metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m550-m551

Poly[tetra­aqua-μ3-benzene-1,2-di­carboxyl­ato-μ3-bromido-penta-μ2-bromido-octa-μ3-isonicotinato-hepta­copper(I)trilanthanum(III)]

aDepartment of Chemistry, Teachers' College of Qingdao University, Shandong 266071, People's Republic of China
*Correspondence e-mail: gmwang_pub@163.com

(Received 7 April 2009; accepted 15 April 2009; online 22 April 2009)

A new lanthanum(III)–copper(I) heterometallic coordination polymer, [Cu7La3Br6(C6H4NO2)8(C8H4O4)(H2O)4]n, has been prepared by a hydro­thermal method. Of the three La atoms in the asymmetric unit, two are eight-coordinate with bicapped trigonal–prismatic configurations; the third is nine-coordinated and has a tricapped trigonal–prismatic coordination geometry. Of the seven Cu atoms, two are two-coordinate with CuBrN and CuN2 ligand sets, three have trigonal configurations, viz. CuBrN2, CuBr2N and CuBr3, while the remaining two adopt distorted tetra­hedral CuBr3N geometries. In the crystal structure, adjacent La centers are linked by isonicotinate (IN) and benzene-1,2-dicarboxyl­ate ligands to form a two-dimensional La–carboxyl­ate layer in the ab plane. These layers are further inter­connected with each other by bridging [Cu(IN)2] motifs, leading to an unusual three-dimensional heterometallic Cu–halide–lanthanide–organic framework, with the inorganic [Cu6Br6]n chains located in the resulting channels. Two Cu atoms are disordered over two positions, both with site occupancy factors of 0.80 and 0.20. O—H⋯O hydrogen bonding between water molecules and carboxylate O atoms helps to consolidate the crystal packing.

Related literature

For background on the structures and applications of heterometallic lanthanide–transition metal (Ln–TM) coordination polymers, see: Benelli & Gatteschi (2002[Benelli, C. & Gatteschi, D. (2002). Chem. Rev. 102, 2369-2388.]); Shibasaki & Yoshikawa (2002[Shibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187-2210.]); Zhao, Cheng et al. (2004[Zhao, B., Cheng, P., Chen, X., Cheng, C., Shi, W., Liao, D., Yan, S. & Jiang, Z. (2004). J. Am. Chem. Soc. 126, 3012-3013.]); Zhao, Chen et al. (2004[Zhao, B., Chen, X., Cheng, P., Liao, D., Yan, S. & Jiang, Z. (2004). J. Am. Chem. Soc. 126, 15394-15395.]); Guillou et al. (2006[Guillou, O., Daiguebonne, C., Camara, M. & Kerbellec, N. (2006). Inorg. Chem. 45, 8468-8470.]); Wang et al. (2006[Wang, Z., Shen, X., Wang, J., Zhang, P., Li, Y., Nfor, E., Song, Y., Ohkoshi, S., Hashimoto, K. & You, X. (2006). Angew. Chem. Int. Ed. 45, 3287-3291.]). For some examples of extended heterometallic Ln–TM architectures, see: Ren et al. (2003[Ren, Y., Long, L., Mao, B., Yuan, Y., Huang, R. & Zheng, L. (2003). Angew. Chem. Int. Ed. 42, 532-535.]); Prasad et al. (2007[Prasad, T. K., Rajasekharan, M. V. & Costes, J. P. (2007). Angew. Chem. Int. Ed. 46, 2851-2854.]); Cheng et al. (2008[Cheng, J. W., Zhang, J., Zheng, S. T. & Yang, G. Y. (2008). Chem. Eur. J. 14, 88-97.]); Deng et al. (2008[Deng, H., Li, Y. H., Qiu, C. Y., Liu, Z. H. & Zeller, M. (2008). Inorg. Chem. Commun. 11, 1151-1154.]); Wang, Li et al. (2008[Wang, G.-M., Li, Z.-X., Zheng, Q.-H. & Liu, H.-L. (2008). Acta Cryst. E64, m1260-m1261.]). For the coordination modes of isonicotinate and benzene-1,2-dicarboxyl­ate ligands, see: Gu & Xue (2007[Gu, X. J. & Xue, D. F. (2007). Inorg. Chem. 46, 3212-3216.]); Wang, Duan et al. (2008[Wang, G.-M., Duan, C.-S., Liu, H.-L. & Li, H. (2008). Acta Cryst. E64, m468-m469.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu7La3Br6(C6H4NO2)8(C8H4O4)(H2O)4]

  • Mr = 2553.96

  • Monoclinic, P 21 /c

  • a = 10.1071 (5) Å

  • b = 19.6311 (3) Å

  • c = 34.4015 (2) Å

  • β = 92.480 (2)°

  • V = 6819.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.57 mm−1

  • T = 295 K

  • 0.20 × 0.10 × 0.09 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.313, Tmax = 0.549 (expected range = 0.288–0.506)

  • 52743 measured reflections

  • 13363 independent reflections

  • 9870 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.126

  • S = 1.18

  • 13363 reflections

  • 955 parameters

  • H-atom parameters constrained

  • Δρmax = 1.73 e Å−3

  • Δρmin = −2.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O16—H16D⋯O21i 0.86 2.09 2.901 (7) 157
O23—H23D⋯O22 0.93 2.00 2.861 (8) 153
O24—H24D⋯O20 0.85 2.22 2.844 (11) 130
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, the design and constructinon of heterometallic lanthanide(Ln)-transition metal(TM) coordination frameworks have attracted considerable attention because of their intriguing topological architectures and potential applications in for example magnetism, luminescence, and heterogeneous catalysis (Benelli & Gatteschi, 2002; Shibasaki & Yoshikawa, 2002; Zhao, Cheng et al., 2004; Zhao, Chen et al., 2004; Guillou et al., 2006; Wang et al., 2006). Compared with the assembly of homometallic Ln and TM compounds, the analogous chemistry and synthetic stategy of heterometallic Ln—TM coordination frameworks is still underdeveloped. (Ren et al., 2003; Prasad et al., 2007; Cheng et al., 2008; Deng et al. (2008); Wang, Li et al. (2008). This may be attributed to the variable and versatile coordination numbers of the lanthanide ions, their low stereochemical preference, as well as the competitive reactions of Ln and TM metals for the same organic ligands. Fortunately, according to the hard-soft acid base theory, the Ln and TM ions have different affinities for O and N donors, which makes it possible to construct unusual heterometallic Ln—TM frameworks by choosing multifunctional ligands with both oxygen and nitrogen donors. Therefore, isonicotinic acid (HIN) has been chosen here as the bifunctional ligand. Meanwhile, we also introduced another multifunctional ligand, the deprotonated 1,2-benzenedicarboxylic acid, (BDC2-), into the reaction system simultaneously, exploring the construction of heterometallic Ln—TM compounds with high dimensionality. The title compound [La3Cu7Br6(IN)8(BDC)(H2O)4]n (1) is reported here and displays novel three-dimensional coordination features.

As shown in Fig. 1, the asymmetric unit contains three unique lanthanum(III) atoms, seven copper(I) ions, six bromide ions, one BDC2- ligand and eight IN- ligands, as well as four aqua ligands. The La1 and La2 atoms are both eight-coordinate with bicapped trigonal prismatic geometries. Atom La1 is surrounded by six carboxylate oxygen atoms from six IN- ligands, one carboxylate oxygen atom from a BDC2- ligand and an aqua ligand. Atom La2, on the other hand, is coordinated by five carboxylate oxygen atoms from five IN- ligands, two carboxylate oxygen atoms from a BDC2- ligand and an aqua ligand. The La3 atom is nine-coordinated and has a tricapped trigonal-prismatic coordination environment comprising two coordinated water molecules, five carboxylate oxygen atoms from five IN- ligands and two carboxylate oxygen atoms from one BDC2- ligand. The La—O bond lengths range from 2.387 (6) to 2.797 (6)Å.

The identical La(III) ions are linked by mixed IN- and BDC2- ligands to form a two-dimensional La-carboxylate layer in the ab plane (Fig. 2). Interestingly, compared to the abundant and versatile coordination modes that found in IN- and BDC2- ligands (Gu & Xue, 2007; Wang, Duan et al., 2008), only a single bidentate (for IN-) and a unique pentadentate (for BDC2-) modes are adopted in the La-carboxylate layer (Fig. 3). These La-carboxylate layers are further interconnected by [Cu(1)(IN)2] linear bridging to give rise to an unusual Cu-halide-lanthanide-organic framework with one-dimensional channels (Fig. 4), in which the inorganic [Cu6Br6]n chains are located. As shown in Fig. 5, the inorganic [Cu6Br6]n motif contains six unique Cu(I)atoms with three different types of coordination modes and six Br- ions. The Cu2 atom is two-coordinated with a neraly linear geometry: one µ2-Br1 ion and one N atom from one bridging IN- ligand. The Cu3, Cu4 and Cu5 atoms are three-coordinate with trigonal coordination environments: two isonicotinate N atoms and one µ2-Br2 ion are bonded to Cu3; one µ2-Br2 ion, one µ3-Br3 ion and one µ3-Br4 ion to Cu4; one µ2-Br5 ion, one µ3-Br4 ion and one N atom to Cu5. The remaining Cu6 and Cu7 atoms, however, are coordinated to one N atom and three µ2-Br (Br3, Br5 and Br6 for Cu6; Br1, Br4 and Br6 for Cu7) ions respectively, defining distorted tetrahedral geometries. The Cu—N and Cu—Br distances are in the range 1.921 (7)–2.031 (8) Å and 2.228 (2)–2.670 (2) Å, respectively. Therefore, the overall structure of 1 can also be viewed as one-dimensional [Cu6Br6]n chains inserted into the channels of a three-dimensional heterometallic Cu-halide-lanthanide-organic framework (Fig. 6).

Related literature top

For background on the structures and applications of heterometallic lanthanide–transition metal (Ln–TM) coordination polymers, see: Benelli & Gatteschi (2002); Shibasaki & Yoshikawa (2002); Zhao, Cheng et al. (2004); Zhao, Chen et al. (2004); Guillou et al. (2006); Wang et al. (2006). For some examples of extended heterometallic Ln–TM architectures, see: Ren et al. (2003); Prasad et al. (2007); Cheng et al. (2008); Deng et al. (2008); Wang, Li et al. (2008). For the coordination modes of isonicotinate and benzene-1,2-dicarboxylate ligands, see: Gu & Xue (2007); Wang, Duan et al. (2008).

Experimental top

The title compound was synthesized under mild hydrothermal conditions. Typically, a mixture of La2O3 (0.5 mmol; 0.163 g), CuBr2 (0.067 g, 0.30 mmol), HIN (2.00 mmol, 0247 g), H2BDC (1.00 mmol, 0.167 g) and H2O (8 ml) was sealed in a 25 ml Teflon-lined steel autoclave and heated under autogenous pressure at 443 K for 9 days. The brown prism-like crystals obtained were recovered by filtration, washed with distilled water and dried in air. Although copper(II) salts were used as starting materials, the Cu centers in the product are in the +1 oxidation state. This is attributed to a reduction reaction occurring under the hydrothermal conditions used.

Refinement top

H atoms bound to C atoms were positioned geometrically, with C—H distances of 0.93 Å, and constrained to ride on their parent atoms [Uiso(H) = 1.2Ueq(C)]. H atoms bound to O atoms were located in a difference Fourier map and treated as riding, with Uiso(H) = 1.2Ueq(O). Atoms Cu2 and Cu3 were refined as disordered over two positions, with site occupancy factors of fixed at 0.80 and 0.20 respectively in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of 1, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -1 + x, y, z; (ii) -x, 1 - y, - z; (iii) 1 - x, 1 - y, - z; (iv) -x, - y, - z; (v) 1 + x, 1/2 - y, -1/2 + z; (vi) 1 + x, y, z; (vii) 1 - x, 1/2 + y, -1/2 - z; (viii) 1 - x, -1/2 + y, -1/2 - z.]
[Figure 2] Fig. 2. Two-dimensional La-carboxylate layer in the ab plane.
[Figure 3] Fig. 3. The coordination modes of IN- and BDC2- found in the La-carboxylate layer.
[Figure 4] Fig. 4. A view of the three-dimensional Cu-halide-lanthanide-organic framework with one-dimensional channels.
[Figure 5] Fig. 5. One-dimensional infinite [Cu6Br6]n chains along the a axis.
[Figure 6] Fig. 6. Framework of 1 viewed along the a axis.
Poly[tetraaqua-µ3-benzene-1,2-dicarboxylato-µ3-bromido-penta-µ2- bromido-octa-µ3-isonicotinato-heptacopper(I)trilanthanum(III)] top
Crystal data top
[Cu7La3Br6(C6H4NO2)8(C8H4O4)(H2O)4]F(000) = 4848
Mr = 2553.96Dx = 2.488 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 52743 reflections
a = 10.1071 (5) Åθ = 1.2–26.0°
b = 19.6311 (3) ŵ = 7.57 mm1
c = 34.4015 (2) ÅT = 295 K
β = 92.480 (2)°Prism, brown
V = 6819.3 (4) Å30.20 × 0.10 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
13363 independent reflections
Radiation source: fine-focus sealed tube9870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ and ω scansθmax = 26.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.313, Tmax = 0.549k = 2324
52743 measured reflectionsl = 4242
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0498P)2 + 4.7192P]
where P = (Fo2 + 2Fc2)/3
13363 reflections(Δ/σ)max = 0.001
955 parametersΔρmax = 1.73 e Å3
0 restraintsΔρmin = 2.22 e Å3
Crystal data top
[Cu7La3Br6(C6H4NO2)8(C8H4O4)(H2O)4]V = 6819.3 (4) Å3
Mr = 2553.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1071 (5) ŵ = 7.57 mm1
b = 19.6311 (3) ÅT = 295 K
c = 34.4015 (2) Å0.20 × 0.10 × 0.09 mm
β = 92.480 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
13363 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
9870 reflections with I > 2σ(I)
Tmin = 0.313, Tmax = 0.549Rint = 0.071
52743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.18Δρmax = 1.73 e Å3
13363 reflectionsΔρmin = 2.22 e Å3
955 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.22600 (4)0.48720 (2)0.006803 (12)0.01347 (11)
La20.29679 (4)0.14367 (2)0.026957 (12)0.01318 (11)
La30.24624 (4)0.16813 (2)0.017184 (13)0.01663 (12)
Cu10.38381 (16)0.52109 (8)0.24321 (3)0.0605 (4)
Cu20.1352 (4)0.2896 (2)0.21115 (11)0.0565 (9)0.80
Cu2'0.0878 (17)0.3052 (9)0.2218 (4)0.074 (5)0.20
Cu30.8350 (3)0.1565 (2)0.26477 (12)0.0440 (7)0.80
Cu3'0.8908 (14)0.1708 (11)0.2644 (5)0.064 (4)0.20
Cu40.63663 (16)0.28675 (8)0.26968 (5)0.0653 (4)
Cu50.61139 (14)0.41101 (7)0.23317 (4)0.0530 (4)
Cu60.88795 (15)0.43063 (7)0.27424 (3)0.0514 (4)
Cu71.21736 (16)0.34075 (8)0.28116 (4)0.0576 (4)
Br10.21910 (10)0.22413 (5)0.25622 (3)0.0408 (3)
Br20.57870 (12)0.17237 (6)0.26488 (4)0.0548 (3)
Br30.85917 (10)0.30796 (5)0.25766 (3)0.0443 (3)
Br40.47465 (9)0.36921 (5)0.28606 (3)0.0359 (2)
Br50.76335 (9)0.50127 (5)0.23036 (3)0.0380 (2)
Br61.13084 (9)0.44473 (5)0.25274 (3)0.0362 (2)
O10.1380 (6)0.5739 (3)0.04055 (17)0.0325 (15)
O20.0776 (5)0.5648 (3)0.05687 (16)0.0269 (14)
O30.3829 (5)0.4716 (3)0.04459 (15)0.0279 (14)
O40.5802 (6)0.5205 (3)0.05111 (16)0.0308 (15)
O50.1574 (6)0.4261 (3)0.05461 (18)0.0383 (17)
O60.0482 (6)0.4339 (3)0.03153 (17)0.0392 (17)
O70.3772 (6)0.6005 (3)0.00383 (19)0.0406 (17)
H7A0.41770.59170.01670.080*
H7B0.43210.59510.02310.080*
O80.2809 (6)0.3656 (3)0.00780 (17)0.0325 (15)
O90.2517 (7)0.2573 (3)0.00553 (19)0.0432 (18)
O100.6667 (6)0.2366 (4)0.0380 (2)0.050 (2)
O110.4973 (6)0.1853 (3)0.00866 (16)0.0275 (14)
O120.6320 (6)0.0893 (4)0.06027 (17)0.0433 (18)
O130.4174 (5)0.0698 (3)0.07032 (17)0.0306 (15)
O140.6171 (7)0.2426 (4)0.0589 (2)0.064 (3)
O150.4104 (6)0.2149 (3)0.07631 (18)0.0381 (16)
O160.4042 (5)0.0575 (3)0.02259 (16)0.0295 (14)
H16C0.39780.02510.03880.080*
H16D0.48320.07340.02560.080*
O170.1231 (5)0.1276 (3)0.01773 (16)0.0285 (14)
O180.0733 (6)0.1657 (4)0.03231 (17)0.0381 (17)
O190.1224 (6)0.1580 (3)0.07778 (18)0.0331 (15)
O200.0813 (6)0.1887 (4)0.06543 (17)0.0381 (16)
O210.3099 (5)0.0712 (3)0.02882 (15)0.0217 (13)
O220.1878 (5)0.0234 (3)0.03169 (15)0.0197 (12)
O230.1039 (5)0.0580 (3)0.03168 (17)0.0321 (15)
H23C0.02540.06300.02900.080*
H23D0.12020.02040.01590.080*
O240.1433 (10)0.2896 (4)0.0098 (3)0.084 (3)
H24C0.12070.32840.00070.101*
H24D0.09990.28270.03000.101*
C10.0388 (8)0.5791 (4)0.0635 (2)0.0238 (19)
C20.0667 (7)0.6024 (4)0.1045 (2)0.0205 (18)
C30.0229 (8)0.5899 (5)0.1351 (2)0.030 (2)
H3A0.10320.56890.13050.036*
C40.0066 (9)0.6087 (5)0.1727 (3)0.037 (2)
H4A0.05600.60050.19280.044*
C50.2079 (10)0.6501 (5)0.1517 (3)0.040 (3)
H5A0.28820.67080.15670.049*
C60.1829 (9)0.6333 (5)0.1140 (3)0.034 (2)
H6A0.24630.64310.09440.040*
C70.4703 (8)0.5001 (4)0.0643 (2)0.0206 (18)
C80.4435 (8)0.5066 (4)0.1068 (2)0.0238 (19)
C90.3389 (9)0.4730 (5)0.1256 (2)0.032 (2)
H9A0.27990.44760.11150.038*
C100.3229 (10)0.4776 (5)0.1654 (3)0.044 (3)
H10A0.25400.45340.17770.052*
C110.5003 (10)0.5473 (5)0.1686 (3)0.041 (3)
H11A0.55670.57330.18330.050*
C120.5248 (9)0.5449 (5)0.1292 (2)0.030 (2)
H12A0.59550.56880.11770.035*
C130.0358 (8)0.4176 (4)0.0570 (2)0.0199 (18)
C140.0095 (8)0.3870 (4)0.0943 (2)0.0205 (18)
C150.0494 (9)0.4072 (5)0.1290 (3)0.032 (2)
H15A0.11700.43940.12950.038*
C160.0078 (10)0.3795 (5)0.1629 (3)0.039 (2)
H16A0.04630.39490.18640.047*
C170.1388 (9)0.3108 (5)0.1299 (3)0.039 (3)
H17A0.20100.27590.13010.047*
C180.1073 (8)0.3381 (4)0.0946 (3)0.030 (2)
H18A0.15080.32400.07160.036*
C190.2871 (8)0.3047 (4)0.0165 (2)0.0218 (18)
C200.3417 (8)0.2869 (4)0.0570 (2)0.0220 (19)
C210.2682 (8)0.3108 (4)0.0879 (3)0.027 (2)
H21A0.18930.33410.08270.032*
C220.3115 (9)0.3002 (4)0.1262 (3)0.032 (2)
H22A0.26050.31510.14640.038*
C230.4283 (9)0.2680 (5)0.1342 (3)0.034 (2)
H23A0.45740.26090.15990.040*
C240.5047 (9)0.2454 (5)0.1040 (3)0.033 (2)
H24A0.58640.22510.10980.039*
C250.4602 (7)0.2528 (4)0.0652 (2)0.0211 (18)
C260.5453 (8)0.2248 (4)0.0353 (3)0.0244 (19)
C270.5335 (8)0.0750 (4)0.0816 (2)0.0197 (18)
C280.5547 (8)0.0625 (4)0.1237 (2)0.0201 (18)
C290.6764 (8)0.0441 (5)0.1370 (3)0.032 (2)
H29A0.74900.03950.11960.038*
C300.6903 (9)0.0325 (5)0.1760 (2)0.033 (2)
H30A0.77310.01920.18410.039*
C310.4752 (10)0.0582 (6)0.1901 (3)0.045 (3)
H31A0.40600.06450.20850.054*
C320.4512 (9)0.0690 (5)0.1518 (3)0.038 (2)
H32A0.36660.08050.14440.045*
C330.5163 (9)0.2446 (5)0.0812 (3)0.031 (2)
C340.5301 (8)0.2866 (4)0.1169 (2)0.0242 (19)
C350.4653 (9)0.2684 (5)0.1515 (3)0.032 (2)
H35A0.40740.23150.15250.038*
C360.4877 (9)0.3059 (5)0.1848 (3)0.037 (2)
H36A0.44690.29210.20830.045*
C370.6226 (9)0.3787 (5)0.1509 (3)0.033 (2)
H37A0.67420.41790.15000.040*
C380.6105 (9)0.3424 (4)0.1166 (3)0.031 (2)
H38A0.65630.35590.09390.038*
C390.0442 (8)0.1505 (4)0.0412 (2)0.0208 (18)
C400.0887 (7)0.1565 (4)0.0830 (2)0.0195 (18)
C410.0109 (8)0.1899 (4)0.1090 (2)0.027 (2)
H41A0.06800.21060.10060.032*
C420.0531 (9)0.1919 (5)0.1480 (3)0.035 (2)
H42A0.00190.21500.16560.042*
C430.2389 (9)0.1316 (5)0.1347 (3)0.033 (2)
H43A0.31880.11230.14340.040*
C440.2062 (8)0.1270 (5)0.0962 (3)0.030 (2)
H44A0.26090.10480.07920.036*
C450.0064 (8)0.1715 (4)0.0876 (2)0.0199 (18)
C460.0323 (8)0.1683 (4)0.1304 (2)0.0214 (18)
C470.1537 (8)0.1923 (4)0.1445 (2)0.027 (2)
H47A0.21330.21140.12770.033*
C480.1848 (9)0.1875 (5)0.1837 (3)0.033 (2)
H48A0.26390.20700.19300.040*
C490.0058 (9)0.1337 (5)0.1953 (2)0.032 (2)
H49A0.06080.11260.21260.038*
C500.0497 (8)0.1386 (4)0.1569 (3)0.027 (2)
H50A0.13300.12240.14890.032*
C510.2364 (7)0.0287 (4)0.0465 (2)0.0179 (17)
C520.2047 (7)0.0423 (4)0.0886 (2)0.0179 (17)
C530.2863 (8)0.0798 (5)0.1118 (3)0.033 (2)
H53A0.36200.10010.10070.039*
C540.2575 (10)0.0875 (5)0.1509 (3)0.040 (3)
H54A0.31630.11130.16590.048*
C550.0661 (9)0.0266 (5)0.1462 (3)0.035 (2)
H55A0.01160.00910.15770.042*
C560.0915 (8)0.0148 (5)0.1070 (2)0.029 (2)
H56A0.03340.01140.09300.035*
N10.1216 (7)0.6380 (4)0.1813 (2)0.0334 (19)
N20.4013 (8)0.5150 (4)0.1872 (2)0.040 (2)
N30.0842 (9)0.3320 (4)0.1638 (2)0.043 (2)
N40.5940 (8)0.0390 (4)0.2026 (2)0.0356 (19)
N50.5652 (7)0.3610 (4)0.1848 (2)0.0315 (18)
N60.1655 (8)0.1616 (4)0.1610 (2)0.0346 (19)
N70.1092 (8)0.1570 (4)0.2089 (2)0.0346 (19)
N80.1468 (8)0.0616 (4)0.1681 (2)0.0337 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0140 (2)0.0170 (2)0.0094 (2)0.00099 (17)0.00035 (17)0.00074 (18)
La20.0137 (2)0.0148 (2)0.0109 (2)0.00006 (18)0.00093 (17)0.00007 (18)
La30.0145 (2)0.0225 (3)0.0126 (2)0.00030 (19)0.00268 (17)0.00349 (19)
Cu10.0995 (12)0.0690 (11)0.0132 (6)0.0036 (9)0.0041 (7)0.0086 (6)
Cu20.075 (2)0.055 (2)0.041 (2)0.0055 (15)0.0266 (14)0.0164 (14)
Cu2'0.114 (13)0.076 (9)0.037 (8)0.019 (8)0.046 (8)0.005 (6)
Cu30.058 (2)0.0613 (18)0.0126 (10)0.0103 (15)0.0006 (14)0.0047 (10)
Cu3'0.093 (12)0.086 (12)0.014 (4)0.031 (9)0.001 (8)0.006 (6)
Cu40.0700 (10)0.0659 (11)0.0600 (10)0.0001 (8)0.0015 (8)0.0028 (8)
Cu50.0697 (9)0.0580 (9)0.0309 (7)0.0293 (8)0.0008 (6)0.0128 (6)
Cu60.0762 (10)0.0571 (9)0.0201 (7)0.0036 (7)0.0047 (6)0.0050 (6)
Cu70.0823 (11)0.0660 (10)0.0236 (7)0.0031 (8)0.0095 (7)0.0041 (6)
Br10.0451 (6)0.0387 (6)0.0395 (6)0.0013 (5)0.0128 (5)0.0057 (5)
Br20.0543 (7)0.0558 (8)0.0539 (7)0.0024 (6)0.0033 (6)0.0041 (6)
Br30.0484 (6)0.0371 (6)0.0475 (6)0.0005 (5)0.0032 (5)0.0082 (5)
Br40.0291 (5)0.0463 (6)0.0317 (5)0.0051 (4)0.0062 (4)0.0062 (5)
Br50.0354 (5)0.0380 (6)0.0405 (6)0.0063 (4)0.0006 (4)0.0055 (5)
Br60.0335 (5)0.0523 (7)0.0230 (5)0.0105 (4)0.0018 (4)0.0016 (4)
O10.029 (3)0.042 (4)0.026 (3)0.003 (3)0.006 (3)0.020 (3)
O20.016 (3)0.034 (4)0.030 (3)0.003 (3)0.007 (3)0.016 (3)
O30.028 (3)0.042 (4)0.014 (3)0.007 (3)0.010 (2)0.000 (3)
O40.028 (3)0.041 (4)0.022 (3)0.009 (3)0.009 (3)0.003 (3)
O50.039 (4)0.037 (4)0.039 (4)0.002 (3)0.005 (3)0.025 (3)
O60.054 (4)0.039 (4)0.024 (4)0.004 (3)0.014 (3)0.010 (3)
O70.032 (4)0.044 (4)0.045 (4)0.001 (3)0.002 (3)0.003 (3)
O80.048 (4)0.020 (4)0.028 (4)0.001 (3)0.006 (3)0.003 (3)
O90.063 (5)0.017 (4)0.047 (4)0.015 (3)0.025 (4)0.012 (3)
O100.022 (4)0.061 (5)0.066 (5)0.005 (3)0.003 (3)0.038 (4)
O110.031 (3)0.027 (4)0.025 (3)0.001 (3)0.004 (3)0.006 (3)
O120.031 (4)0.079 (6)0.020 (3)0.006 (3)0.004 (3)0.018 (3)
O130.028 (3)0.033 (4)0.032 (4)0.006 (3)0.015 (3)0.011 (3)
O140.034 (4)0.088 (6)0.069 (5)0.000 (4)0.009 (4)0.066 (5)
O150.038 (4)0.046 (4)0.030 (4)0.009 (3)0.001 (3)0.017 (3)
O160.024 (3)0.030 (4)0.034 (4)0.003 (3)0.006 (3)0.010 (3)
O170.024 (3)0.048 (4)0.015 (3)0.007 (3)0.010 (2)0.000 (3)
O180.021 (3)0.073 (5)0.019 (3)0.016 (3)0.012 (3)0.012 (3)
O190.029 (4)0.040 (4)0.029 (4)0.004 (3)0.007 (3)0.006 (3)
O200.033 (4)0.062 (5)0.020 (3)0.005 (3)0.004 (3)0.005 (3)
O210.026 (3)0.023 (3)0.016 (3)0.004 (2)0.001 (2)0.002 (2)
O220.027 (3)0.013 (3)0.019 (3)0.005 (2)0.001 (2)0.007 (2)
O230.023 (3)0.040 (4)0.033 (4)0.005 (3)0.007 (3)0.001 (3)
O240.136 (8)0.038 (5)0.079 (6)0.036 (5)0.025 (6)0.010 (5)
C10.030 (5)0.019 (5)0.022 (5)0.009 (4)0.006 (4)0.002 (4)
C20.019 (4)0.017 (4)0.026 (5)0.003 (3)0.004 (3)0.005 (4)
C30.030 (5)0.033 (6)0.026 (5)0.008 (4)0.000 (4)0.004 (4)
C40.035 (5)0.049 (7)0.026 (5)0.009 (5)0.001 (4)0.001 (5)
C50.041 (6)0.061 (7)0.020 (5)0.024 (5)0.001 (4)0.000 (5)
C60.027 (5)0.047 (6)0.026 (5)0.008 (4)0.006 (4)0.003 (4)
C70.026 (5)0.019 (5)0.017 (4)0.001 (4)0.002 (3)0.003 (3)
C80.033 (5)0.026 (5)0.012 (4)0.002 (4)0.000 (3)0.000 (4)
C90.034 (5)0.048 (6)0.014 (4)0.011 (4)0.000 (4)0.001 (4)
C100.048 (6)0.056 (7)0.027 (5)0.020 (5)0.007 (5)0.005 (5)
C110.063 (7)0.038 (6)0.024 (5)0.008 (5)0.010 (5)0.005 (5)
C120.039 (5)0.031 (5)0.018 (5)0.011 (4)0.003 (4)0.009 (4)
C130.022 (4)0.018 (5)0.021 (4)0.005 (3)0.005 (4)0.002 (3)
C140.021 (4)0.016 (4)0.025 (5)0.006 (3)0.006 (3)0.001 (4)
C150.036 (5)0.033 (6)0.026 (5)0.008 (4)0.003 (4)0.005 (4)
C160.051 (6)0.043 (7)0.025 (5)0.003 (5)0.001 (5)0.001 (5)
C170.030 (5)0.030 (6)0.059 (7)0.004 (4)0.020 (5)0.003 (5)
C180.023 (5)0.029 (5)0.037 (6)0.004 (4)0.005 (4)0.004 (4)
C190.024 (4)0.021 (5)0.021 (4)0.003 (4)0.001 (3)0.004 (4)
C200.028 (5)0.011 (4)0.026 (5)0.001 (3)0.003 (4)0.004 (4)
C210.024 (5)0.020 (5)0.037 (5)0.002 (4)0.003 (4)0.000 (4)
C220.046 (6)0.022 (5)0.027 (5)0.004 (4)0.009 (4)0.004 (4)
C230.050 (6)0.028 (5)0.022 (5)0.001 (5)0.005 (4)0.006 (4)
C240.035 (5)0.031 (6)0.031 (5)0.004 (4)0.014 (4)0.002 (4)
C250.017 (4)0.024 (5)0.022 (4)0.005 (3)0.000 (3)0.003 (4)
C260.016 (4)0.023 (5)0.035 (5)0.005 (3)0.004 (4)0.005 (4)
C270.025 (5)0.021 (5)0.014 (4)0.002 (3)0.001 (3)0.006 (3)
C280.025 (4)0.025 (5)0.010 (4)0.002 (4)0.000 (3)0.002 (3)
C290.024 (5)0.044 (6)0.027 (5)0.003 (4)0.000 (4)0.001 (4)
C300.035 (5)0.047 (6)0.017 (5)0.007 (5)0.012 (4)0.008 (4)
C310.050 (7)0.069 (8)0.013 (5)0.004 (6)0.018 (4)0.010 (5)
C320.031 (5)0.062 (7)0.021 (5)0.002 (5)0.002 (4)0.007 (5)
C330.030 (5)0.038 (6)0.024 (5)0.011 (4)0.002 (4)0.014 (4)
C340.015 (4)0.027 (5)0.031 (5)0.002 (3)0.003 (4)0.009 (4)
C350.031 (5)0.033 (6)0.031 (5)0.004 (4)0.005 (4)0.004 (4)
C360.046 (6)0.037 (6)0.029 (5)0.015 (5)0.007 (4)0.000 (5)
C370.043 (6)0.025 (5)0.031 (5)0.011 (4)0.010 (4)0.005 (4)
C380.031 (5)0.022 (5)0.041 (6)0.004 (4)0.002 (4)0.006 (4)
C390.021 (4)0.025 (5)0.017 (4)0.005 (4)0.005 (3)0.000 (4)
C400.015 (4)0.024 (5)0.020 (4)0.000 (3)0.003 (3)0.001 (4)
C410.030 (5)0.028 (5)0.022 (5)0.000 (4)0.002 (4)0.001 (4)
C420.041 (6)0.041 (6)0.024 (5)0.003 (5)0.007 (4)0.006 (4)
C430.035 (5)0.031 (6)0.034 (6)0.004 (4)0.008 (4)0.001 (4)
C440.019 (4)0.041 (6)0.029 (5)0.006 (4)0.003 (4)0.005 (4)
C450.019 (4)0.018 (4)0.023 (5)0.007 (3)0.002 (4)0.010 (4)
C460.025 (4)0.018 (4)0.022 (5)0.000 (3)0.000 (3)0.007 (4)
C470.026 (5)0.034 (5)0.022 (5)0.006 (4)0.002 (4)0.002 (4)
C480.031 (5)0.045 (6)0.023 (5)0.013 (4)0.007 (4)0.005 (4)
C490.041 (6)0.036 (6)0.020 (5)0.011 (4)0.010 (4)0.003 (4)
C500.019 (4)0.031 (5)0.031 (5)0.008 (4)0.001 (4)0.000 (4)
C510.013 (4)0.026 (5)0.015 (4)0.009 (3)0.001 (3)0.008 (4)
C520.020 (4)0.016 (4)0.018 (4)0.002 (3)0.001 (3)0.003 (3)
C530.024 (5)0.045 (6)0.029 (5)0.009 (4)0.004 (4)0.003 (4)
C540.045 (6)0.051 (7)0.025 (5)0.006 (5)0.006 (5)0.017 (5)
C550.043 (6)0.034 (6)0.026 (5)0.007 (5)0.007 (4)0.007 (4)
C560.030 (5)0.038 (6)0.020 (5)0.005 (4)0.003 (4)0.004 (4)
N10.035 (4)0.043 (5)0.022 (4)0.013 (4)0.001 (3)0.000 (4)
N20.051 (5)0.049 (5)0.018 (4)0.016 (4)0.001 (4)0.005 (4)
N30.055 (6)0.044 (6)0.033 (5)0.012 (4)0.020 (4)0.006 (4)
N40.057 (5)0.038 (5)0.012 (4)0.007 (4)0.001 (4)0.007 (3)
N50.028 (4)0.036 (5)0.030 (4)0.014 (3)0.002 (3)0.006 (4)
N60.048 (5)0.036 (5)0.019 (4)0.005 (4)0.004 (4)0.001 (3)
N70.042 (5)0.045 (5)0.017 (4)0.011 (4)0.004 (3)0.002 (4)
N80.048 (5)0.035 (5)0.018 (4)0.007 (4)0.002 (4)0.008 (4)
Geometric parameters (Å, º) top
La1—O62.420 (6)C4—N11.342 (11)
La1—O4i2.434 (5)C4—H4A0.9300
La1—O32.445 (5)C5—N11.334 (11)
La1—O82.451 (6)C5—C61.370 (12)
La1—O5ii2.486 (6)C5—H5A0.9300
La1—O12.494 (5)C6—H6A0.9300
La1—O2ii2.545 (5)C7—C81.480 (11)
La1—O72.703 (6)C8—C121.374 (11)
La2—O92.399 (6)C8—C91.383 (11)
La2—O172.404 (5)C9—C101.373 (12)
La2—O132.443 (6)C9—H9A0.9300
La2—O192.444 (6)C10—N21.336 (12)
La2—O112.462 (5)C10—H10A0.9300
La2—O152.515 (6)C11—N21.326 (12)
La2—O162.606 (5)C11—C121.369 (12)
La2—O22iii2.607 (5)C11—H11A0.9300
La3—O182.387 (5)C12—H12A0.9300
La3—O14iv2.436 (6)C13—C141.505 (11)
La3—O202.436 (6)C14—C151.369 (11)
La3—O12iv2.439 (6)C14—C181.378 (11)
La3—O10iv2.515 (6)C15—C161.371 (12)
La3—O212.574 (5)C15—H15A0.9300
La3—O242.610 (7)C16—N31.319 (12)
La3—O232.657 (6)C16—H16A0.9300
La3—O11iv2.797 (6)C17—N31.338 (13)
La3—C26iv3.043 (8)C17—C181.377 (13)
Cu1—N4v1.920 (7)C17—H17A0.9300
Cu1—N21.931 (7)C18—H18A0.9300
Cu2—Cu2'0.666 (13)C19—C201.516 (11)
Cu2—N31.917 (9)C20—C251.390 (11)
Cu2—Br12.212 (4)C20—C211.405 (11)
Cu2—Cu7iv2.770 (4)C21—C221.384 (12)
Cu2'—N32.064 (18)C21—H21A0.9300
Cu2'—Br12.415 (16)C22—C231.357 (12)
Cu2'—Cu7iv2.569 (17)C22—H22A0.9300
Cu2'—Br3iv2.572 (16)C23—C241.393 (12)
Cu3—Cu3'0.629 (14)C23—H23A0.9300
Cu3—N1vi1.959 (8)C24—C251.400 (11)
Cu3—N7vii1.980 (8)C24—H24A0.9300
Cu3—Br22.609 (4)C25—C261.476 (11)
Cu3'—N7vii1.927 (19)C26—La3vii3.043 (8)
Cu3'—N1vi1.976 (19)C27—C281.493 (10)
Cu3'—Br32.72 (2)C28—C291.380 (11)
Cu4—Br32.3071 (19)C28—C321.399 (11)
Cu4—Br22.328 (2)C29—C301.376 (11)
Cu4—Br42.3533 (19)C29—H29A0.9300
Cu4—Cu52.761 (2)C30—N41.311 (11)
Cu5—N52.005 (7)C30—H30A0.9300
Cu5—Br52.3441 (16)C31—N41.347 (12)
Cu5—Br42.3827 (16)C31—C321.369 (12)
Cu6—N8viii2.004 (7)C31—H31A0.9300
Cu6—Br52.4397 (17)C32—H32A0.9300
Cu6—Br32.4946 (18)C33—C341.490 (11)
Cu6—Br62.5481 (17)C34—C381.364 (11)
Cu7—N6viii2.037 (7)C34—C351.381 (12)
Cu7—Br62.4415 (18)C35—C361.389 (12)
Cu7—Br1vii2.4447 (18)C35—H35A0.9300
Cu7—Cu2'vii2.569 (17)C36—N51.335 (11)
Cu7—Br4vii2.6722 (19)C36—H36A0.9300
Cu7—Cu2vii2.770 (4)C37—N51.326 (11)
Br1—Cu7iv2.4447 (18)C37—C381.386 (12)
Br3—Cu2'vii2.572 (17)C37—H37A0.9300
Br4—Cu7iv2.6722 (19)C38—H38A0.9300
O1—C11.253 (9)C39—C401.491 (11)
O2—C11.240 (9)C40—C441.380 (11)
O2—La1ii2.545 (5)C40—C411.382 (11)
O3—C71.268 (9)C41—C421.389 (12)
O4—C71.247 (9)C41—H41A0.9300
O4—La1i2.434 (5)C42—N61.342 (12)
O5—C131.247 (9)C42—H42A0.9300
O5—La1ii2.486 (6)C43—N61.332 (12)
O6—C131.236 (9)C43—C441.354 (12)
O7—H7A0.8505C43—H43A0.9300
O7—H7B0.8512C44—H44A0.9300
O8—C191.232 (10)C45—C461.507 (11)
O9—C191.244 (10)C46—C471.383 (11)
O10—C261.247 (9)C46—C501.388 (11)
O10—La3vii2.515 (6)C47—C481.374 (11)
O11—C261.279 (10)C47—H47A0.9300
O11—La3vii2.797 (6)C48—N71.324 (11)
O12—C271.243 (9)C48—H48A0.9300
O12—La3vii2.439 (6)C49—N71.317 (11)
O13—C271.256 (9)C49—C501.377 (12)
O14—C331.250 (10)C49—H49A0.9300
O14—La3vii2.436 (6)C50—H50A0.9300
O15—C331.237 (10)C51—C521.493 (10)
O16—H16C0.8495C52—C531.384 (11)
O16—H16D0.8589C52—C561.393 (11)
O17—C391.243 (9)C53—C541.371 (12)
O18—C391.250 (9)C53—H53A0.9300
O19—C451.235 (9)C54—N81.343 (12)
O20—C451.241 (10)C54—H54A0.9300
O21—C511.258 (9)C55—N81.328 (11)
O22—C511.252 (9)C55—C561.379 (12)
O22—La2iii2.607 (5)C55—H55A0.9300
O23—H23C0.8013C56—H56A0.9300
O23—H23D0.9328N1—Cu3v1.959 (8)
O24—H24C0.8501N1—Cu3'v1.976 (19)
O24—H24D0.8498N4—Cu1vi1.920 (7)
C1—C21.521 (11)N6—Cu7ix2.037 (7)
C2—C61.375 (11)N7—Cu3'iv1.927 (19)
C2—C31.380 (11)N7—Cu3iv1.980 (8)
C3—C41.390 (12)N8—Cu6ix2.004 (7)
C3—H3A0.9300
O6—La1—O4i150.8 (2)H23C—O23—H23D103.4
O6—La1—O392.4 (2)La3—O24—H24C162.5
O4i—La1—O385.15 (19)La3—O24—H24D89.5
O6—La1—O875.4 (2)H24C—O24—H24D107.7
O4i—La1—O875.8 (2)O2—C1—O1127.2 (8)
O3—La1—O874.6 (2)O2—C1—C2117.0 (7)
O6—La1—O5ii115.8 (2)O1—C1—C2115.7 (7)
O4i—La1—O5ii82.4 (2)C6—C2—C3115.9 (8)
O3—La1—O5ii140.6 (2)C6—C2—C1123.3 (8)
O8—La1—O5ii136.6 (2)C3—C2—C1120.8 (7)
O6—La1—O172.8 (2)C2—C3—C4120.1 (8)
O4i—La1—O1134.92 (19)C2—C3—H3A119.9
O3—La1—O180.7 (2)C4—C3—H3A119.9
O8—La1—O1138.4 (2)N1—C4—C3122.8 (8)
O5ii—La1—O182.1 (2)N1—C4—H4A118.6
O6—La1—O2ii75.5 (2)C3—C4—H4A118.6
O4i—La1—O2ii91.89 (18)N1—C5—C6122.6 (9)
O3—La1—O2ii149.2 (2)N1—C5—H5A118.7
O8—La1—O2ii74.9 (2)C6—C5—H5A118.7
O5ii—La1—O2ii68.7 (2)C5—C6—C2121.7 (8)
O1—La1—O2ii120.78 (18)C5—C6—H6A119.1
O6—La1—O7138.0 (2)C2—C6—H6A119.1
O4i—La1—O768.51 (19)O4—C7—O3125.2 (7)
O3—La1—O771.97 (19)O4—C7—C8117.0 (7)
O8—La1—O7132.38 (19)O3—C7—C8117.7 (7)
O5ii—La1—O768.7 (2)C12—C8—C9117.5 (8)
O1—La1—O766.41 (19)C12—C8—C7120.8 (8)
O2ii—La1—O7134.9 (2)C9—C8—C7121.7 (8)
O9—La2—O1776.8 (2)C10—C9—C8119.3 (8)
O9—La2—O13147.7 (2)C10—C9—H9A120.3
O17—La2—O13135.3 (2)C8—C9—H9A120.3
O9—La2—O1988.4 (2)N2—C10—C9123.3 (9)
O17—La2—O1987.0 (2)N2—C10—H10A118.3
O13—La2—O1989.7 (2)C9—C10—H10A118.3
O9—La2—O1172.6 (2)N2—C11—C12124.1 (9)
O17—La2—O11109.47 (19)N2—C11—H11A117.9
O13—La2—O1194.55 (19)C12—C11—H11A117.9
O19—La2—O11150.5 (2)C11—C12—C8119.2 (9)
O9—La2—O1577.8 (2)C11—C12—H12A120.4
O17—La2—O15150.7 (2)C8—C12—H12A120.4
O13—La2—O1570.3 (2)O6—C13—O5124.6 (8)
O19—La2—O1577.8 (2)O6—C13—C14118.9 (7)
O11—La2—O1576.2 (2)O5—C13—C14116.6 (7)
O9—La2—O16118.8 (2)C15—C14—C18118.7 (8)
O17—La2—O1677.99 (19)C15—C14—C13119.3 (8)
O13—La2—O1679.00 (19)C18—C14—C13122.0 (8)
O19—La2—O16144.06 (19)C14—C15—C16119.3 (9)
O11—La2—O1665.12 (18)C14—C15—H15A120.3
O15—La2—O16127.83 (19)C16—C15—H15A120.3
O9—La2—O22iii140.9 (2)N3—C16—C15122.9 (9)
O17—La2—O22iii66.62 (19)N3—C16—H16A118.5
O13—La2—O22iii69.22 (17)C15—C16—H16A118.5
O19—La2—O22iii76.68 (18)N3—C17—C18123.1 (9)
O11—La2—O22iii131.93 (18)N3—C17—H17A118.5
O15—La2—O22iii131.72 (19)C18—C17—H17A118.5
O16—La2—O22iii67.40 (17)C17—C18—C14118.2 (9)
O18—La3—O14iv144.2 (3)C17—C18—H18A120.9
O18—La3—O2089.3 (2)C14—C18—H18A120.9
O14iv—La3—O2083.5 (2)O8—C19—O9124.5 (8)
O18—La3—O12iv139.1 (2)O8—C19—C20117.4 (7)
O14iv—La3—O12iv76.4 (3)O9—C19—C20118.1 (8)
O20—La3—O12iv91.9 (2)C25—C20—C21119.1 (8)
O18—La3—O10iv75.0 (2)C25—C20—C19124.9 (7)
O14iv—La3—O10iv85.1 (3)C21—C20—C19115.8 (7)
O20—La3—O10iv134.2 (2)C22—C21—C20120.9 (8)
O12iv—La3—O10iv127.9 (2)C22—C21—H21A119.5
O18—La3—O2175.0 (2)C20—C21—H21A119.5
O14iv—La3—O21131.0 (2)C23—C22—C21120.1 (9)
O20—La3—O21137.6 (2)C23—C22—H22A120.0
O12iv—La3—O2176.8 (2)C21—C22—H22A120.0
O10iv—La3—O2180.0 (2)C22—C23—C24120.1 (9)
O18—La3—O2470.9 (3)C22—C23—H23A120.0
O14iv—La3—O2473.9 (3)C24—C23—H23A120.0
O20—La3—O2468.5 (3)C23—C24—C25120.9 (8)
O12iv—La3—O24145.8 (3)C23—C24—H24A119.5
O10iv—La3—O2465.7 (3)C25—C24—H24A119.5
O21—La3—O24136.4 (2)C20—C25—C24118.8 (8)
O18—La3—O2374.5 (2)C20—C25—C26124.2 (7)
O14iv—La3—O23132.5 (3)C24—C25—C26117.0 (7)
O20—La3—O2367.4 (2)O10—C26—O11120.5 (8)
O12iv—La3—O2368.4 (2)O10—C26—C25118.7 (8)
O10iv—La3—O23141.9 (2)O11—C26—C25120.6 (7)
O21—La3—O2370.47 (17)O10—C26—La3vii53.7 (4)
O24—La3—O23123.1 (3)O11—C26—La3vii66.8 (4)
O18—La3—O11iv115.82 (19)C25—C26—La3vii171.5 (6)
O14iv—La3—O11iv66.7 (2)O12—C27—O13124.9 (7)
O20—La3—O11iv150.15 (19)O12—C27—C28117.7 (7)
O12iv—La3—O11iv79.61 (18)O13—C27—C28117.4 (7)
O10iv—La3—O11iv48.42 (18)C29—C28—C32116.4 (8)
O21—La3—O11iv68.52 (17)C29—C28—C27122.2 (7)
O24—La3—O11iv103.3 (2)C32—C28—C27121.4 (7)
O23—La3—O11iv132.43 (17)C30—C29—C28119.9 (8)
O18—La3—C26iv95.1 (2)C30—C29—H29A120.1
O14iv—La3—C26iv74.9 (3)C28—C29—H29A120.1
O20—La3—C26iv148.7 (2)N4—C30—C29124.0 (8)
O12iv—La3—C26iv104.4 (2)N4—C30—H30A118.0
O10iv—La3—C26iv23.6 (2)C29—C30—H30A118.0
O21—La3—C26iv73.01 (19)N4—C31—C32123.2 (8)
O24—La3—C26iv83.7 (3)N4—C31—H31A118.4
O23—La3—C26iv143.5 (2)C32—C31—H31A118.4
O11iv—La3—C26iv24.84 (19)C31—C32—C28119.6 (9)
N4v—Cu1—N2166.2 (3)C31—C32—H32A120.2
Cu2'—Cu2—N393.2 (18)C28—C32—H32A120.2
Cu2'—Cu2—Br199.8 (18)O15—C33—O14126.0 (8)
N3—Cu2—Br1166.5 (3)O15—C33—C34119.1 (7)
Cu2'—Cu2—Cu7iv65.7 (18)O14—C33—C34114.9 (8)
N3—Cu2—Cu7iv133.0 (3)C38—C34—C35118.3 (8)
Br1—Cu2—Cu7iv57.48 (10)C38—C34—C33121.0 (8)
Cu2—Cu2'—N368.0 (16)C35—C34—C33120.6 (8)
Cu2—Cu2'—Br164.5 (16)C34—C35—C36119.0 (8)
N3—Cu2'—Br1132.4 (7)C34—C35—H35A120.5
Cu2—Cu2'—Cu7iv101 (2)C36—C35—H35A120.5
N3—Cu2'—Cu7iv136.8 (10)N5—C36—C35123.1 (9)
Br1—Cu2'—Cu7iv58.6 (4)N5—C36—H36A118.5
Cu2—Cu2'—Br3iv152 (3)C35—C36—H36A118.5
N3—Cu2'—Br3iv113.9 (7)N5—C37—C38124.2 (8)
Br1—Cu2'—Br3iv106.3 (7)N5—C37—H37A117.9
Cu7iv—Cu2'—Br3iv95.3 (5)C38—C37—H37A117.9
Cu3'—Cu3—N1vi82.3 (19)C34—C38—C37118.7 (9)
Cu3'—Cu3—N7vii76.0 (19)C34—C38—H38A120.6
N1vi—Cu3—N7vii148.7 (4)C37—C38—H38A120.6
Cu3'—Cu3—Br2147 (2)O17—C39—O18123.8 (7)
N1vi—Cu3—Br2106.5 (3)O17—C39—C40118.7 (7)
N7vii—Cu3—Br2104.0 (3)O18—C39—C40117.5 (7)
Cu3—Cu3'—N7vii86 (2)C44—C40—C41119.4 (8)
Cu3—Cu3'—N1vi79.3 (19)C44—C40—C39120.2 (7)
N7vii—Cu3'—N1vi152.7 (12)C41—C40—C39120.4 (7)
Cu3—Cu3'—Br3109 (2)C40—C41—C42118.7 (8)
N7vii—Cu3'—Br392.9 (7)C40—C41—H41A120.7
N1vi—Cu3'—Br3113.5 (9)C42—C41—H41A120.7
Br3—Cu4—Br2114.05 (8)N6—C42—C41121.9 (9)
Br3—Cu4—Br4125.56 (8)N6—C42—H42A119.0
Br2—Cu4—Br4120.39 (8)C41—C42—H42A119.0
Br3—Cu4—Cu582.39 (6)N6—C43—C44125.1 (9)
Br2—Cu4—Cu5142.32 (8)N6—C43—H43A117.5
Br4—Cu4—Cu554.84 (5)C44—C43—H43A117.5
N5—Cu5—Br5120.8 (2)C43—C44—C40117.7 (9)
N5—Cu5—Br4108.5 (2)C43—C44—H44A121.2
Br5—Cu5—Br4130.48 (6)C40—C44—H44A121.2
N5—Cu5—Cu488.5 (2)O19—C45—O20125.8 (8)
Br5—Cu5—Cu4127.83 (7)O19—C45—C46117.5 (8)
Br4—Cu5—Cu453.85 (5)O20—C45—C46116.7 (7)
N8viii—Cu6—Br5119.7 (2)C47—C46—C50117.3 (8)
N8viii—Cu6—Br3106.4 (2)C47—C46—C45121.1 (8)
Br5—Cu6—Br3109.80 (6)C50—C46—C45121.5 (7)
N8viii—Cu6—Br6113.8 (2)C48—C47—C46118.9 (8)
Br5—Cu6—Br6105.98 (6)C48—C47—H47A120.6
Br3—Cu6—Br699.15 (6)C46—C47—H47A120.6
N6viii—Cu7—Br6109.2 (2)N7—C48—C47124.0 (8)
N6viii—Cu7—Br1vii108.6 (2)N7—C48—H48A118.0
Br6—Cu7—Br1vii129.77 (7)C47—C48—H48A118.0
N6viii—Cu7—Cu2'vii130.7 (5)N7—C49—C50124.0 (8)
Br6—Cu7—Cu2'vii72.8 (4)N7—C49—H49A118.0
Br1vii—Cu7—Cu2'vii57.5 (4)C50—C49—H49A118.0
N6viii—Cu7—Br4vii98.8 (2)C49—C50—C46118.9 (8)
Br6—Cu7—Br4vii102.53 (6)C49—C50—H50A120.5
Br1vii—Cu7—Br4vii103.04 (6)C46—C50—H50A120.5
Cu2'vii—Cu7—Br4vii129.6 (4)O22—C51—O21125.4 (7)
N6viii—Cu7—Cu2vii140.1 (3)O22—C51—C52118.1 (7)
Br6—Cu7—Cu2vii80.14 (9)O21—C51—C52116.6 (7)
Br1vii—Cu7—Cu2vii49.72 (9)C53—C52—C56116.2 (7)
Cu2'vii—Cu7—Cu2vii13.7 (3)C53—C52—C51123.1 (7)
Br4vii—Cu7—Cu2vii117.39 (9)C56—C52—C51120.6 (7)
Cu2—Br1—Cu2'15.8 (3)C54—C53—C52121.2 (8)
Cu2—Br1—Cu7iv72.81 (11)C54—C53—H53A119.4
Cu2'—Br1—Cu7iv63.8 (4)C52—C53—H53A119.4
Cu4—Br2—Cu382.10 (12)N8—C54—C53121.9 (9)
Cu4—Br3—Cu6104.81 (7)N8—C54—H54A119.0
Cu4—Br3—Cu2'vii158.6 (4)C53—C54—H54A119.0
Cu6—Br3—Cu2'vii91.1 (4)N8—C55—C56123.3 (9)
Cu4—Br3—Cu3'85.6 (3)N8—C55—H55A118.3
Cu6—Br3—Cu3'156.9 (4)C56—C55—H55A118.3
Cu2'vii—Br3—Cu3'85.1 (5)C55—C56—C52119.6 (8)
Cu4—Br4—Cu571.31 (6)C55—C56—H56A120.2
Cu4—Br4—Cu7iv120.66 (6)C52—C56—H56A120.2
Cu5—Br4—Cu7iv123.90 (6)C5—N1—C4116.9 (8)
Cu5—Br5—Cu684.24 (6)C5—N1—Cu3v121.7 (6)
Cu7—Br6—Cu698.64 (6)C4—N1—Cu3v121.3 (6)
C1—O1—La1136.1 (6)C5—N1—Cu3'v132.7 (8)
C1—O2—La1ii143.8 (5)C4—N1—Cu3'v109.2 (8)
C7—O3—La1145.1 (5)Cu3v—N1—Cu3'v18.4 (4)
C7—O4—La1i152.6 (6)C11—N2—C10116.4 (8)
C13—O5—La1ii116.1 (5)C11—N2—Cu1119.1 (6)
C13—O6—La1165.8 (6)C10—N2—Cu1124.4 (6)
La1—O7—H7A99.1C16—N3—C17117.6 (8)
La1—O7—H7B102.7C16—N3—Cu2122.9 (7)
H7A—O7—H7B107.5C17—N3—Cu2119.4 (7)
C19—O8—La1163.1 (6)C16—N3—Cu2'104.2 (8)
C19—O9—La2146.1 (6)C17—N3—Cu2'137.9 (8)
C26—O10—La3vii102.7 (5)Cu2—N3—Cu2'18.8 (4)
C26—O11—La2146.8 (5)C30—N4—C31116.8 (7)
C26—O11—La3vii88.4 (5)C30—N4—Cu1vi123.0 (6)
La2—O11—La3vii123.8 (2)C31—N4—Cu1vi120.2 (6)
C27—O12—La3vii150.7 (6)C37—N5—C36116.5 (8)
C27—O13—La2129.7 (5)C37—N5—Cu5119.6 (6)
C33—O14—La3vii143.8 (7)C36—N5—Cu5123.6 (6)
C33—O15—La2141.0 (6)C43—N6—C42117.2 (8)
La2—O16—H16C150.9C43—N6—Cu7ix121.8 (6)
La2—O16—H16D101.5C42—N6—Cu7ix121.0 (6)
H16C—O16—H16D107.0C49—N7—C48116.8 (7)
C39—O17—La2151.1 (6)C49—N7—Cu3'iv111.3 (8)
C39—O18—La3147.0 (5)C48—N7—Cu3'iv127.6 (9)
C45—O19—La2150.1 (6)C49—N7—Cu3iv123.6 (6)
C45—O20—La3154.4 (6)C48—N7—Cu3iv119.4 (6)
C51—O21—La3129.1 (5)Cu3'iv—N7—Cu3iv18.5 (4)
C51—O22—La2iii126.3 (5)C55—N8—C54117.7 (8)
La3—O23—H23C114.8C55—N8—Cu6ix121.1 (6)
La3—O23—H23D115.0C54—N8—Cu6ix121.0 (6)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y, z; (iv) x1, y, z; (v) x+1, y+1/2, z1/2; (vi) x+1, y1/2, z1/2; (vii) x+1, y, z; (viii) x+1, y+1/2, z1/2; (ix) x1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16D···O21vii0.862.092.901 (7)157
O23—H23D···O220.932.002.861 (8)153
O24—H24D···O200.852.222.844 (11)130
Symmetry code: (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu7La3Br6(C6H4NO2)8(C8H4O4)(H2O)4]
Mr2553.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.1071 (5), 19.6311 (3), 34.4015 (2)
β (°) 92.480 (2)
V3)6819.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)7.57
Crystal size (mm)0.20 × 0.10 × 0.09
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.313, 0.549
No. of measured, independent and
observed [I > 2σ(I)] reflections
52743, 13363, 9870
Rint0.071
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.126, 1.18
No. of reflections13363
No. of parameters955
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.73, 2.22

Computer programs: APEX2 (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16D···O21i0.862.092.901 (7)157.1
O23—H23D···O220.932.002.861 (8)153.1
O24—H24D···O200.852.222.844 (11)129.9
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by the Qingdao University Research Fund (grant No. 063-06300522).

References

First citationBenelli, C. & Gatteschi, D. (2002). Chem. Rev. 102, 2369–2388.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J. W., Zhang, J., Zheng, S. T. & Yang, G. Y. (2008). Chem. Eur. J. 14, 88–97.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDeng, H., Li, Y. H., Qiu, C. Y., Liu, Z. H. & Zeller, M. (2008). Inorg. Chem. Commun. 11, 1151–1154.  Web of Science CSD CrossRef CAS Google Scholar
First citationGu, X. J. & Xue, D. F. (2007). Inorg. Chem. 46, 3212–3216.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGuillou, O., Daiguebonne, C., Camara, M. & Kerbellec, N. (2006). Inorg. Chem. 45, 8468–8470.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPrasad, T. K., Rajasekharan, M. V. & Costes, J. P. (2007). Angew. Chem. Int. Ed. 46, 2851–2854.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, Y., Long, L., Mao, B., Yuan, Y., Huang, R. & Zheng, L. (2003). Angew. Chem. Int. Ed. 42, 532–535.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187–2210.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, G.-M., Duan, C.-S., Liu, H.-L. & Li, H. (2008). Acta Cryst. E64, m468–m469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, G.-M., Li, Z.-X., Zheng, Q.-H. & Liu, H.-L. (2008). Acta Cryst. E64, m1260–m1261.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Z., Shen, X., Wang, J., Zhang, P., Li, Y., Nfor, E., Song, Y., Ohkoshi, S., Hashimoto, K. & You, X. (2006). Angew. Chem. Int. Ed. 45, 3287–3291.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, B., Chen, X., Cheng, P., Liao, D., Yan, S. & Jiang, Z. (2004). J. Am. Chem. Soc. 126, 15394–15395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, B., Cheng, P., Chen, X., Cheng, C., Shi, W., Liao, D., Yan, S. & Jiang, Z. (2004). J. Am. Chem. Soc. 126, 3012–3013.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m550-m551
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds