organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1047

(E)-2-Hy­droxy­naphthalene-1-carb­al­de­hyde semicarbazone

aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, and bDepartment of Chemistry, Fuyang Normal College, Fuyang, Anhui 236041, People's Republic of China
*Correspondence e-mail: shenglq@fync.edu.cn

(Received 23 March 2009; accepted 30 March 2009; online 18 April 2009)

The title compound, C12H11N3O2, adopts an E or trans configuration with respect to the C=N bond. There is an intra­molecular O—H⋯N hydrogen bond involving the hydroxyl H atom and an N atom of the hydrazine group. In the crystal structure, mol­ecules are connected via N—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For the potential pharmacological and anti­tumor properties of hydrazones and Schiff bases, see: Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Khattab (2005[Khattab, S. N. (2005). Molecules, 10, 1218-1228.]); Kucukguzel et al. (2006[Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]). For related structures, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Zhang et al. (1999[Zhang, W.-X., Li, J., Si, S.-F., Li, J.-J., Ma, C.-Q. & Jiang, D.-H. (1999). Chin. J. Inorg. Chem. 15, 571-576.]); Xu et al. (2009[Xu, H.-J., Sheng, L.-Q., Liu, Z.-D. & Shao, S.-C. (2009). Acta Cryst. E65, o666.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11N3O2

  • Mr = 229.24

  • Monoclinic, P 21 /c

  • a = 16.091 (3) Å

  • b = 4.7350 (9) Å

  • c = 15.776 (3) Å

  • β = 114.26 (3)°

  • V = 1095.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 283 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.988, Tmax = 0.989

  • 6629 measured reflections

  • 2324 independent reflections

  • 1550 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.107

  • S = 1.05

  • 2324 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.83 2.5563 (15) 146
N2—H2⋯O2i 0.86 2.01 2.8385 (15) 163
N3—H3A⋯O1ii 0.86 2.14 2.9871 (15) 171
N3—H3B⋯O2iii 0.86 2.63 3.0957 (16) 115
Symmetry codes: (i) -x, -y+2, -z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones and Schiff bases have attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Kucukguzel et al., 2006; Khattab, 2005; Karthikeyan et al., 2006; Okabe et al., 1993). As we are interested in this field of research (Xu et al. 2009), we report herein on the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1 and geometrical parameters are given in the archived CIF. The molecule has a trans configuration about the C=N bond. There is an intramolecular O-H···N hydrogen bond involving the naphthalene hydroxyl sunstituent and atom N1 of the hydrazine group (Table 1).

In the crystal structure symmetry related molecules are connected via N-H···O hydrogen bonds so forming a three-dimensional structure (Table 1 and Fig. 2).

Related literature top

For the potential pharmacological and antitumor properties of hydrazones and Schiff bases, see: Karthikeyan et al. (2006); Khattab (2005); Kucukguzel et al. (2006). For related structures, see: Okabe et al. (1993); Zhang et al. (1999); Xu et al. (2009).

Experimental top

The ligand H2L was prepared according to the reported procedure (Zhang et al., 1999). A solution of semicarbazide hydrochloride (0.112 g, 1 mmol) in 5 ml of ethanol was added slowly to a solution of 2-hydro-1- naphthaldehyde (0.172 g,1 mmol) in 15 ml absolute ethanol, under heating and stirring. The mixture was refluxed for 3 h, then cooled to rt and left to stand in air for 5 days. Yellow block-shaped crystals were formed on slow evaporation of the solvent.

Refinement top

All the H-atoms were placed in calculated positions [O—H = 0.82 Å, N—H = 0.86 Å, C—H = 0.93 Å] and treated as riding [Uiso(H) = 1.5Ueq(parent O-atom) and = 1.2Ueq(parent C-atom and N-atom)].

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids (H-atoms have been omitted for clarity).
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis. The intra- and intermolecular hydrogen bonds are shown as dashed lines (details are given in Table 1).
(E)-2-Hydroxynaphthalene-1-carbaldehyde semicarbazone top
Crystal data top
C12H11N3O2F(000) = 480
Mr = 229.24Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 628 reflections
a = 16.091 (3) Åθ = 2.5–15°
b = 4.7350 (9) ŵ = 0.10 mm1
c = 15.776 (3) ÅT = 283 K
β = 114.26 (3)°Block, yellow
V = 1095.8 (4) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2324 independent reflections
Radiation source: fine-focus sealed tube1550 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 27.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.988, Tmax = 0.989k = 64
6629 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0607P)2]
where P = (Fo2 + 2Fc2)/3
2324 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C12H11N3O2V = 1095.8 (4) Å3
Mr = 229.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.091 (3) ŵ = 0.10 mm1
b = 4.7350 (9) ÅT = 283 K
c = 15.776 (3) Å0.20 × 0.10 × 0.10 mm
β = 114.26 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2324 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1550 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.989Rint = 0.015
6629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
2324 reflectionsΔρmin = 0.15 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23742 (8)0.2085 (3)0.15396 (8)0.0367 (3)
C20.24256 (9)0.1120 (3)0.23930 (9)0.0441 (3)
C30.30716 (10)0.0898 (3)0.29109 (10)0.0538 (4)
H3C0.30940.14970.34810.065*
C40.36618 (10)0.1978 (3)0.25859 (10)0.0530 (4)
H4A0.40890.33070.29390.064*
C50.36419 (8)0.1126 (3)0.17185 (9)0.0435 (3)
C60.42499 (10)0.2280 (3)0.13721 (11)0.0572 (4)
H6A0.46740.36220.17220.069*
C70.42258 (10)0.1462 (4)0.05361 (12)0.0623 (4)
H7A0.46340.22310.03200.075*
C80.35881 (11)0.0531 (3)0.00052 (11)0.0571 (4)
H8A0.35720.10880.05670.068*
C90.29852 (9)0.1678 (3)0.03161 (9)0.0477 (4)
H9A0.25600.29890.00530.057*
C100.29938 (8)0.0915 (3)0.11853 (9)0.0377 (3)
C110.17325 (8)0.4299 (3)0.10430 (9)0.0383 (3)
H110.17770.51850.05370.046*
C120.01922 (9)0.7854 (3)0.10281 (9)0.0405 (3)
N10.11062 (7)0.5029 (2)0.13008 (7)0.0419 (3)
N20.05492 (7)0.7251 (2)0.08591 (7)0.0447 (3)
H20.06710.82660.04730.054*
N30.04085 (8)0.6020 (3)0.15536 (8)0.0551 (4)
H3A0.08730.63330.16780.066*
H3B0.00830.45300.17650.066*
O10.18694 (7)0.2086 (2)0.27791 (7)0.0616 (3)
H10.15210.32720.24360.092*
O20.06341 (7)1.00232 (19)0.07058 (6)0.0510 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0325 (6)0.0356 (7)0.0400 (7)0.0004 (5)0.0127 (6)0.0012 (6)
C20.0426 (7)0.0456 (8)0.0445 (7)0.0005 (6)0.0183 (6)0.0036 (6)
C30.0547 (9)0.0555 (9)0.0458 (8)0.0047 (7)0.0151 (7)0.0146 (7)
C40.0425 (8)0.0467 (9)0.0575 (9)0.0073 (7)0.0080 (7)0.0094 (7)
C50.0317 (7)0.0378 (8)0.0543 (8)0.0019 (6)0.0108 (6)0.0042 (6)
C60.0386 (8)0.0501 (9)0.0765 (11)0.0066 (7)0.0172 (7)0.0063 (8)
C70.0479 (8)0.0625 (11)0.0841 (12)0.0004 (8)0.0347 (8)0.0223 (9)
C80.0560 (9)0.0636 (10)0.0593 (9)0.0035 (8)0.0313 (8)0.0097 (8)
C90.0436 (8)0.0519 (9)0.0478 (8)0.0035 (6)0.0191 (7)0.0028 (6)
C100.0313 (6)0.0356 (7)0.0438 (7)0.0040 (5)0.0131 (6)0.0052 (6)
C110.0371 (7)0.0381 (8)0.0389 (7)0.0001 (6)0.0150 (6)0.0004 (6)
C120.0416 (7)0.0368 (8)0.0434 (7)0.0014 (6)0.0177 (6)0.0071 (6)
N10.0385 (6)0.0396 (6)0.0480 (6)0.0057 (5)0.0182 (5)0.0030 (5)
N20.0428 (6)0.0401 (7)0.0560 (7)0.0097 (5)0.0250 (6)0.0108 (5)
N30.0579 (8)0.0484 (8)0.0733 (8)0.0123 (6)0.0414 (7)0.0112 (6)
O10.0642 (7)0.0759 (8)0.0575 (6)0.0184 (6)0.0378 (6)0.0190 (5)
O20.0525 (6)0.0432 (6)0.0616 (6)0.0139 (5)0.0280 (5)0.0039 (5)
Geometric parameters (Å, º) top
C1—C21.3916 (17)C8—C91.3667 (18)
C1—C101.4390 (16)C8—H8A0.9300
C1—C111.4540 (17)C9—C101.4126 (18)
C2—O11.3525 (15)C9—H9A0.9300
C2—C31.4013 (19)C11—N11.2798 (15)
C3—C41.352 (2)C11—H110.9300
C3—H3C0.9300C12—O21.2336 (14)
C4—C51.414 (2)C12—N31.3417 (16)
C4—H4A0.9300C12—N21.3554 (15)
C5—C61.4120 (19)N1—N21.3719 (14)
C5—C101.4172 (18)N2—H20.8600
C6—C71.360 (2)N3—H3A0.8600
C6—H6A0.9300N3—H3B0.8600
C7—C81.392 (2)O1—H10.8200
C7—H7A0.9300
C2—C1—C10118.31 (12)C9—C8—H8A119.7
C2—C1—C11120.31 (11)C7—C8—H8A119.7
C10—C1—C11121.34 (11)C8—C9—C10121.44 (14)
O1—C2—C1122.52 (12)C8—C9—H9A119.3
O1—C2—C3115.95 (12)C10—C9—H9A119.3
C1—C2—C3121.53 (12)C9—C10—C5117.51 (11)
C4—C3—C2120.36 (13)C9—C10—C1123.13 (12)
C4—C3—H3C119.8C5—C10—C1119.36 (11)
C2—C3—H3C119.8N1—C11—C1120.08 (11)
C3—C4—C5121.27 (13)N1—C11—H11120.0
C3—C4—H4A119.4C1—C11—H11120.0
C5—C4—H4A119.4O2—C12—N3122.80 (12)
C6—C5—C4121.35 (14)O2—C12—N2119.96 (12)
C6—C5—C10119.48 (13)N3—C12—N2117.24 (12)
C4—C5—C10119.17 (12)C11—N1—N2118.76 (10)
C7—C6—C5121.13 (15)C12—N2—N1120.39 (10)
C7—C6—H6A119.4C12—N2—H2119.8
C5—C6—H6A119.4N1—N2—H2119.8
C6—C7—C8119.79 (13)C12—N3—H3A120.0
C6—C7—H7A120.1C12—N3—H3B120.0
C8—C7—H7A120.1H3A—N3—H3B120.0
C9—C8—C7120.64 (14)C2—O1—H1109.5
C10—C1—C2—O1179.71 (12)C8—C9—C10—C1179.65 (12)
C11—C1—C2—O12.7 (2)C6—C5—C10—C90.63 (18)
C10—C1—C2—C31.2 (2)C4—C5—C10—C9179.00 (12)
C11—C1—C2—C3176.41 (13)C6—C5—C10—C1179.93 (12)
O1—C2—C3—C4179.60 (13)C4—C5—C10—C10.30 (18)
C1—C2—C3—C40.4 (2)C2—C1—C10—C9178.15 (12)
C2—C3—C4—C50.4 (2)C11—C1—C10—C94.27 (19)
C3—C4—C5—C6179.15 (13)C2—C1—C10—C51.10 (18)
C3—C4—C5—C100.5 (2)C11—C1—C10—C5176.48 (11)
C4—C5—C6—C7179.75 (13)C2—C1—C11—N112.17 (19)
C10—C5—C6—C70.1 (2)C10—C1—C11—N1170.30 (11)
C5—C6—C7—C80.5 (2)C1—C11—N1—N2175.68 (11)
C6—C7—C8—C90.0 (2)O2—C12—N2—N1172.35 (11)
C7—C8—C9—C100.8 (2)N3—C12—N2—N17.35 (18)
C8—C9—C10—C51.1 (2)C11—N1—N2—C12171.46 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.832.5563 (15)146
N2—H2···O2i0.862.012.8385 (15)163
N3—H3A···O1ii0.862.142.9871 (15)171
N3—H3B···O2iii0.862.633.0957 (16)115
Symmetry codes: (i) x, y+2, z; (ii) x, y+1/2, z+1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC12H11N3O2
Mr229.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)283
a, b, c (Å)16.091 (3), 4.7350 (9), 15.776 (3)
β (°) 114.26 (3)
V3)1095.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.988, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
6629, 2324, 1550
Rint0.015
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.107, 1.05
No. of reflections2324
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.15

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.832.5563 (15)146.2
N2—H2···O2i0.862.012.8385 (15)162.5
N3—H3A···O1ii0.862.142.9871 (15)170.6
N3—H3B···O2iii0.862.633.0957 (16)115.2
Symmetry codes: (i) x, y+2, z; (ii) x, y+1/2, z+1/2; (iii) x, y1, z.
 

Acknowledgements

This work was supported by the Key Project of Science and Technology of Anhui, People's Republic of China (grant No. 08010302218).

References

First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhattab, S. N. (2005). Molecules, 10, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science CrossRef PubMed Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationXu, H.-J., Sheng, L.-Q., Liu, Z.-D. & Shao, S.-C. (2009). Acta Cryst. E65, o666.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, W.-X., Li, J., Si, S.-F., Li, J.-J., Ma, C.-Q. & Jiang, D.-H. (1999). Chin. J. Inorg. Chem. 15, 571–576.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1047
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds