.19782 (12)0.0150 (4)
H50.90560.24600.18470.018*
C60.6960 (3)0.1530 (2)0.28272 (12)0.0130 (4)
C70.8351 (3)0.2023 (3)0.35138 (12)0.0139 (4)
H70.97570.25640.33810.017*
C80.9076 (3)0.2214 (3)0.49754 (12)0.0157 (4)
H8A1.05240.26910.47370.019*
H8B0.95090.11650.53930.019*
C90.7660 (3)0.3591 (3)0.54177 (12)0.0159 (4)
H9A0.76980.47390.50560.019*
H9B0.60190.32930.54510.019*
C100.8459 (3)0.3790 (3)0.63111 (12)0.0142 (4)
C110.6936 (3)0.4703 (3)0.68291 (13)0.0158 (4)
H110.54820.52190.66030.019*
C120.7501 (4)0.4870 (3)0.76572 (13)0.0163 (4)
H120.64430.54980.79950.020*
C130.9625 (4)0.4120 (3)0.80025 (12)0.0159 (4)
C141.1189 (4)0.3236 (3)0.75010 (12)0.0152 (4)
H141.26520.27390.77260.018*
C151.0580 (3)0.3086 (3)0.66572 (13)0.0156 (4)
H151.16540.24860.63140.019*
C161.2113 (4)0.3563 (3)0.92316 (13)0.0212 (5)
H16A1.21470.38050.98250.032*
H16B1.34420.40540.89200.032*
H16C1.22020.22920.92200.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0271 (3)0.0286 (3)0.0145 (2)0.0072 (2)0.0018 (2)0.0036 (2)
O10.0214 (8)0.0262 (9)0.0161 (7)0.0088 (7)0.0029 (6)0.0026 (6)
O20.0195 (8)0.0215 (8)0.0141 (7)0.0005 (6)0.0014 (6)0.0023 (6)
N10.0174 (9)0.0134 (9)0.0164 (8)0.0008 (7)0.0022 (7)0.0024 (7)
C10.0144 (10)0.0119 (10)0.0172 (10)0.0019 (8)0.0020 (8)0.0011 (8)
C20.0130 (10)0.0151 (10)0.0226 (11)0.0015 (8)0.0012 (8)0.0033 (8)
C30.0171 (10)0.0153 (10)0.0211 (10)0.0005 (8)0.0045 (8)0.0046 (8)
C40.0181 (11)0.0159 (10)0.0139 (9)0.0008 (8)0.0014 (8)0.0016 (8)
C50.0144 (10)0.0118 (10)0.0185 (10)0.0008 (8)0.0001 (8)0.0011 (8)
C60.0121 (10)0.0108 (10)0.0157 (9)0.0014 (8)0.0030 (8)0.0014 (8)
C70.0116 (10)0.0109 (10)0.0190 (10)0.0001 (8)0.0017 (8)0.0011 (8)
C80.0167 (10)0.0141 (10)0.0162 (10)0.0007 (8)0.0019 (8)0.0020 (8)
C90.0158 (10)0.0136 (10)0.0182 (10)0.0010 (8)0.0019 (8)0.0022 (8)
C100.0149 (10)0.0112 (10)0.0167 (10)0.0041 (8)0.0014 (8)0.0010 (8)
C110.0119 (10)0.0133 (10)0.0217 (10)0.0006 (8)0.0001 (8)0.0014 (8)
C120.0148 (10)0.0141 (10)0.0199 (10)0.0001 (8)0.0033 (8)0.0030 (8)
C130.0203 (11)0.0137 (10)0.0138 (9)0.0050 (8)0.0018 (8)0.0008 (8)
C140.0128 (10)0.0147 (10)0.0179 (10)0.0006 (8)0.0005 (8)0.0013 (8)
C150.0140 (10)0.0143 (10)0.0184 (10)0.0003 (8)0.0023 (8)0.0027 (8)
C160.0228 (11)0.0236 (12)0.0172 (10)0.0034 (9)0.0027 (9)0.0022 (9)
Geometric parameters (Å, º) top
Cl1—C41.745 (2)C8—H8A0.9900
O1—C11.350 (2)C8—H8B0.9900
O1—H10.849 (10)C9—C101.519 (3)
O2—C131.371 (2)C9—H9A0.9900
O2—C161.432 (3)C9—H9B0.9900
N1—C71.278 (2)C10—C151.384 (3)
N1—C81.458 (2)C10—C111.403 (3)
C1—C21.394 (3)C11—C121.375 (3)
C1—C61.415 (3)C11—H110.9500
C2—C31.382 (3)C12—C131.395 (3)
C2—H20.9500C12—H120.9500
C3—C41.390 (3)C13—C141.388 (3)
C3—H30.9500C14—C151.403 (3)
C4—C51.378 (3)C14—H140.9500
C5—C61.395 (3)C15—H150.9500
C5—H50.9500C16—H16A0.9800
C6—C71.463 (3)C16—H16B0.9800
C7—H70.9500C16—H16C0.9800
C8—C91.523 (3)
C1—O1—H1106.3 (19)C10—C9—C8115.68 (17)
C13—O2—C16117.54 (16)C10—C9—H9A108.4
C7—N1—C8120.28 (17)C8—C9—H9A108.4
O1—C1—C2118.87 (17)C10—C9—H9B108.4
O1—C1—C6121.37 (17)C8—C9—H9B108.4
C2—C1—C6119.77 (17)H9A—C9—H9B107.4
C3—C2—C1120.33 (18)C15—C10—C11117.62 (18)
C3—C2—H2119.8C15—C10—C9124.08 (18)
C1—C2—H2119.8C11—C10—C9118.28 (18)
C2—C3—C4119.71 (18)C12—C11—C10121.49 (19)
C2—C3—H3120.1C12—C11—H11119.3
C4—C3—H3120.1C10—C11—H11119.3
C5—C4—C3120.97 (18)C11—C12—C13120.15 (18)
C5—C4—Cl1119.05 (15)C11—C12—H12119.9
C3—C4—Cl1119.98 (15)C13—C12—H12119.9
C4—C5—C6120.20 (18)O2—C13—C14125.16 (19)
C4—C5—H5119.9O2—C13—C12115.10 (17)
C6—C5—H5119.9C14—C13—C12119.73 (18)
C5—C6—C1119.01 (17)C13—C14—C15119.15 (19)
C5—C6—C7120.01 (17)C13—C14—H14120.4
C1—C6—C7120.98 (17)C15—C14—H14120.4
N1—C7—C6120.31 (17)C10—C15—C14121.83 (18)
N1—C7—H7119.8C10—C15—H15119.1
C6—C7—H7119.8C14—C15—H15119.1
N1—C8—C9108.99 (16)O2—C16—H16A109.5
N1—C8—H8A109.9O2—C16—H16B109.5
C9—C8—H8A109.9H16A—C16—H16B109.5
N1—C8—H8B109.9O2—C16—H16C109.5
C9—C8—H8B109.9H16A—C16—H16C109.5
H8A—C8—H8B108.3H16B—C16—H16C109.5
O1—C1—C2—C3178.70 (19)C7—N1—C8—C9117.2 (2)
C6—C1—C2—C31.0 (3)N1—C8—C9—C10159.86 (16)
C1—C2—C3—C40.7 (3)C8—C9—C10—C1513.5 (3)
C2—C3—C4—C50.2 (3)C8—C9—C10—C11164.78 (17)
C2—C3—C4—Cl1179.87 (16)C15—C10—C11—C121.2 (3)
C3—C4—C5—C60.9 (3)C9—C10—C11—C12177.17 (18)
Cl1—C4—C5—C6179.22 (16)C10—C11—C12—C130.2 (3)
C4—C5—C6—C10.6 (3)C16—O2—C13—C142.5 (3)
C4—C5—C6—C7179.72 (19)C16—O2—C13—C12178.17 (17)
O1—C1—C6—C5179.34 (18)C11—C12—C13—O2179.27 (18)
C2—C1—C6—C50.3 (3)C11—C12—C13—C141.4 (3)
O1—C1—C6—C71.0 (3)O2—C13—C14—C15179.56 (18)
C2—C1—C6—C7179.37 (18)C12—C13—C14—C151.2 (3)
C8—N1—C7—C6179.71 (17)C11—C10—C15—C141.5 (3)
C5—C6—C7—N1178.33 (19)C9—C10—C15—C14176.86 (18)
C1—C6—C7—N12.0 (3)C13—C14—C15—C100.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (1)1.79 (2)2.567 (2)152 (3)

Experimental details

Crystal data
Chemical formulaC16H16ClNO2
Mr289.75
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.7610 (2), 7.7115 (3), 15.7814 (5)
α, β, γ (°)82.420 (2), 89.320 (2), 85.313 (2)
V3)692.65 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.25 × 0.25 × 0.03
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.934, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
5284, 3036, 2235
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.03
No. of reflections3036
No. of parameters186
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.28

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (1)1.79 (2)2.567 (2)152 (3)
 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatziefthimiou, S. D., Lazarou, Y. G., Hadjoudis, E., Dziembowska, T. & Mavridis, I. M. (2006). J. Chem. Phys. B, 110, 23701–23709.  CrossRef CAS Google Scholar
First citationChohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCoombs, R. R., Ringer, M. K., Blacquiere, J. M., Smith, J. S., Neilson, J. S., Uh, Y.-S., Gilbert, J. B., Leger, L. J., Zhang, H.-W., Irving, A. M., Wheaton, S. L., Wheaton, S. L., Vogels, C. M., Westcott, S. A., Decken, A. & Baerlocher, F. J. (2005). Transition Met. Chem. 30, 411–418.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Y.-G., Zhu, H.-L., Huang, W.-Q. & Ai, L. (2006). Acta Cryst. E62, o689–o690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRäisänen, M. T., Leskelä, M. & Repo, T. (2007). Acta Cryst. E63, o1816–o1817.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1070
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds