metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m568-m569

[3,3′-Dimesityl-1,1′-(4,5:16,17-dibenzo-3,6,9,12,15,18-hexa­oxaei­cosane-1,20-di­yl)diimidazolin-2-yl­­idene]di­thio­cyanato­palladium(II)

aKey Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: luomm@scu.edu.cn

(Received 13 April 2009; accepted 20 April 2009; online 25 April 2009)

The coordination geometry of the Pd atom in the title compound, [Pd(SCN)2(C46H54N4O6)], is approximately square-planar. The N-heterocyclic carbene (NHC) metallacrown ether ligand binds to the Pd atom in a trans orientation through the carbene C atoms of the two imidazole rings and generates a 25-membered chelate ring. Two mutually trans S-bound thio­cyanate ligands complete the coordination.

Related literature

For N-heterocyclic carbene ligands and their complexes, see: Herrmann (2002[Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.]); Hahn & Jahnke (2008[Hahn, F. E. & Jahnke, M. C. (2008). Angew. Chem. Int. Ed. 47, 3122-3172.]). For details of bis-phosphine polyether ligands, see: Alcock et al. (1976[Alcock, N. W., Brown, J. M. & Jeffery, J. C. (1976). J. Chem. Soc. Dalton Trans. pp. 583-588.]); Powell et al. (1981[Powell, J., Kuksis, A., May, C. J., Nyberg, S. C. & Smith, S. J. (1981). J. Am. Chem. Soc. 103, 5941-5943.]); Gray et al. (1995[Gray, G. M., Varshney, A. & Duffey, T. H. (1995). Organometallics, 14, 238-244.]). For mixed NHC metallacrown ether ligands, see: Nielsen et al. (2003[Nielsen, D. J., Cavell, K. J., Skelton, B. W. & White, A. H. (2003). Inorg. Chim. Acta, 352, 143-150.]); Liu et al. (2007[Liu, Q. X., Zhao, X. J., Wu, X. M., Guo, J. H. & Wang, X. G. (2007). J. Organomet. Chem. 692, 5671-5679.]); Wang et al. (2005[Wang, J. W., Song, H. B., Li, Q. S., Xu, F. B. & Zhang, Z. Z. (2005). Inorg. Chim. Acta, 358, 3653-3658.]). For the use of Pd–NHC complexes in catalysis, see: Herrmann et al. (2002[Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.]); Kantchev et al. (2007[Kantchev, E. A. B., O'Brien, C. J. & Organ, M. G. (2007). Angew. Chem. Int. Ed. 46, 2768-2813.]). For the synthesis of the ligand precursor, see: Pedersen (1967[Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017-7036.]); Haque & Rasmussen (1994[Haque, M. R. & Rasmussen, M. (1994). Tetrahedron, 50, 5535-5554.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(NCS)2(C46H54N4O6)]

  • Mr = 981.49

  • Monoclinic, P 21 /n

  • a = 14.143 (5) Å

  • b = 19.803 (4) Å

  • c = 17.101 (3) Å

  • β = 97.13 (2)°

  • V = 4753 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 288 K

  • 0.46 × 0.42 × 0.40 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: spherical (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) Tmin = 0.927, Tmax = 0.936

  • 9805 measured reflections

  • 8672 independent reflections

  • 4983 reflections with I > 2σ(I)

  • Rint = 0.003

  • 3 standard reflections every 300 reflections intensity decay: 1.2%

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.218

  • S = 1.05

  • 8672 reflections

  • 566 parameters

  • 61 restraints

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −1.31 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—C1 2.040 (6)
Pd1—C35 2.041 (6)
Pd1—S2 2.3211 (18)
Pd1—S1 2.3237 (19)
C1—Pd1—C35 178.6 (3)
C1—Pd1—S2 85.12 (17)
C35—Pd1—S2 95.47 (19)
C1—Pd1—S1 94.03 (17)
C35—Pd1—S1 85.31 (19)
S2—Pd1—S1 176.52 (8)

Data collection: DIFRAC (Gabe et al., 1993[Gabe, E. J., White, P. S. & Enright, G. D. (1993). American Crystallographic Association Meeting, Pittsburgh, Abstract PA104.]); cell refinement: DIFRAC; data reduction: DIFRAC; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N-Heterocyclic carbene (NHC) ligands have been found to be interesting substitutes for phosphine ligands and are employed with considerable success in coordination chemistry and various catalytic transformations (Herrmann et al., 2002; Hahn & Jahnke, 2008). Much interest has been devoted to the chemistry of metallacrown ethers formed by the chelation of bis(phosphorus-donor)polyether ligands to transition metals for a number of years (Alcock et al.,1976; Powell et al., 1981; Gray, 1995). Studies on these metallacrown ethers have shown that they can bind hard metal cations and such hard–soft bimetallic complexes are of interest as catalysts for organic reactions. Substitution of phosphine donors by NHCs has led to several examples of mixed NHC metallacrown ether ligands (Nielsen et al., 2003; Liu et al., 2007; Wang et al., 2005). Pd–NHC complexes are known to catalyze a wide range of useful cross-coupling reactions (Herrmann, 2002; Kantchev et al., 2007). However, we were surprised that no Pd–NHC metallacrown ether complexes have been described to date and we present here the first synthesis and crystal structure of the title Pd–NHC metallacrown ether complex.

In the title compound (Fig. 1), a 25-membered Pd–NHC metallacrown ether complex adopting a trans-conformation is formed by a bidentate chelate bis(carbene) ligand with a long flexible linkage and a Pd(II). The coordination geometry at Pd is approximately square planar with the C1–Pd–C35 angle of 178.6 (3)° and the S1–Pd–S2 angle of 178.6 (3)°. The two benzene rings linked with ether oxygen atoms form a dihedral angle of 81.20°. The dihedral angle of the NHC rings is 39.38°.

Related literature top

For N-heterocyclic carbene ligands and their complexes, see: Herrmann (2002); Hahn & Jahnke (2008). For details of bis-phosphine polyether ligands, see: Alcock et al. (1976); Powell et al. (1981); Gray et al. (1995). For mixed NHC metallacrown ether ligands, see: Nielsen et al. (2003); Liu et al. (2007); Wang et al. (2005). For the use of Pd–NHC complexes in catalysis, see: Herrmann et al. (2002); Kantchev et al. (2007). For the synthesis of the ligand precursor, see: Pedersen (1967); Haque & Rasmussen (1994).

Experimental top

A mixture of 1,20-di(1-mesitylimidazolium)-4,5,16,17-dibenzo-3,6,9,12,15,18-hexaoxaeicosane dichloride (83.2 mg, 0.10 mmol) prepared by literature procedures (Pedersen, 1967; Haque & Rasmussen, 1994) and silver(I) oxide (27.6 mg, 0.12 mmol) in 5 ml of CH2Cl2 was stirred at room temperature for 2 h. The reaction mixture was filtered and washed with CH2Cl2 (5 ml × 2). The combined filtrate was reduced to 5 ml under vacuum. [PdCl2(MeCN)2] (25.8 mg, 0.10 mmol) in CH2Cl2 (3 ml) was added to the resulting solution and stirred at room temperature for 2 h, then KSCN (97 mg, 1 mmol) was added and stirred over night. The reaction mixture was filtered and washed with CH2Cl2 (5 ml × 2). The combined solution was evaporated under reduced pressure to leave a raw product, which was purified by flash chromatography on silica gel (CH2Cl2) to give a yellow solid. Single crystals suitable for X-ray diffraction were obtained at ambient temperature by slow evaporation of an Et2O solution over a period of several days.

Refinement top

All H atom were positioned geometrically with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and refined using a riding model with 1.5 Ueq(C) for methyl and Uiso(H) = 1.2 Ueq(C) for others.

Computing details top

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: DIFRAC (Gabe et al., 1993); data reduction: DIFRAC (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[3,3'-Dimesityl-1,1'-(4,5:16,17-dibenzo-3,6,9,12,15,18-hexaoxaeicosane-1,20- diyl)diimidazolin-2-ylidene]dithiocyanatopalladium(II) top
Crystal data top
[Pd(NCS)2(C46H54N4O6)]F(000) = 2040
Mr = 981.49Dx = 1.372 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 40 reflections
a = 14.143 (5) Åθ = 5.0–7.8°
b = 19.803 (4) ŵ = 0.53 mm1
c = 17.101 (3) ÅT = 288 K
β = 97.13 (2)°Block, colourless
V = 4753 (2) Å30.46 × 0.42 × 0.40 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
4983 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.003
Graphite monochromatorθmax = 25.5°, θmin = 1.8°
ω/2θ scansh = 1716
Absorption correction: for a sphere
(Farrugia, 1999)
k = 024
Tmin = 0.927, Tmax = 0.936l = 720
9805 measured reflections3 standard reflections every 300 reflections
8672 independent reflections intensity decay: 1.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1301P)2]
where P = (Fo2 + 2Fc2)/3
8672 reflections(Δ/σ)max < 0.001
566 parametersΔρmax = 0.78 e Å3
61 restraintsΔρmin = 1.31 e Å3
Crystal data top
[Pd(NCS)2(C46H54N4O6)]V = 4753 (2) Å3
Mr = 981.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.143 (5) ŵ = 0.53 mm1
b = 19.803 (4) ÅT = 288 K
c = 17.101 (3) Å0.46 × 0.42 × 0.40 mm
β = 97.13 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
4983 reflections with I > 2σ(I)
Absorption correction: for a sphere
(Farrugia, 1999)
Rint = 0.003
Tmin = 0.927, Tmax = 0.9363 standard reflections every 300 reflections
9805 measured reflections intensity decay: 1.2%
8672 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06661 restraints
wR(F2) = 0.218H-atom parameters constrained
S = 1.05Δρmax = 0.78 e Å3
8672 reflectionsΔρmin = 1.31 e Å3
566 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.57564 (3)0.29052 (2)0.23443 (3)0.04415 (19)
S10.64646 (14)0.18450 (9)0.24534 (15)0.0721 (6)
S20.50579 (14)0.39669 (9)0.23181 (14)0.0689 (6)
O10.7414 (3)0.4138 (2)0.4806 (3)0.0610 (12)
O20.6397 (6)0.4445 (3)0.5970 (4)0.122 (3)
O30.5875 (5)0.3396 (5)0.6878 (7)0.162 (4)
O40.6080 (11)0.2342 (6)0.5779 (10)0.215 (6)
O50.5559 (7)0.1325 (5)0.4902 (6)0.159 (4)
O60.3911 (4)0.1529 (3)0.3957 (4)0.0852 (17)
N10.7502 (4)0.3790 (3)0.2186 (3)0.0541 (14)
N20.7516 (4)0.3414 (3)0.3370 (3)0.0482 (13)
N30.4200 (4)0.2032 (3)0.1410 (3)0.0505 (13)
N40.3804 (4)0.2329 (3)0.2526 (3)0.0574 (14)
N50.8391 (6)0.1955 (4)0.3031 (7)0.125 (4)
N60.3073 (6)0.3895 (4)0.2113 (5)0.103 (3)
C10.7006 (4)0.3409 (3)0.2651 (4)0.0461 (15)
C20.8339 (5)0.4017 (4)0.2629 (4)0.066 (2)
H20.88080.42820.24460.079*
C30.8342 (5)0.3784 (4)0.3365 (4)0.0634 (19)
H30.88090.38570.37900.076*
C40.7200 (5)0.3999 (4)0.1393 (4)0.0546 (17)
C50.7266 (5)0.3548 (4)0.0775 (4)0.064 (2)
C60.6955 (6)0.3780 (5)0.0023 (5)0.077 (2)
H60.70160.34940.04000.093*
C70.6575 (7)0.4386 (6)0.0131 (6)0.092 (3)
C80.6537 (7)0.4832 (5)0.0501 (6)0.090 (3)
H80.62930.52640.04030.108*
C90.6852 (5)0.4645 (4)0.1264 (5)0.066 (2)
C100.6829 (7)0.5139 (4)0.1941 (6)0.096 (3)
H10A0.74570.53160.20910.144*
H10B0.66160.49100.23820.144*
H10C0.64010.55020.17780.144*
C110.6202 (10)0.4598 (7)0.0983 (6)0.158 (6)
H11A0.65830.43890.13420.237*
H11B0.62390.50800.10300.237*
H11C0.55510.44570.11060.237*
C120.7657 (7)0.2847 (4)0.0895 (5)0.087 (3)
H12A0.79970.28080.14150.131*
H12B0.80830.27550.05120.131*
H12C0.71430.25270.08340.131*
C130.7204 (5)0.3113 (4)0.4082 (4)0.0572 (17)
H13A0.77500.29350.44180.069*
H13B0.67670.27440.39360.069*
C140.6710 (5)0.3653 (4)0.4527 (4)0.0599 (18)
H14A0.62020.38650.41790.072*
H14B0.64380.34520.49650.072*
C150.7069 (5)0.4784 (4)0.4864 (5)0.065 (2)
C160.6561 (7)0.4964 (5)0.5486 (6)0.088 (3)
C170.6275 (9)0.5624 (5)0.5563 (6)0.107 (4)
H170.59350.57490.59720.129*
C180.6500 (10)0.6088 (5)0.5031 (8)0.121 (4)
H180.63180.65350.50880.145*
C190.6984 (8)0.5921 (5)0.4413 (7)0.101 (3)
H190.71130.62460.40490.121*
C200.7274 (6)0.5269 (4)0.4341 (5)0.077 (2)
H200.76160.51530.39300.092*
C210.5876 (13)0.4567 (6)0.6570 (8)0.169 (7)
H21A0.54070.49110.63990.203*
H21B0.62980.47540.70070.203*
C220.5373 (10)0.3984 (7)0.6865 (8)0.147 (6)
H22A0.52330.40830.73940.176*
H22B0.47710.39240.65330.176*
C230.5281 (11)0.2759 (8)0.6820 (15)0.217 (8)
H23A0.46850.28610.64980.261*
H23B0.51280.26560.73450.261*
C240.5684 (16)0.2106 (8)0.6487 (11)0.204 (8)
H24A0.61760.19080.68640.245*
H24B0.51840.17750.63530.245*
C250.6713 (14)0.1847 (9)0.5687 (13)0.204 (8)
H25A0.69860.17100.62110.245*
H25B0.72240.20510.54400.245*
C260.6442 (11)0.1235 (9)0.5252 (12)0.189 (7)
H26A0.68710.11510.48620.227*
H26B0.64670.08510.56070.227*
C270.5279 (6)0.0829 (5)0.4391 (5)0.123 (4)
C280.4429 (5)0.0943 (3)0.3907 (4)0.084 (3)
C290.4052 (6)0.0443 (5)0.3388 (4)0.116 (4)
H290.34830.05190.30650.139*
C300.4524 (9)0.0169 (4)0.3353 (5)0.157 (7)
H300.42720.05030.30060.189*
C310.5374 (9)0.0283 (4)0.3836 (7)0.196 (10)
H310.56900.06920.38130.235*
C320.5751 (5)0.0217 (6)0.4355 (6)0.172 (8)
H320.63200.01410.46790.206*
C330.4426 (6)0.2152 (4)0.3916 (5)0.077 (2)
H33A0.50480.20660.37530.092*
H33B0.45140.23690.44280.092*
C340.3849 (6)0.2597 (4)0.3325 (4)0.068 (2)
H34A0.32080.26390.34650.082*
H34B0.41300.30440.33410.082*
C350.4510 (4)0.2390 (3)0.2064 (4)0.0489 (15)
C360.3311 (5)0.1766 (4)0.1479 (5)0.072 (2)
H360.29480.15010.11060.086*
C370.3067 (5)0.1957 (4)0.2169 (5)0.073 (2)
H370.25010.18560.23690.088*
C380.4700 (5)0.1907 (4)0.0744 (4)0.0552 (17)
C390.5038 (5)0.1248 (4)0.0659 (5)0.070 (2)
C400.5501 (6)0.1117 (6)0.0002 (6)0.093 (3)
H400.57300.06850.00700.111*
C410.5629 (6)0.1605 (7)0.0543 (6)0.096 (3)
C420.5268 (6)0.2250 (5)0.0448 (5)0.078 (3)
H420.53400.25800.08230.094*
C430.4801 (5)0.2409 (4)0.0200 (5)0.069 (2)
C440.4422 (7)0.3107 (4)0.0287 (5)0.083 (2)
H44A0.39590.31010.06530.124*
H44B0.41280.32660.02160.124*
H44C0.49360.34040.04790.124*
C450.6116 (8)0.1436 (8)0.1273 (7)0.148 (5)
H45A0.66330.11290.11290.222*
H45B0.63570.18430.14800.222*
H45C0.56620.12310.16660.222*
C460.4916 (7)0.0701 (4)0.1243 (6)0.096 (3)
H46A0.42610.05610.11880.143*
H46B0.50970.08680.17670.143*
H46C0.53110.03230.11480.143*
C470.7609 (6)0.1926 (4)0.2804 (6)0.072 (2)
C480.3883 (6)0.3909 (4)0.2185 (6)0.077 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0448 (3)0.0386 (3)0.0478 (3)0.0031 (2)0.0011 (2)0.0046 (2)
S10.0625 (11)0.0423 (9)0.1069 (17)0.0070 (9)0.0080 (11)0.0124 (11)
S20.0598 (11)0.0452 (10)0.0998 (16)0.0093 (8)0.0020 (11)0.0054 (10)
O10.061 (3)0.060 (3)0.058 (3)0.003 (2)0.007 (2)0.014 (2)
O20.202 (8)0.081 (5)0.097 (5)0.047 (5)0.074 (5)0.003 (4)
O30.082 (5)0.181 (9)0.233 (10)0.009 (6)0.061 (6)0.043 (8)
O40.212 (13)0.141 (10)0.275 (15)0.039 (9)0.034 (11)0.012 (11)
O50.101 (6)0.173 (9)0.191 (10)0.005 (6)0.031 (6)0.053 (8)
O60.079 (4)0.089 (4)0.090 (4)0.008 (3)0.017 (3)0.022 (3)
N10.053 (3)0.058 (3)0.053 (3)0.004 (3)0.012 (3)0.003 (3)
N20.046 (3)0.050 (3)0.047 (3)0.002 (2)0.000 (2)0.010 (3)
N30.052 (3)0.050 (3)0.045 (3)0.007 (3)0.011 (2)0.007 (3)
N40.048 (3)0.069 (4)0.054 (3)0.000 (3)0.004 (3)0.006 (3)
N50.073 (5)0.075 (5)0.215 (12)0.017 (4)0.031 (6)0.011 (6)
N60.070 (5)0.113 (7)0.119 (7)0.017 (5)0.014 (5)0.009 (5)
C10.052 (4)0.036 (3)0.050 (4)0.004 (3)0.004 (3)0.003 (3)
C20.044 (4)0.091 (6)0.061 (5)0.010 (4)0.002 (3)0.006 (4)
C30.048 (4)0.080 (5)0.060 (5)0.003 (4)0.001 (3)0.012 (4)
C40.050 (4)0.060 (4)0.054 (4)0.001 (3)0.009 (3)0.009 (3)
C50.065 (5)0.073 (5)0.057 (5)0.012 (4)0.017 (4)0.000 (4)
C60.081 (6)0.099 (7)0.053 (5)0.007 (5)0.013 (4)0.001 (5)
C70.092 (7)0.105 (8)0.082 (6)0.009 (6)0.021 (5)0.031 (6)
C80.092 (6)0.077 (6)0.105 (7)0.013 (5)0.026 (6)0.044 (6)
C90.068 (5)0.054 (4)0.079 (5)0.004 (4)0.017 (4)0.014 (4)
C100.109 (7)0.055 (5)0.128 (8)0.004 (5)0.027 (6)0.012 (5)
C110.170 (12)0.215 (15)0.088 (8)0.022 (11)0.016 (8)0.083 (9)
C120.109 (7)0.093 (6)0.060 (5)0.039 (5)0.013 (5)0.014 (5)
C130.062 (4)0.061 (4)0.047 (4)0.004 (3)0.004 (3)0.001 (3)
C140.065 (4)0.065 (4)0.050 (4)0.008 (4)0.008 (3)0.002 (4)
C150.067 (5)0.063 (5)0.061 (5)0.001 (4)0.008 (4)0.016 (4)
C160.109 (7)0.078 (6)0.077 (6)0.021 (5)0.013 (5)0.001 (5)
C170.167 (11)0.059 (6)0.097 (7)0.024 (6)0.021 (7)0.023 (5)
C180.162 (12)0.064 (6)0.133 (10)0.014 (7)0.000 (8)0.012 (7)
C190.125 (9)0.061 (6)0.114 (8)0.008 (6)0.002 (6)0.011 (5)
C200.085 (6)0.070 (5)0.072 (5)0.012 (4)0.005 (5)0.002 (5)
C210.28 (2)0.100 (9)0.153 (12)0.040 (11)0.133 (13)0.008 (9)
C220.132 (11)0.205 (15)0.105 (9)0.057 (11)0.020 (8)0.022 (10)
C230.116 (11)0.191 (16)0.35 (2)0.016 (12)0.048 (14)0.012 (17)
C240.29 (2)0.102 (11)0.202 (16)0.047 (12)0.037 (14)0.038 (11)
C250.185 (16)0.164 (15)0.241 (19)0.015 (14)0.060 (14)0.056 (15)
C260.099 (10)0.193 (16)0.265 (19)0.028 (10)0.019 (11)0.066 (15)
C270.087 (8)0.135 (11)0.149 (12)0.011 (8)0.022 (8)0.062 (9)
C280.094 (7)0.086 (6)0.077 (6)0.006 (5)0.032 (5)0.023 (5)
C290.171 (11)0.093 (8)0.091 (8)0.002 (8)0.048 (8)0.016 (7)
C300.27 (2)0.095 (10)0.124 (11)0.002 (11)0.109 (13)0.016 (8)
C310.27 (2)0.198 (19)0.155 (15)0.096 (17)0.153 (16)0.059 (14)
C320.151 (12)0.198 (16)0.188 (16)0.093 (13)0.101 (12)0.088 (14)
C330.079 (5)0.092 (6)0.059 (5)0.005 (4)0.006 (4)0.004 (4)
C340.074 (5)0.069 (5)0.063 (5)0.000 (4)0.011 (4)0.001 (4)
C350.046 (4)0.047 (3)0.051 (4)0.002 (3)0.006 (3)0.005 (3)
C360.054 (4)0.083 (6)0.072 (6)0.016 (4)0.016 (4)0.006 (5)
C370.045 (4)0.095 (6)0.079 (6)0.007 (4)0.003 (4)0.016 (5)
C380.044 (4)0.066 (4)0.052 (4)0.004 (3)0.004 (3)0.010 (3)
C390.060 (4)0.067 (5)0.077 (5)0.002 (4)0.011 (4)0.019 (4)
C400.072 (6)0.105 (7)0.097 (7)0.010 (5)0.006 (5)0.046 (5)
C410.054 (5)0.151 (10)0.082 (7)0.010 (6)0.002 (5)0.050 (6)
C420.070 (5)0.113 (7)0.049 (5)0.021 (5)0.002 (4)0.001 (5)
C430.062 (5)0.076 (5)0.069 (5)0.015 (4)0.006 (4)0.013 (4)
C440.100 (6)0.084 (5)0.063 (5)0.004 (5)0.004 (5)0.007 (5)
C450.107 (8)0.242 (16)0.103 (9)0.004 (10)0.042 (7)0.054 (10)
C460.111 (7)0.058 (5)0.111 (8)0.004 (5)0.014 (6)0.013 (5)
C470.068 (5)0.041 (4)0.103 (7)0.015 (4)0.003 (5)0.007 (4)
C480.063 (5)0.057 (5)0.112 (7)0.020 (4)0.009 (5)0.003 (5)
Geometric parameters (Å, º) top
Pd1—C12.040 (6)C16—C171.379 (12)
Pd1—C352.041 (6)C17—C181.358 (14)
Pd1—S22.3211 (18)C17—H170.9300
Pd1—S12.3237 (19)C18—C191.369 (15)
S1—C471.662 (9)C18—H180.9300
S2—C481.653 (9)C19—C201.364 (13)
O1—C151.377 (9)C19—H190.9300
O1—C141.422 (8)C20—H200.9300
O2—C211.357 (12)C21—C221.477 (14)
O2—C161.359 (11)C21—H21A0.9700
O3—C221.362 (12)C21—H21B0.9700
O3—C231.513 (14)C22—H22A0.9700
O4—C251.350 (15)C22—H22B0.9700
O4—C241.472 (15)C23—C241.549 (15)
O5—C261.329 (15)C23—H23A0.9700
O5—C271.341 (11)C23—H23B0.9700
O6—C281.381 (8)C24—H24A0.9700
O6—C331.439 (9)C24—H24B0.9700
N1—C11.354 (8)C25—C261.449 (15)
N1—C21.398 (9)C25—H25A0.9700
N1—C41.431 (8)C25—H25B0.9700
N2—C11.347 (8)C26—H26A0.9700
N2—C31.379 (9)C26—H26B0.9700
N2—C131.472 (8)C27—C281.3900
N3—C351.351 (8)C27—C321.3900
N3—C361.381 (9)C28—C291.3900
N3—C381.435 (8)C29—C301.3900
N4—C351.355 (8)C29—H290.9300
N4—C371.358 (9)C30—C311.3900
N4—C341.459 (9)C30—H300.9300
N5—C471.128 (10)C31—C321.3900
N6—C481.137 (10)C31—H310.9300
C2—C31.342 (10)C32—H320.9300
C2—H20.9300C33—C341.503 (10)
C3—H30.9300C33—H33A0.9700
C4—C91.379 (10)C33—H33B0.9700
C4—C51.395 (10)C34—H34A0.9700
C5—C61.384 (10)C34—H34B0.9700
C5—C121.501 (11)C36—C371.325 (11)
C6—C71.330 (12)C36—H360.9300
C6—H60.9300C37—H370.9300
C7—C81.402 (14)C38—C431.382 (11)
C7—C111.544 (13)C38—C391.404 (10)
C8—C91.375 (12)C39—C401.393 (12)
C8—H80.9300C39—C461.498 (12)
C9—C101.520 (12)C40—C411.369 (14)
C10—H10A0.9600C40—H400.9300
C10—H10B0.9600C41—C421.392 (14)
C10—H10C0.9600C41—C451.536 (13)
C11—H11A0.9600C42—C431.394 (11)
C11—H11B0.9600C42—H420.9300
C11—H11C0.9600C43—C441.498 (12)
C12—H12A0.9600C44—H44A0.9600
C12—H12B0.9600C44—H44B0.9600
C12—H12C0.9600C44—H44C0.9600
C13—C141.530 (9)C45—H45A0.9600
C13—H13A0.9700C45—H45B0.9600
C13—H13B0.9700C45—H45C0.9600
C14—H14A0.9700C46—H46A0.9600
C14—H14B0.9700C46—H46B0.9600
C15—C201.367 (11)C46—H46C0.9600
C15—C161.402 (12)
C1—Pd1—C35178.6 (3)O3—C22—C21113.7 (11)
C1—Pd1—S285.12 (17)O3—C22—H22A108.8
C35—Pd1—S295.47 (19)C21—C22—H22A108.8
C1—Pd1—S194.03 (17)O3—C22—H22B108.8
C35—Pd1—S185.31 (19)C21—C22—H22B108.8
S2—Pd1—S1176.52 (8)H22A—C22—H22B107.7
C47—S1—Pd1109.4 (3)O3—C23—C24119.6 (13)
C48—S2—Pd1111.0 (3)O3—C23—H23A107.4
C15—O1—C14114.3 (5)C24—C23—H23A107.4
C21—O2—C16118.5 (8)O3—C23—H23B107.4
C22—O3—C23115.4 (10)C24—C23—H23B107.4
C25—O4—C24101.0 (16)H23A—C23—H23B107.0
C26—O5—C27112.3 (13)O4—C24—C23103.4 (16)
C28—O6—C33116.2 (6)O4—C24—H24A111.1
C1—N1—C2109.1 (6)C23—C24—H24A111.1
C1—N1—C4127.0 (6)O4—C24—H24B111.1
C2—N1—C4123.6 (6)C23—C24—H24B111.1
C1—N2—C3110.9 (6)H24A—C24—H24B109.0
C1—N2—C13124.8 (5)O4—C25—C26122.0 (17)
C3—N2—C13124.1 (6)O4—C25—H25A106.8
C35—N3—C36109.6 (6)C26—C25—H25A106.8
C35—N3—C38127.3 (5)O4—C25—H25B106.8
C36—N3—C38123.0 (6)C26—C25—H25B106.8
C35—N4—C37111.5 (6)H25A—C25—H25B106.7
C35—N4—C34124.3 (6)O5—C26—C25107.0 (16)
C37—N4—C34124.1 (6)O5—C26—H26A110.3
N2—C1—N1105.9 (5)C25—C26—H26A110.3
N2—C1—Pd1126.0 (5)O5—C26—H26B110.3
N1—C1—Pd1128.1 (5)C25—C26—H26B110.3
C3—C2—N1107.5 (6)H26A—C26—H26B108.6
C3—C2—H2126.3O5—C27—C28115.7 (8)
N1—C2—H2126.3O5—C27—C32124.2 (8)
C2—C3—N2106.6 (6)C28—C27—C32120.0
C2—C3—H3126.7O6—C28—C29118.2 (7)
N2—C3—H3126.7O6—C28—C27121.7 (7)
C9—C4—C5121.9 (7)C29—C28—C27120.0
C9—C4—N1118.6 (7)C28—C29—C30120.0
C5—C4—N1119.5 (6)C28—C29—H29120.0
C6—C5—C4116.7 (7)C30—C29—H29120.0
C6—C5—C12120.1 (7)C29—C30—C31120.0
C4—C5—C12123.2 (7)C29—C30—H30120.0
C7—C6—C5123.8 (9)C31—C30—H30120.0
C7—C6—H6118.1C30—C31—C32120.0
C5—C6—H6118.1C30—C31—H31120.0
C6—C7—C8118.0 (9)C32—C31—H31120.0
C6—C7—C11121.0 (11)C31—C32—C27120.0
C8—C7—C11121.1 (10)C31—C32—H32120.0
C9—C8—C7121.6 (8)C27—C32—H32120.0
C9—C8—H8119.2O6—C33—C34107.4 (7)
C7—C8—H8119.2O6—C33—H33A110.2
C8—C9—C4118.0 (8)C34—C33—H33A110.2
C8—C9—C10120.9 (8)O6—C33—H33B110.2
C4—C9—C10121.1 (8)C34—C33—H33B110.2
C9—C10—H10A109.5H33A—C33—H33B108.5
C9—C10—H10B109.5N4—C34—C33111.9 (7)
H10A—C10—H10B109.5N4—C34—H34A109.2
C9—C10—H10C109.5C33—C34—H34A109.2
H10A—C10—H10C109.5N4—C34—H34B109.2
H10B—C10—H10C109.5C33—C34—H34B109.2
C7—C11—H11A109.5H34A—C34—H34B107.9
C7—C11—H11B109.5N3—C35—N4104.4 (5)
H11A—C11—H11B109.5N3—C35—Pd1129.7 (5)
C7—C11—H11C109.5N4—C35—Pd1125.9 (5)
H11A—C11—H11C109.5C37—C36—N3107.9 (7)
H11B—C11—H11C109.5C37—C36—H36126.0
C5—C12—H12A109.5N3—C36—H36126.0
C5—C12—H12B109.5C36—C37—N4106.6 (7)
H12A—C12—H12B109.5C36—C37—H37126.7
C5—C12—H12C109.5N4—C37—H37126.7
H12A—C12—H12C109.5C43—C38—C39122.3 (7)
H12B—C12—H12C109.5C43—C38—N3120.9 (7)
N2—C13—C14109.3 (6)C39—C38—N3116.8 (7)
N2—C13—H13A109.8C40—C39—C38117.1 (9)
C14—C13—H13A109.8C40—C39—C46120.6 (8)
N2—C13—H13B109.8C38—C39—C46122.3 (7)
C14—C13—H13B109.8C41—C40—C39122.2 (9)
H13A—C13—H13B108.3C41—C40—H40118.9
O1—C14—C13107.1 (6)C39—C40—H40118.9
O1—C14—H14A110.3C40—C41—C42119.1 (8)
C13—C14—H14A110.3C40—C41—C45120.6 (12)
O1—C14—H14B110.3C42—C41—C45120.1 (12)
C13—C14—H14B110.3C41—C42—C43121.1 (9)
H14A—C14—H14B108.5C41—C42—H42119.5
C20—C15—O1120.0 (7)C43—C42—H42119.5
C20—C15—C16119.1 (8)C38—C43—C42118.2 (8)
O1—C15—C16120.7 (8)C38—C43—C44121.9 (7)
O2—C16—C17125.7 (9)C42—C43—C44119.9 (8)
O2—C16—C15114.4 (8)C43—C44—H44A109.5
C17—C16—C15119.9 (9)C43—C44—H44B109.5
C18—C17—C16118.7 (10)H44A—C44—H44B109.5
C18—C17—H17120.6C43—C44—H44C109.5
C16—C17—H17120.6H44A—C44—H44C109.5
C17—C18—C19122.3 (10)H44B—C44—H44C109.5
C17—C18—H18118.9C41—C45—H45A109.5
C19—C18—H18118.9C41—C45—H45B109.5
C20—C19—C18118.9 (10)H45A—C45—H45B109.5
C20—C19—H19120.5C41—C45—H45C109.5
C18—C19—H19120.5H45A—C45—H45C109.5
C19—C20—C15121.0 (9)H45B—C45—H45C109.5
C19—C20—H20119.5C39—C46—H46A109.5
C15—C20—H20119.5C39—C46—H46B109.5
O2—C21—C22116.6 (11)H46A—C46—H46B109.5
O2—C21—H21A108.1C39—C46—H46C109.5
C22—C21—H21A108.1H46A—C46—H46C109.5
O2—C21—H21B108.1H46B—C46—H46C109.5
C22—C21—H21B108.1N5—C47—S1177.2 (8)
H21A—C21—H21B107.3N6—C48—S2176.9 (8)

Experimental details

Crystal data
Chemical formula[Pd(NCS)2(C46H54N4O6)]
Mr981.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)288
a, b, c (Å)14.143 (5), 19.803 (4), 17.101 (3)
β (°) 97.13 (2)
V3)4753 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.46 × 0.42 × 0.40
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionFor a sphere
(Farrugia, 1999)
Tmin, Tmax0.927, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
9805, 8672, 4983
Rint0.003
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.218, 1.05
No. of reflections8672
No. of parameters566
No. of restraints61
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 1.31

Computer programs: DIFRAC (Gabe et al., 1993), DIFRAC (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Pd1—C12.040 (6)Pd1—S22.3211 (18)
Pd1—C352.041 (6)Pd1—S12.3237 (19)
C1—Pd1—C35178.6 (3)C1—Pd1—S194.03 (17)
C1—Pd1—S285.12 (17)C35—Pd1—S185.31 (19)
C35—Pd1—S295.47 (19)S2—Pd1—S1176.52 (8)
 

Acknowledgements

Financial support for this work by the Natural Science Foundation of China is gratefully acknowledged.

References

First citationAlcock, N. W., Brown, J. M. & Jeffery, J. C. (1976). J. Chem. Soc. Dalton Trans. pp. 583–588.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J., White, P. S. & Enright, G. D. (1993). American Crystallographic Association Meeting, Pittsburgh, Abstract PA104.  Google Scholar
First citationGray, G. M., Varshney, A. & Duffey, T. H. (1995). Organometallics, 14, 238-244.  CrossRef CAS Web of Science Google Scholar
First citationHahn, F. E. & Jahnke, M. C. (2008). Angew. Chem. Int. Ed. 47, 3122–3172.  Web of Science CrossRef CAS Google Scholar
First citationHaque, M. R. & Rasmussen, M. (1994). Tetrahedron, 50, 5535–5554.  CrossRef CAS Web of Science Google Scholar
First citationHerrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.  Web of Science CrossRef CAS Google Scholar
First citationKantchev, E. A. B., O'Brien, C. J. & Organ, M. G. (2007). Angew. Chem. Int. Ed. 46, 2768–2813.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Q. X., Zhao, X. J., Wu, X. M., Guo, J. H. & Wang, X. G. (2007). J. Organomet. Chem. 692, 5671–5679.  Web of Science CrossRef CAS Google Scholar
First citationNielsen, D. J., Cavell, K. J., Skelton, B. W. & White, A. H. (2003). Inorg. Chim. Acta, 352, 143–150.  Web of Science CSD CrossRef CAS Google Scholar
First citationPedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017–7036.  CrossRef CAS Web of Science Google Scholar
First citationPowell, J., Kuksis, A., May, C. J., Nyberg, S. C. & Smith, S. J. (1981). J. Am. Chem. Soc. 103, 5941–5943.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J. W., Song, H. B., Li, Q. S., Xu, F. B. & Zhang, Z. Z. (2005). Inorg. Chim. Acta, 358, 3653–3658.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m568-m569
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds