metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m570-m571

{6,6′-Dimeth­­oxy-2,2′-[2,2-di­methyl­propane-1,3-diylbis(nitrilo­methyl­­idyne)]diphenolato}nickel(II) 1.78-hydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 16 April 2009; accepted 18 April 2009; online 25 April 2009)

In the title complex, [Ni(C21H24N2O4)]·1.78H2O, the NiII ion has a slightly distorted planar geometry, coordinated by the two N and two O atoms of the tetra­dentate Schiff base ligand, with a mean deviation of 0.272 Å from the NiN2O2 plane. The N and O donor atoms are mutually cis. The dihedral angle between two benzene rings of the ligand is 38.86 (8)°. There are also three solvent water mol­ecules, two of which lie across different crystallographic twofold rotation axes; one of these is partially occupied with a refined occupancy factor of 0.570 (7). The water mol­ecules are linked together as tetra­mers in R22(8) ring motifs, which also connect two neighbouring mol­ecules of the complex through a network of O—H⋯O hydrogen bonds. The crystal structure is further stabilized by inter­molecular C—H⋯O and C—H⋯π inter­actions, which link neighbouring mol­ecules into extended chains along the b axis. Other inter­esting features of the crystal structure are the short inter­molecular C⋯C [3.204 (3)–3.365 (3) Å] and the C⋯O [3.199 (2)–3.205 (2) Å] contacts which are shorter than the sum of the van der Waals radii of these atoms.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Clark et al. (1968[Clark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, pp. 223-226.], 1969[Clark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, pp. 823-829.], 1970[Clark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, pp. 396-399.]). For applications and bioactivity of Schiff base complexes, see: Elmali et al. (2000[Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423-424.]); Blower (1998[Blower, P. J. (1998). Transition Met. Chem. 23, 109-112.]); Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Li & Chang (1991[Li, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35-39.]); Shahrokhian et al. (2000[Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956-962.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C21H24N2O4)]·1.78H2O

  • Mr = 459.29

  • Monoclinic, C 2/c

  • a = 23.2513 (6) Å

  • b = 9.2709 (2) Å

  • c = 20.8024 (5) Å

  • β = 111.291 (1)°

  • V = 4178.12 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 100 K

  • 0.48 × 0.06 × 0.04 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.655, Tmax = 0.959

  • 19991 measured reflections

  • 6519 independent reflections

  • 4609 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.098

  • S = 1.06

  • 6519 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O2Wi 0.84 2.08 2.913 (2) 175
O2W—H1W2⋯O2 0.86 2.54 3.089 (2) 123
O2W—H1W2⋯O4 0.86 2.10 2.846 (2) 145
O2W—H2W2⋯O1 0.86 2.22 2.942 (2) 142
O2W—H2W2⋯O3 0.86 2.16 2.905 (2) 145
O3W—H1W3⋯O2Wi 0.89 2.11 2.991 (3) 169
C10—H10B⋯O2ii 0.97 2.48 3.251 (2) 136
C8—H8BCg1iii 0.97 2.57 3.370 (2) 139
C13—H13ACg1ii 0.93 2.75 3.377 (2) 125
Symmetry codes: (i) [-x, y, -z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]. Cg1 is the centroid of the C1–C6 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base complexes are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of Schiff bases have been studied extensively, and copper(II) and nickel(II) complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Blower, 1998; Granovski et al., 1993; Li & Chang, 1991; Shahrokhian et al., 2000). Tetradentate Schiff base metal complexes may form trans or cis planar or tetrahedral structures (Elmali et al., 2000).

In the title compound (Fig. 1), the NiII ion shows a slightly distorted planar geometry which is coordinated by two imine N atoms and two phenol O atoms of the tetradentate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable with the related structures (Clark et al., 1968, 1969, 1970). The dihedral angle between two benzene rings is 38.84 (9)°.

Of the three solvent water molecules, two of them lie across different crystallographic twofold rotation axes and one of them is partially occupied with a refined occupancy factor of 0.570 (7). The water molecules are linked together as tetramers in R22(8) ring motifs which also connect two neighbouring molecules of the complex. The crystal structure is further stabilized by intermolecular C—H···O and C—H···π interactions (Table 1) which link neighbouring molecules into 1-dimensional extended chains along the b-axis (Fig. 2). Other interesting features of the crystal structure are the short intermolecular C1···C8iii [3.204 (3) Å], C1···C11ii [3.364 (3) Å], C2···C8iii [3.365 (3)], C7···O1iii [3.199 (2) Å], and C11···O1ii [3.205 (2) Å] contacts (symmetry operations as in Table 1) which are shorter than the sum of the van der Waals radii of these atoms.

Related literature top

For bond-length data, see Allen et al. (1987). For related structures, see: Clark et al. (1968, 1969, 1970). For applications and bioactivity of Schiff base complexes, see: Elmali et al. (2000); Blower (1998); Granovski et al. (1993); Li & Chang (1991); Shahrokhian et al. (2000). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A chloroform solution (40 ml) of N,N'-ethylene-bis-(3-methoxy-2- hydroxysalicylaldimine) (1 mmol) was added to a methanol solution (20 ml) of NiCl2.6H2O (1.05 mmol, 237 mg). The mixture was refluxed for 30 min and then filtered. After keeping the filtrate in air, deep-green needle-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement top

The water H-atoms were located from the difference Fourier map and constrained to refine with the parent atom with the Uiso(H) = 1.5 Ueq(O). The rest of the hydrogen atoms were positioned geometrically [C—H = 0.93–0.97 Å] and refined using a riding approximation model. A rotating-group model was used for the methyl groups of the methoxy substituents.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The assymetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the b-axis, showing 1-dimensional extended chains along the b-axis. Intermolecular interactions are drawn as dashed lines.
{6,6'-Dimethoxy-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethylidyne)]diphenolato}nickel(II) 1.78-hydrate top
Crystal data top
[Ni(C21H24N2O4)]·1.78H2OF(000) = 1935
Mr = 459.29Dx = 1.460 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5799 reflections
a = 23.2513 (6) Åθ = 2.4–30.9°
b = 9.2709 (2) ŵ = 0.97 mm1
c = 20.8024 (5) ÅT = 100 K
β = 111.291 (1)°Needle, green
V = 4178.12 (17) Å30.48 × 0.06 × 0.04 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6519 independent reflections
Radiation source: fine-focus sealed tube4609 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 30.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3330
Tmin = 0.655, Tmax = 0.959k = 1313
19991 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0393P)2 + 1.0555P]
where P = (Fo2 + 2Fc2)/3
6519 reflections(Δ/σ)max = 0.001
275 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ni(C21H24N2O4)]·1.78H2OV = 4178.12 (17) Å3
Mr = 459.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.2513 (6) ŵ = 0.97 mm1
b = 9.2709 (2) ÅT = 100 K
c = 20.8024 (5) Å0.48 × 0.06 × 0.04 mm
β = 111.291 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6519 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4609 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 0.959Rint = 0.040
19991 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.06Δρmax = 0.56 e Å3
6519 reflectionsΔρmin = 0.43 e Å3
275 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.236534 (10)0.03020 (3)0.016967 (11)0.01197 (8)
O10.20185 (6)0.04173 (15)0.07256 (6)0.0141 (3)
O20.15706 (6)0.08978 (16)0.00363 (6)0.0146 (3)
O30.15150 (6)0.03871 (16)0.20732 (7)0.0198 (3)
O40.03874 (6)0.13066 (18)0.03278 (7)0.0263 (4)
N10.30718 (7)0.08539 (19)0.04015 (7)0.0126 (3)
N20.27481 (7)0.15663 (19)0.09066 (7)0.0131 (3)
C10.23268 (8)0.1077 (2)0.10589 (9)0.0128 (4)
C20.20584 (8)0.1127 (2)0.17960 (9)0.0143 (4)
C30.23389 (9)0.1867 (2)0.21739 (10)0.0184 (4)
H3A0.21620.18640.26530.022*
C40.28894 (9)0.2625 (3)0.18454 (10)0.0215 (5)
H4A0.30700.31470.21040.026*
C50.31593 (9)0.2592 (2)0.11392 (10)0.0191 (5)
H5A0.35200.31110.09200.023*
C60.28970 (8)0.1783 (2)0.07416 (9)0.0139 (4)
C70.32108 (8)0.1720 (2)0.00063 (9)0.0149 (4)
H7A0.35390.23510.01910.018*
C80.34214 (8)0.0980 (2)0.11514 (9)0.0143 (4)
H8A0.37010.17940.12350.017*
H8B0.31350.11690.13840.017*
C90.37932 (8)0.0387 (2)0.14565 (9)0.0145 (4)
C100.34240 (8)0.1725 (2)0.11110 (9)0.0151 (4)
H10A0.35590.25340.14260.018*
H10B0.35170.19510.07040.018*
C110.24663 (8)0.2501 (2)0.11465 (9)0.0136 (4)
H11A0.27130.31240.14840.016*
C120.18108 (8)0.2677 (2)0.09453 (9)0.0137 (4)
C130.15822 (9)0.3744 (2)0.12736 (9)0.0165 (4)
H13A0.18570.42900.16270.020*
C140.09596 (9)0.3987 (2)0.10780 (10)0.0185 (4)
H14A0.08150.46920.12990.022*
C150.05432 (9)0.3170 (2)0.05440 (10)0.0197 (5)
H15A0.01210.33260.04150.024*
C160.07557 (9)0.2138 (2)0.02094 (10)0.0176 (4)
C170.14009 (8)0.1858 (2)0.03968 (9)0.0140 (4)
C180.44051 (8)0.0392 (3)0.13346 (11)0.0207 (5)
H18A0.43230.03970.08480.031*
H18B0.46380.04540.15380.031*
H18C0.46370.12370.15420.031*
C190.39200 (9)0.0387 (3)0.22342 (10)0.0212 (5)
H19A0.41490.12350.24400.032*
H19B0.41550.04550.24410.032*
H19C0.35350.03790.23070.032*
C200.11522 (10)0.0671 (3)0.27807 (10)0.0265 (5)
H20A0.07700.01520.29080.040*
H20B0.10690.16860.28430.040*
H20C0.13740.03650.30660.040*
C210.02618 (9)0.1585 (3)0.05688 (11)0.0341 (6)
H21A0.04700.09640.09520.051*
H21B0.03380.25730.07120.051*
H21C0.04130.14040.02040.051*
O1W0.00000.1551 (3)0.25000.0449 (7)
H1W10.01790.10450.28490.067*
O2W0.06628 (7)0.03162 (18)0.13412 (8)0.0316 (4)
H1W20.06570.01530.09370.047*
H2W20.10220.03230.13710.047*
O3W0.00000.2322 (4)0.25000.0320 (14)0.570 (7)
H1W30.02390.18110.28600.048*0.570 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01173 (11)0.01265 (14)0.01018 (11)0.00058 (11)0.00237 (8)0.00026 (11)
O10.0139 (6)0.0158 (8)0.0120 (6)0.0011 (6)0.0038 (5)0.0010 (6)
O20.0139 (6)0.0159 (8)0.0136 (6)0.0012 (6)0.0046 (5)0.0023 (6)
O30.0219 (7)0.0210 (9)0.0112 (6)0.0054 (7)0.0001 (5)0.0023 (6)
O40.0119 (6)0.0375 (10)0.0256 (7)0.0012 (7)0.0020 (6)0.0132 (8)
N10.0132 (7)0.0132 (9)0.0104 (7)0.0018 (7)0.0029 (6)0.0011 (7)
N20.0137 (7)0.0136 (9)0.0105 (7)0.0004 (7)0.0026 (6)0.0029 (7)
C10.0146 (8)0.0109 (10)0.0133 (8)0.0031 (8)0.0057 (7)0.0002 (8)
C20.0155 (8)0.0113 (11)0.0150 (8)0.0020 (8)0.0042 (7)0.0000 (8)
C30.0231 (10)0.0193 (12)0.0135 (9)0.0021 (9)0.0073 (8)0.0020 (9)
C40.0229 (10)0.0242 (13)0.0209 (10)0.0005 (10)0.0123 (8)0.0073 (10)
C50.0144 (9)0.0224 (13)0.0210 (10)0.0031 (9)0.0070 (8)0.0004 (10)
C60.0142 (8)0.0127 (10)0.0150 (8)0.0030 (8)0.0055 (7)0.0010 (8)
C70.0120 (8)0.0144 (11)0.0173 (9)0.0009 (8)0.0042 (7)0.0008 (9)
C80.0145 (8)0.0146 (11)0.0116 (8)0.0000 (8)0.0023 (7)0.0028 (8)
C90.0140 (8)0.0145 (11)0.0132 (8)0.0025 (8)0.0029 (7)0.0002 (8)
C100.0146 (8)0.0150 (11)0.0161 (9)0.0028 (8)0.0059 (7)0.0012 (9)
C110.0183 (9)0.0116 (11)0.0101 (8)0.0026 (8)0.0044 (7)0.0020 (8)
C120.0175 (9)0.0120 (11)0.0129 (8)0.0001 (8)0.0071 (7)0.0030 (8)
C130.0226 (9)0.0129 (11)0.0149 (9)0.0025 (9)0.0078 (7)0.0007 (8)
C140.0240 (10)0.0166 (12)0.0174 (9)0.0038 (9)0.0104 (8)0.0009 (9)
C150.0156 (9)0.0258 (13)0.0188 (9)0.0040 (9)0.0076 (7)0.0013 (10)
C160.0169 (9)0.0205 (12)0.0142 (9)0.0008 (9)0.0043 (7)0.0004 (9)
C170.0164 (8)0.0131 (11)0.0131 (8)0.0020 (8)0.0061 (7)0.0043 (8)
C180.0137 (8)0.0220 (12)0.0249 (10)0.0019 (9)0.0052 (8)0.0020 (10)
C190.0222 (10)0.0235 (13)0.0149 (9)0.0025 (10)0.0033 (7)0.0007 (9)
C200.0263 (11)0.0322 (15)0.0139 (9)0.0054 (11)0.0012 (8)0.0034 (10)
C210.0135 (9)0.0545 (18)0.0291 (11)0.0012 (11)0.0016 (8)0.0149 (13)
O1W0.0409 (14)0.0342 (16)0.0516 (16)0.0000.0072 (12)0.000
O2W0.0210 (7)0.0427 (11)0.0294 (8)0.0017 (8)0.0073 (6)0.0150 (8)
O3W0.031 (2)0.023 (3)0.038 (2)0.0000.0070 (18)0.000
Geometric parameters (Å, º) top
Ni1—O21.8505 (13)C9—C191.535 (3)
Ni1—O11.8636 (13)C10—H10A0.9700
Ni1—N11.8719 (16)C10—H10B0.9700
Ni1—N21.8776 (16)C11—C121.436 (2)
O1—C11.315 (2)C11—H11A0.9300
O2—C171.313 (2)C12—C131.411 (3)
O3—C21.368 (2)C12—C171.413 (3)
O3—C201.430 (2)C13—C141.373 (3)
O4—C161.372 (2)C13—H13A0.9300
O4—C211.431 (2)C14—C151.402 (3)
N1—C71.292 (2)C14—H14A0.9300
N1—C81.479 (2)C15—C161.376 (3)
N2—C111.291 (2)C15—H15A0.9300
N2—C101.479 (2)C16—C171.430 (2)
C1—C61.409 (3)C18—H18A0.9600
C1—C21.431 (2)C18—H18B0.9600
C2—C31.373 (3)C18—H18C0.9600
C3—C41.402 (3)C19—H19A0.9600
C3—H3A0.9300C19—H19B0.9600
C4—C51.372 (3)C19—H19C0.9600
C4—H4A0.9300C20—H20A0.9600
C5—C61.409 (3)C20—H20B0.9600
C5—H5A0.9300C20—H20C0.9600
C6—C71.437 (2)C21—H21A0.9600
C7—H7A0.9300C21—H21B0.9600
C8—C91.536 (3)C21—H21C0.9600
C8—H8A0.9700O1W—H1W10.8368
C8—H8B0.9700O2W—H1W20.8598
C9—C101.531 (3)O2W—H2W20.8602
C9—C181.533 (3)O3W—H1W30.8900
O2—Ni1—O184.88 (5)C9—C10—H10A108.7
O2—Ni1—N1160.84 (7)N2—C10—H10B108.7
O1—Ni1—N194.21 (6)C9—C10—H10B108.7
O2—Ni1—N295.02 (6)H10A—C10—H10B107.6
O1—Ni1—N2160.77 (7)N2—C11—C12126.70 (18)
N1—Ni1—N292.04 (7)N2—C11—H11A116.7
C1—O1—Ni1124.91 (11)C12—C11—H11A116.7
C17—O2—Ni1127.39 (12)C13—C12—C17120.35 (17)
C2—O3—C20116.80 (15)C13—C12—C11119.01 (18)
C16—O4—C21116.83 (17)C17—C12—C11120.51 (17)
C7—N1—C8118.09 (16)C14—C13—C12120.92 (18)
C7—N1—Ni1126.32 (13)C14—C13—H13A119.5
C8—N1—Ni1114.32 (12)C12—C13—H13A119.5
C11—N2—C10117.23 (16)C13—C14—C15119.78 (19)
C11—N2—Ni1125.31 (13)C13—C14—H14A120.1
C10—N2—Ni1115.85 (12)C15—C14—H14A120.1
O1—C1—C6124.71 (16)C16—C15—C14120.34 (18)
O1—C1—C2118.08 (16)C16—C15—H15A119.8
C6—C1—C2117.18 (17)C14—C15—H15A119.8
O3—C2—C3124.56 (17)O4—C16—C15124.75 (17)
O3—C2—C1114.34 (16)O4—C16—C17113.76 (17)
C3—C2—C1121.10 (18)C15—C16—C17121.48 (18)
C2—C3—C4120.73 (18)O2—C17—C12124.81 (17)
C2—C3—H3A119.6O2—C17—C16118.05 (17)
C4—C3—H3A119.6C12—C17—C16117.11 (18)
C5—C4—C3119.49 (18)C9—C18—H18A109.5
C5—C4—H4A120.3C9—C18—H18B109.5
C3—C4—H4A120.3H18A—C18—H18B109.5
C4—C5—C6120.88 (18)C9—C18—H18C109.5
C4—C5—H5A119.6H18A—C18—H18C109.5
C6—C5—H5A119.6H18B—C18—H18C109.5
C5—C6—C1120.43 (17)C9—C19—H19A109.5
C5—C6—C7119.07 (17)C9—C19—H19B109.5
C1—C6—C7120.48 (17)H19A—C19—H19B109.5
N1—C7—C6124.96 (18)C9—C19—H19C109.5
N1—C7—H7A117.5H19A—C19—H19C109.5
C6—C7—H7A117.5H19B—C19—H19C109.5
N1—C8—C9112.44 (16)O3—C20—H20A109.5
N1—C8—H8A109.1O3—C20—H20B109.5
C9—C8—H8A109.1H20A—C20—H20B109.5
N1—C8—H8B109.1O3—C20—H20C109.5
C9—C8—H8B109.1H20A—C20—H20C109.5
H8A—C8—H8B107.8H20B—C20—H20C109.5
C10—C9—C18108.41 (16)O4—C21—H21A109.5
C10—C9—C19110.81 (16)O4—C21—H21B109.5
C18—C9—C19109.85 (15)H21A—C21—H21B109.5
C10—C9—C8109.82 (15)O4—C21—H21C109.5
C18—C9—C8110.55 (17)H21A—C21—H21C109.5
C19—C9—C8107.40 (16)H21B—C21—H21C109.5
N2—C10—C9114.23 (16)H1W2—O2W—H2W2115.6
N2—C10—H10A108.7
O2—Ni1—O1—C1179.08 (15)C8—N1—C7—C6176.88 (17)
N1—Ni1—O1—C120.13 (16)Ni1—N1—C7—C610.6 (3)
N2—Ni1—O1—C188.5 (2)C5—C6—C7—N1168.97 (19)
O1—Ni1—O2—C17162.95 (16)C1—C6—C7—N112.7 (3)
N1—Ni1—O2—C17109.0 (2)C7—N1—C8—C9116.78 (19)
N2—Ni1—O2—C172.25 (16)Ni1—N1—C8—C975.31 (16)
O2—Ni1—N1—C790.5 (2)N1—C8—C9—C1037.6 (2)
O1—Ni1—N1—C73.93 (17)N1—C8—C9—C1881.95 (19)
N2—Ni1—N1—C7157.87 (17)N1—C8—C9—C19158.22 (15)
O2—Ni1—N1—C876.3 (2)C11—N2—C10—C9123.82 (18)
O1—Ni1—N1—C8162.81 (13)Ni1—N2—C10—C969.85 (17)
N2—Ni1—N1—C835.38 (13)C18—C9—C10—N2153.78 (16)
O2—Ni1—N2—C112.15 (16)C19—C9—C10—N285.59 (19)
O1—Ni1—N2—C1186.7 (2)C8—C9—C10—N232.9 (2)
N1—Ni1—N2—C11164.32 (16)C10—N2—C11—C12170.83 (17)
O2—Ni1—N2—C10167.23 (13)Ni1—N2—C11—C125.9 (3)
O1—Ni1—N2—C1078.4 (2)N2—C11—C12—C13178.81 (18)
N1—Ni1—N2—C1030.60 (13)N2—C11—C12—C175.2 (3)
Ni1—O1—C1—C623.2 (3)C17—C12—C13—C141.4 (3)
Ni1—O1—C1—C2158.92 (14)C11—C12—C13—C14177.37 (18)
C20—O3—C2—C314.6 (3)C12—C13—C14—C150.2 (3)
C20—O3—C2—C1165.57 (18)C13—C14—C15—C160.8 (3)
O1—C1—C2—O33.8 (3)C21—O4—C16—C152.5 (3)
C6—C1—C2—O3178.18 (17)C21—O4—C16—C17176.59 (19)
O1—C1—C2—C3176.36 (18)C14—C15—C16—O4178.51 (19)
C6—C1—C2—C31.7 (3)C14—C15—C16—C170.6 (3)
O3—C2—C3—C4178.48 (19)Ni1—O2—C17—C123.2 (3)
C1—C2—C3—C41.6 (3)Ni1—O2—C17—C16178.97 (13)
C2—C3—C4—C51.9 (3)C13—C12—C17—O2176.22 (18)
C3—C4—C5—C61.3 (3)C11—C12—C17—O20.3 (3)
C4—C5—C6—C14.7 (3)C13—C12—C17—C161.6 (3)
C4—C5—C6—C7176.9 (2)C11—C12—C17—C16177.50 (18)
O1—C1—C6—C5173.11 (18)O4—C16—C17—O21.8 (3)
C2—C1—C6—C54.8 (3)C15—C16—C17—O2177.33 (18)
O1—C1—C6—C75.2 (3)O4—C16—C17—C12179.80 (17)
C2—C1—C6—C7176.85 (18)C15—C16—C17—C120.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2Wi0.842.082.913 (2)175
O2W—H1W2···O20.862.543.089 (2)123
O2W—H1W2···O40.862.102.846 (2)145
O2W—H2W2···O10.862.222.942 (2)142
O2W—H2W2···O30.862.162.905 (2)145
O3W—H1W3···O2Wi0.892.112.991 (3)169
C10—H10B···O2ii0.972.483.251 (2)136
C8—H8B···Cg1iii0.972.573.370 (2)139
C13—H13A···Cg1ii0.932.753.377 (2)125
Symmetry codes: (i) x, y, z1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Ni(C21H24N2O4)]·1.78H2O
Mr459.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)23.2513 (6), 9.2709 (2), 20.8024 (5)
β (°) 111.291 (1)
V3)4178.12 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.48 × 0.06 × 0.04
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.655, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
19991, 6519, 4609
Rint0.040
(sin θ/λ)max1)0.723
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.098, 1.06
No. of reflections6519
No. of parameters275
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.43

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2Wi0.84002.08002.913 (2)175.00
O2W—H1W2···O20.86002.54003.089 (2)123.00
O2W—H1W2···O40.86002.10002.846 (2)145.00
O2W—H2W2···O10.86002.22002.942 (2)142.00
O2W—H2W2···O30.86002.16002.905 (2)145.00
O3W—H1W3···O2Wi0.89002.11002.991 (3)169.00
C10—H10B···O2ii0.97002.48003.251 (2)136.00
C8—H8B···Cg1iii0.97002.57003.370 (2)139.00
C13—H13A···Cg1ii0.93002.75003.377 (2)125.00
Symmetry codes: (i) x, y, z1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z.
 

Footnotes

Additional correspondence author, e-mail: zsrkk@yahoo.com.

Acknowledgements

HKF, RK and CSY thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem. 23, 109–112.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, pp. 223–226.  CSD CrossRef Google Scholar
First citationClark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, pp. 823–829.  CSD CrossRef Google Scholar
First citationClark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, pp. 396–399.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationElmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationLi, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35–39.  CrossRef CAS Web of Science Google Scholar
First citationShahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956–962.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m570-m571
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds