metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m535-m536

catena-Poly[[[di-μ2-hydroxido-bis­­[(di-2-pyridylamine)nickel(II)]]-μ-fumarato] dihydrate]

aDepartment of Chemistry, Lishui University, 323000 Lishui, ZheJiang, People's Republic of China.
*Correspondence e-mail: jianyu01@126.com

(Received 7 April 2009; accepted 10 April 2009; online 18 April 2009)

The NiII ion in the one-dimensional title complex, {[Ni2(C4H2O4)(OH)2(C10H9N3)2]·2H2O}n, has a distorted square-pyramidal coordination environment formed by three O atoms from two bridging hydroxide groups and one carboxyl­ate group of the fumarate ligand and two pyridine N atoms from a di-2-pyridylamine (dpa) ligand. Two hydroxide groups link adjacent metal centers, forming a centrosymmetric four-membered [Ni2(OH)2] ring. In the crystal structure, the H atoms of the bridging hydroxide groups form inter­molecular hydrogen bonds to both water mol­ecules. These are further linked to the uncoordinated O atoms of the carboxyl­ate groups and the NH group of a dpa ligand to generate a three-dimensional network from the chains of the coordination polymer.

Related literature

For applications of transition metal complexes with polypyridylamine ligands, see: Cotton et al. (1998[Cotton, F. A., Daniels, L. M., Murillo, C. A. & Wang, X. (1998). Chem. Commun. pp. 39-40.]). For details of complexes of bis­pyridine ligands, see: Liu et al. (2008[Liu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Shi, Q. Z. & Peng, S. M. (2008). Inorg. Chim. Acta, 361, 2327-2334.]). For the role of carboxyl­ate substituents in building coordination networks, see: Nathan & Traina (2003[Nathan, L. C. & Traina, C. A. (2003). Polyhedron, 22, 3213-3221.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C4H2O4)(OH)2(C10H9N3)2]·2H2O

  • Mr = 643.92

  • Triclinic, [P \overline 1]

  • a = 8.135 (2) Å

  • b = 8.834 (3) Å

  • c = 10.015 (3) Å

  • α = 70.545 (4)°

  • β = 71.103 (4)°

  • γ = 75.785 (4)°

  • V = 634.3 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 298 K

  • 0.22 × 0.18 × 0.12 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.727, Tmax = 0.836

  • 3238 measured reflections

  • 2216 independent reflections

  • 1984 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.063

  • S = 0.95

  • 2216 reflections

  • 190 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O4 1.9671 (15)
Ni1—O4i 1.9713 (15)
Ni1—N1 1.9984 (18)
Ni1—N3 2.0314 (18)
Ni1—O1 2.2232 (16)
Ni1—Ni1i 2.9753 (8)
Symmetry code: (i) -x, -y, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O2 0.83 (3) 2.068 (16) 2.848 (2) 158 (3)
O1W—H1WA⋯O2ii 0.840 (10) 1.912 (10) 2.752 (2) 178 (3)
O1W—H1WB⋯O4iii 0.85 (3) 1.92 (3) 2.765 (2) 172 (3)
N2—H2B⋯O1Wiv 0.86 1.99 2.784 (3) 153
Symmetry codes: (ii) -x+1, -y, -z+1; (iii) x, y, z-1; (iv) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Transition metal complexes with polypyridylamine ligands have diverse structures and special optical and electromagnetic properties (Cotton et al., 1998) and have aroused great interest among researchers. Multidentate amine ligands usually exhibit donor as well as acceptor properties and can be used as popular chelating ligands (Nathan & Traina, 2003). On the other hand, carboxylates are attractive as metal-binding units in coordination networks because the negative charge significantly enhances their ability to bind strongly to metal centers, a feature which undoubtedly contributes to the robust nature of the resulting materials (Liu et al., 2008). In this paper, we report the synthesis and crystal structure of the title compound (I), Figure 1.

The Ni1 atom in the title complex has a distorted square pyramidal coordination environment formed by one bidentate dpa ligand, two hydroxyl groups and one carboxylate group. The two peripheral pyridine N atoms from the dpa ligand [Ni1—N1 = 1.9984 (18)Å and Ni1—N3 =2.0314 (18) Å] and the two hydroxyl groups form the basal plane [Ni1—O4 =1.9713 (15) Å], the remaining apical position is occupied by an O atom of a carboxylate group from the fum2- ligand [Ni1—O1 =2.2232 (16) Å], Table 1. In addition, the inversion related hydroxyl groups link Ni(II) ions into a centrosymmetric [Ni2(OH)2] four-membered ring. Furthermore, the fum2- ligands bridge to an adjacent NiII linking the four-membered rings into a zigzag chain (Figure 2).

In the crystal structure, the H atoms of both water molecules and hydroxyl groups are involved in intermolecular hydrogen bonds with the O atoms of uncoordinated carboxylate groups and –NH group from dpa ligand which link the one-dimensional chains to form a three-dimensional network (Table 2).

Related literature top

For applications of transition metal complexes with polypyridylamine ligands, see: Cotton et al. (1998). For details of complexes of bispyridine ligands, see: Liu et al. (2008). For the role of carboxylate substituents in building coordination networks, see: Nathan & Traina (2003).

Experimental top

Dpa (0.20 mg,0.1 mmol), Ni(CH3COO)2 (0.28 mg, 0.12 mmol) and Na2fum (0.22 mg, 0.09 mmol), were added to a mixture (12 mL) of methanol and acetonitrile (V/V=1:5). The solution was heated and stirred for two hours and was then kept at room temperature yielding green, block-like crystals over two weeks.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (ring) or N—H– 0.86 Å with Uiso(H) = 1.2Ueq. H atoms of water molecule and hydroxyl group were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.83 (1) Å) with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the structure of the title compound showing the atom-labeling scheme [symmetry codes: (i) -x, -y, -z + 2]. Displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. Partial packing diagram showing the formation of the one-dimensional zigzag chain.
catena-Poly[[[di-µ2hydroxido-bis[(di-2-pyridylamine)nickel(II)]]-µ- fumarato] dihydrate] top
Crystal data top
[Ni2(C4H2O4)(OH)2(C10H9N3)2]·2H2OZ = 1
Mr = 643.92F(000) = 332
Triclinic, P1Dx = 1.686 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.135 (2) ÅCell parameters from 2216 reflections
b = 8.834 (3) Åθ = 2.2–25.1°
c = 10.015 (3) ŵ = 1.55 mm1
α = 70.545 (4)°T = 298 K
β = 71.103 (4)°Block, green
γ = 75.785 (4)°0.22 × 0.18 × 0.12 mm
V = 634.3 (3) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
2216 independent reflections
Radiation source: fine-focus sealed tube1984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.727, Tmax = 0.836k = 109
3238 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.2972P]
where P = (Fo2 + 2Fc2)/3
2216 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.30 e Å3
4 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ni2(C4H2O4)(OH)2(C10H9N3)2]·2H2Oγ = 75.785 (4)°
Mr = 643.92V = 634.3 (3) Å3
Triclinic, P1Z = 1
a = 8.135 (2) ÅMo Kα radiation
b = 8.834 (3) ŵ = 1.55 mm1
c = 10.015 (3) ÅT = 298 K
α = 70.545 (4)°0.22 × 0.18 × 0.12 mm
β = 71.103 (4)°
Data collection top
Bruker APEXII area-detector
diffractometer
2216 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1984 reflections with I > 2σ(I)
Tmin = 0.727, Tmax = 0.836Rint = 0.014
3238 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0234 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.30 e Å3
2216 reflectionsΔρmin = 0.35 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.04021 (3)0.15037 (3)0.87985 (3)0.02129 (10)
N10.0829 (2)0.3069 (2)0.73316 (19)0.0298 (4)
N20.0529 (2)0.5376 (2)0.7868 (2)0.0345 (4)
H2B0.11790.62180.81160.041*
N30.1739 (2)0.3286 (2)0.85495 (19)0.0287 (4)
O10.2311 (2)0.0443 (2)0.70594 (17)0.0452 (4)
C120.5204 (3)0.0107 (3)0.5612 (2)0.0325 (5)
H120.63870.02500.55760.039*
O1W0.1972 (2)0.1399 (2)0.22330 (18)0.0381 (4)
O40.13677 (18)0.00305 (18)1.03993 (15)0.0272 (3)
C10.1404 (3)0.2457 (3)0.6520 (2)0.0369 (5)
H10.11200.13470.66150.044*
C20.2378 (3)0.3391 (3)0.5568 (3)0.0423 (6)
H20.27650.29250.50390.051*
C30.2782 (3)0.5056 (3)0.5407 (3)0.0440 (6)
H30.34570.57190.47760.053*
C40.2178 (3)0.5707 (3)0.6181 (3)0.0396 (6)
H40.24290.68190.60760.048*
C50.1178 (3)0.4688 (3)0.7134 (2)0.0304 (5)
C60.1043 (3)0.4872 (3)0.8252 (2)0.0301 (5)
C70.1878 (3)0.6062 (3)0.8296 (3)0.0376 (5)
H70.13520.71440.81220.045*
C80.3477 (3)0.5600 (3)0.8600 (3)0.0420 (6)
H80.40490.63670.86430.050*
C90.4246 (3)0.3974 (3)0.8844 (3)0.0393 (6)
H90.53490.36420.90260.047*
C100.3345 (3)0.2878 (3)0.8812 (2)0.0336 (5)
H100.38610.17920.89780.040*
C110.3878 (3)0.0135 (3)0.7062 (2)0.0324 (5)
O20.4437 (2)0.0761 (2)0.81955 (17)0.0375 (4)
H1WB0.168 (4)0.101 (4)0.169 (3)0.080*
H1WA0.3066 (15)0.122 (4)0.212 (4)0.080*
H4A0.231 (3)0.046 (4)0.995 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02217 (15)0.02005 (15)0.02074 (14)0.00466 (10)0.00701 (10)0.00218 (10)
N10.0313 (10)0.0283 (10)0.0282 (9)0.0074 (8)0.0095 (8)0.0020 (8)
N20.0349 (10)0.0271 (10)0.0419 (11)0.0016 (8)0.0124 (9)0.0125 (8)
N30.0310 (10)0.0258 (10)0.0280 (9)0.0063 (8)0.0081 (7)0.0041 (8)
O10.0312 (9)0.0669 (12)0.0337 (9)0.0070 (8)0.0072 (7)0.0209 (9)
C120.0292 (11)0.0306 (12)0.0344 (11)0.0016 (9)0.0073 (9)0.0103 (10)
O1W0.0398 (9)0.0352 (9)0.0442 (10)0.0011 (7)0.0164 (8)0.0153 (8)
O40.0272 (8)0.0269 (8)0.0266 (7)0.0062 (6)0.0091 (6)0.0031 (6)
C10.0461 (14)0.0333 (13)0.0332 (12)0.0124 (11)0.0153 (11)0.0025 (10)
C20.0474 (15)0.0483 (15)0.0354 (13)0.0157 (12)0.0177 (11)0.0045 (11)
C30.0381 (13)0.0496 (16)0.0384 (13)0.0048 (11)0.0190 (11)0.0024 (12)
C40.0355 (13)0.0334 (13)0.0412 (13)0.0023 (10)0.0114 (11)0.0003 (11)
C50.0272 (11)0.0302 (12)0.0292 (11)0.0058 (9)0.0048 (9)0.0041 (9)
C60.0345 (12)0.0298 (12)0.0243 (10)0.0090 (9)0.0044 (9)0.0057 (9)
C70.0472 (14)0.0295 (12)0.0362 (12)0.0086 (11)0.0107 (11)0.0078 (10)
C80.0496 (15)0.0415 (15)0.0423 (13)0.0210 (12)0.0125 (11)0.0108 (11)
C90.0346 (13)0.0443 (15)0.0411 (13)0.0139 (11)0.0123 (11)0.0066 (11)
C100.0308 (12)0.0336 (12)0.0348 (12)0.0074 (10)0.0083 (9)0.0061 (10)
C110.0325 (12)0.0312 (12)0.0327 (12)0.0020 (10)0.0068 (10)0.0118 (10)
O20.0350 (9)0.0420 (10)0.0322 (8)0.0022 (7)0.0102 (7)0.0108 (7)
Geometric parameters (Å, º) top
Ni1—O41.9671 (15)O4—Ni1i1.9713 (15)
Ni1—O4i1.9713 (15)O4—H4A0.83 (3)
Ni1—N11.9984 (18)C1—C21.364 (3)
Ni1—N32.0314 (18)C1—H10.9300
Ni1—O12.2232 (16)C2—C31.392 (4)
Ni1—Ni1i2.9753 (8)C2—H20.9300
N1—C51.347 (3)C3—C41.362 (4)
N1—C11.355 (3)C3—H30.9300
N2—C51.377 (3)C4—C51.397 (3)
N2—C61.381 (3)C4—H40.9300
N2—H2B0.8600C6—C71.404 (3)
N3—C61.347 (3)C7—C81.365 (3)
N3—C101.354 (3)C7—H70.9300
O1—C111.252 (3)C8—C91.392 (4)
C12—C12ii1.313 (4)C8—H80.9300
C12—C111.499 (3)C9—C101.364 (3)
C12—H120.9300C9—H90.9300
O1W—H1WB0.85 (3)C10—H100.9300
O1W—H1WA0.840 (10)C11—O21.263 (3)
O4—Ni1—O4i81.87 (6)N1—C1—H1118.4
O4—Ni1—N1173.85 (7)C2—C1—H1118.4
O4i—Ni1—N194.01 (7)C1—C2—C3118.5 (2)
O4—Ni1—N394.06 (7)C1—C2—H2120.8
O4i—Ni1—N3161.16 (7)C3—C2—H2120.8
N1—Ni1—N388.38 (7)C4—C3—C2119.5 (2)
O4—Ni1—O194.61 (6)C4—C3—H3120.3
O4i—Ni1—O1101.31 (7)C2—C3—H3120.3
N1—Ni1—O190.68 (7)C3—C4—C5119.4 (2)
N3—Ni1—O197.33 (7)C3—C4—H4120.3
O4—Ni1—Ni1i40.99 (4)C5—C4—H4120.3
O4i—Ni1—Ni1i40.88 (4)N1—C5—N2119.92 (19)
N1—Ni1—Ni1i134.72 (5)N1—C5—C4121.6 (2)
N3—Ni1—Ni1i132.37 (5)N2—C5—C4118.5 (2)
O1—Ni1—Ni1i100.55 (5)N3—C6—N2120.05 (19)
C5—N1—C1117.87 (19)N3—C6—C7122.1 (2)
C5—N1—Ni1124.23 (15)N2—C6—C7117.8 (2)
C1—N1—Ni1117.85 (15)C8—C7—C6118.8 (2)
C5—N2—C6127.58 (19)C8—C7—H7120.6
C5—N2—H2B116.2C6—C7—H7120.6
C6—N2—H2B116.2C7—C8—C9119.6 (2)
C6—N3—C10117.40 (19)C7—C8—H8120.2
C6—N3—Ni1122.94 (15)C9—C8—H8120.2
C10—N3—Ni1119.42 (15)C10—C9—C8118.5 (2)
C11—O1—Ni1123.67 (14)C10—C9—H9120.8
C12ii—C12—C11124.0 (3)C8—C9—H9120.8
C12ii—C12—H12118.0N3—C10—C9123.5 (2)
C11—C12—H12118.0N3—C10—H10118.2
H1WB—O1W—H1WA112 (2)C9—C10—H10118.2
Ni1—O4—Ni1i98.13 (6)O1—C11—O2125.1 (2)
Ni1—O4—H4A103 (2)O1—C11—C12118.0 (2)
Ni1i—O4—H4A111 (3)O2—C11—C12116.88 (19)
N1—C1—C2123.1 (2)
Symmetry codes: (i) x, y, z+2; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O20.83 (3)2.07 (2)2.848 (2)158 (3)
O1W—H1WA···O2ii0.84 (1)1.91 (1)2.752 (2)178 (3)
O1W—H1WB···O4iii0.85 (3)1.92 (3)2.765 (2)172 (3)
N2—H2B···O1Wiv0.861.992.784 (3)153
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni2(C4H2O4)(OH)2(C10H9N3)2]·2H2O
Mr643.92
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.135 (2), 8.834 (3), 10.015 (3)
α, β, γ (°)70.545 (4), 71.103 (4), 75.785 (4)
V3)634.3 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.55
Crystal size (mm)0.22 × 0.18 × 0.12
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.727, 0.836
No. of measured, independent and
observed [I > 2σ(I)] reflections
3238, 2216, 1984
Rint0.014
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.063, 0.95
No. of reflections2216
No. of parameters190
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.35

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Selected bond lengths (Å) top
Ni1—O41.9671 (15)Ni1—N32.0314 (18)
Ni1—O4i1.9713 (15)Ni1—O12.2232 (16)
Ni1—N11.9984 (18)Ni1—Ni1i2.9753 (8)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O20.83 (3)2.068 (16)2.848 (2)158 (3)
O1W—H1WA···O2ii0.840 (10)1.912 (10)2.752 (2)178 (3)
O1W—H1WB···O4iii0.85 (3)1.92 (3)2.765 (2)172 (3)
N2—H2B···O1Wiv0.861.992.784 (3)153.0
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x, y+1, z+1.
 

Acknowledgements

The author gratefully acknowledges financial support from the Youth Foundation of Lishui University, People's Republic of China (grant No. QN07014).

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCotton, F. A., Daniels, L. M., Murillo, C. A. & Wang, X. (1998). Chem. Commun. pp. 39-40.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Shi, Q. Z. & Peng, S. M. (2008). Inorg. Chim. Acta, 361, 2327–2334.  Web of Science CSD CrossRef CAS Google Scholar
First citationNathan, L. C. & Traina, C. A. (2003). Polyhedron, 22, 3213–3221.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m535-m536
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds