metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-[2-(Di­methyl­amino)phen­yl](2-fluoro­phen­yl)methano­lato}penta­methyl­dialuminum(III)

aState Key Laboratory of Supramolecular Structures and Materials, School of Chemistry, Jilin University, Changchun 130012, People's Republic of China, and bSchool of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: ymu@jlu.edu.cn

(Received 2 March 2009; accepted 1 April 2009; online 25 April 2009)

Each of the Al atoms in the title compound, [Al2(CH3)5(C15H15FNO)], is four-coordinated in a distorted tetra­hedral geometry. The dimethyl­aluminium centre is bound by the N and the O atoms of the (2-dimethyl­amino­phen­yl)(2-fluoro­phen­yl)methano­late ligand. The second Al atom is bound by the methano­late O atom and by three methyl C atoms. The crystal studied was a racemic twin with a 0.4 (2):0.6 (2) domain ratio.

Related literature

For organoaluminum complexes, see: Atwood & Harvey (2001[Atwood, D. A. & Harvey, M. J. (2001). Chem. Rev. 101, 37-52.]); Dechy-Cabaret et al. (2004[Dechy-Cabaret, O., Martin-Vaca, B. & Bourissou, D. (2004). Chem. Rev. 104, 6147-6176.]); Izod (2002[Izod, K. (2002). Coord. Chem. Rev. 227, 153-173.]); Linton et al. (2001[Linton, D. J., Schooler, P. & Wheatley, A. E. H. (2001). Coord. Chem. Rev. 223, 53-115.]); Liu et al. (2000[Liu, S., Munoz-Hernandez, M.-A., Wei, P. & Atwood, D. A. (2000). J. Mol. Struct. 550-551, 467-472.]); Ma et al. (2005[Ma, H., Melillo, G., Oliva, L., Spaniol, T. P. & Okuda, J. (2005). Acta Cryst. E61, m221-m222.]); Nomura et al. (2005[Nomura, N., Aoyama, T., Ishii, R. & Kondo, T. (2005). Macromolecules, 38, 5363-5366.]). For the synthesis of the ligand, see: Al-Masri et al. (2004a[Al-Masri, H. T., Sieler, J., Lönnecke, P., Blaurock, S., Domasevitch, K. & Hey-Hawkins, E. (2004a). Tetrahedron, 60, 333-339.]). For a discussion of chirality in the ligand, see: Al-Masri et al. (2004b[Al-Masri, H. T., Sieler, J., Lönnecke, P., Junk, P. C. & Hey-Hawkins, E. (2004b). Inorg. Chem. 43, 7162-7169.]).

[Scheme 1]

Experimental

Crystal data
  • [Al2(CH3)5(C15H15FNO)]

  • Mr = 373.41

  • Orthorhombic, P 21 21 21

  • a = 9.1089 (7) Å

  • b = 13.1601 (10) Å

  • c = 18.3443 (15) Å

  • V = 2199.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 295 K

  • 0.21 × 0.13 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.984

  • 12338 measured reflections

  • 4318 independent reflections

  • 3641 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.130

  • S = 1.09

  • 4318 reflections

  • 233 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organoaluminum complexes have attracted considerable attention due to their rich structural chemistry (Izod, 2002), applications in organic synthesis (Linton et al., 2001) and in catalytic chemistry (Dechy-Cabaret et al., 2004; Liu et al., 2000). A large number of ligands have been used to stabilize organoaluminum complexes and to tune the properties of their complexes. Among them, salen (Atwood & Harvey, 2001), salicylaldimine (Nomura et al., 2005) and 1,4-dithiabutanediylbis(6-tert-butyl-4-methylphenol) ligands (Ma et al., 2005) have attracted considerable attention. The aminophenylalcohol ligand, with a similar framework to the salicylaldimine ligand has been less well investigated. Herein, the structure of the title aluminium complex, (I), with the aminophenylalcohol ligand, is reported.

In the molecule of (I), Fig. 1, the Al atoms exist in different coordination environments, but with both adopting distorted tetrahedral geometries. The tetrahedral coordination around the Al1 atom involves three methyl-C atoms and the O1 atom from the deprotonated aminophenylalcohol ligand. The tetrahedral coordination around the Al2 atom involves the N1 atom and the O1 atom from the ligand and two methyl-C atoms. The (2-dimethylamino-phenyl)(2-fluoro-phenyl)methanolate ligand is therefore tridentate, bridging the two Al atoms via the O1 atom. The Al—Al separation within the dimer is 3.2631 (12) Å. The Al2—O distance (1.8165 (19) Å) is significantly shorter than the Al1—O distance (1.9199 (19) Å) because the former bond has more covalent chartacter. The six-membered chelate ring, O1/Al2/N1/C1/C6/C7, has a boat conformation with the C7 and N1 atoms occupying the apex positions. The dihedral angle between the two phenyl rings is 79.3°. Compound (I) was refined as a racemic twin.

Related literature top

For organoaluminum complexes, see: Atwood & Harvey (2001); Dechy-Cabaret et al. (2004); Izod (2002); Linton et al. (2001); Liu et al. (2000); Ma et al. (2005); Nomura et al. (2005). For the synthesis of the ligand, see: Al-Masri et al. (2004a). For a discussion of chirality in the ligand, see: Al-Masri et al. (2004b).

Experimental top

The precursor compound (2-dimethylamino-phenyl)-(2-fluoro-phenyl)methanol was synthesized according to a modified literature procedure (Al-Masri et al., 2004a). After removal of the solvent of a solution of nBuLi (79 ml, 79 mmol), N,N-dimethylaniline (10.0 ml, 79 mmol) was added at 0 °C with stirring, and the solution was slowly heated to 80 °C for 24 h, during which a yellow solid was formed. 2-FC6H4CHO (10.0 g, 79 mmol) in 40 ml of Et2O was added to the mixture at 0 °C. After stirring for 12 h, the reaction was quenched with H2O (30 ml), and the organic phase was separated, washed with brine, and dried over magnesium sulfate. The solvent was removed in vacuo to give the crude product as a yellow solid. The pure product was obtained by recrystallization from methanol as a white solid (13.9 g, 82%). The absolute configuration of the ligand could not be determined (Al-Masri et al., 2004b). AlMe3 (4.0 ml, 1.0 M in toluene, 4.0 mmol) was added to a solution of (2-dimethylamino-phenyl)-(2-fluoro-phenyl)-methanol (0.49 g, 2.0 mmol) in toluene (20 ml) at -10 °C with stirring. The solution was gently heated to 60 °C for 24 h. After removal of the solvent, the product was crystallized from hexane and the desired complex (I) as a yellow crystalline solid (0.64 g, 87%) was obtained.

Refinement top

The C-bound H atoms were positioned geometrically with C—H = 0.93 (aromatic), 0.98 (methine) and 0.96 (methyl) Å, and allowed to ride on their parent atoms in the riding model approximation with Uiso(H) = 1.2 (1.5 for methyl) Ueq(C). The crystal studied was a racemic twin with a 0.4 (2):0.6 (2) domain ratio.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for reasons of clarity.
[Figure 2] Fig. 2. The formation of the title compound.
{µ-[2-(Dimethylamino)phenyl](2- fluorophenyl)methanolato}pentamethyldialuminum(III) top
Crystal data top
[Al2(CH3)5(C15H15FNO)]Dx = 1.128 Mg m3
Mr = 373.41Melting point: not measured K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4318 reflections
a = 9.1089 (7) Åθ = 1.9–26.4°
b = 13.1601 (10) ŵ = 0.15 mm1
c = 18.3443 (15) ÅT = 295 K
V = 2199.0 (3) Å3Block, yellow
Z = 40.21 × 0.13 × 0.11 mm
F(000) = 800
Data collection top
Bruker SMART CCD area-detector
diffractometer
4318 independent reflections
Radiation source: fine-focus sealed tube3641 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 9.00 cm pixels mm-1θmax = 26.0°, θmin = 1.9°
ϕ and ω scansh = 911
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1613
Tmin = 0.970, Tmax = 0.984l = 2222
12338 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0726P)2]
where P = (Fo2 + 2Fc2)/3
4318 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
[Al2(CH3)5(C15H15FNO)]V = 2199.0 (3) Å3
Mr = 373.41Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.1089 (7) ŵ = 0.15 mm1
b = 13.1601 (10) ÅT = 295 K
c = 18.3443 (15) Å0.21 × 0.13 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4318 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3641 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.984Rint = 0.039
12338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.09Δρmax = 0.65 e Å3
4318 reflectionsΔρmin = 0.17 e Å3
233 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al11.10860 (9)0.46062 (7)0.20698 (4)0.0355 (2)
Al20.88654 (11)0.37629 (6)0.08119 (5)0.0394 (2)
C10.7128 (3)0.5518 (2)0.04877 (15)0.0376 (6)
C20.6729 (4)0.6132 (3)0.00967 (18)0.0564 (9)
H20.63120.58390.05090.068*
C30.6939 (5)0.7156 (3)0.00766 (19)0.0622 (11)
H30.66590.75550.04710.075*
C40.7561 (5)0.7600 (3)0.05242 (19)0.0570 (10)
H40.77240.82980.05350.068*
C50.7942 (4)0.7009 (2)0.11100 (17)0.0433 (7)
H50.83600.73150.15170.052*
C60.7722 (3)0.5967 (2)0.11129 (15)0.0349 (6)
C70.8237 (3)0.5385 (2)0.17944 (14)0.0312 (6)
H70.88300.58650.20770.037*
C80.7058 (3)0.4993 (2)0.23137 (14)0.0326 (6)
C90.5929 (3)0.5616 (2)0.25606 (15)0.0376 (7)
C100.4867 (3)0.5293 (3)0.30503 (17)0.0490 (8)
H100.41270.57320.32000.059*
C110.4926 (4)0.4320 (3)0.33089 (18)0.0519 (9)
H110.42110.40920.36310.062*
C120.6030 (4)0.3679 (3)0.30967 (17)0.0492 (8)
H120.60750.30220.32810.059*
C130.7082 (3)0.4015 (2)0.26058 (16)0.0391 (7)
H130.78270.35730.24670.047*
C140.5573 (4)0.4087 (3)0.0817 (2)0.0515 (8)
H14A0.55750.43220.13120.077*
H14B0.54980.33590.08100.077*
H14C0.47520.43760.05630.077*
C150.6867 (5)0.4024 (3)0.03245 (18)0.0603 (10)
H15A0.59210.41940.05200.090*
H15B0.69910.32990.03300.090*
H15C0.76200.43340.06150.090*
C161.0316 (4)0.4098 (3)0.00634 (19)0.0651 (11)
H16A1.01770.47880.00930.098*
H16B1.01970.36500.03450.098*
H16C1.12860.40210.02610.098*
C170.8374 (5)0.2368 (2)0.1079 (2)0.0615 (10)
H17A0.91300.20960.13870.092*
H17B0.82960.19620.06460.092*
H17C0.74550.23600.13340.092*
C181.1997 (4)0.3299 (3)0.17878 (19)0.0558 (9)
H18A1.13760.27490.19380.084*
H18B1.29370.32360.20200.084*
H18C1.21210.32790.12680.084*
C191.0612 (3)0.4677 (3)0.31239 (15)0.0426 (7)
H19A0.99690.52430.32120.064*
H19B1.15000.47640.33980.064*
H19C1.01360.40600.32720.064*
C201.1980 (4)0.5841 (3)0.1655 (2)0.0576 (10)
H20A1.18740.58330.11340.086*
H20B1.30040.58620.17790.086*
H20C1.14980.64300.18500.086*
F10.5848 (2)0.65789 (13)0.23063 (10)0.0526 (5)
N10.6977 (3)0.4407 (2)0.04485 (13)0.0419 (6)
O10.92059 (19)0.45697 (14)0.15974 (9)0.0319 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0302 (4)0.0426 (5)0.0336 (4)0.0007 (4)0.0021 (4)0.0045 (3)
Al20.0461 (5)0.0358 (5)0.0363 (4)0.0089 (4)0.0048 (4)0.0070 (3)
C10.0364 (15)0.0405 (17)0.0358 (14)0.0091 (14)0.0039 (12)0.0024 (12)
C20.064 (2)0.064 (2)0.0409 (17)0.013 (2)0.0107 (16)0.0046 (15)
C30.086 (3)0.052 (2)0.049 (2)0.018 (2)0.004 (2)0.0183 (17)
C40.078 (3)0.0336 (18)0.059 (2)0.0099 (18)0.0115 (19)0.0106 (15)
C50.0482 (19)0.0369 (17)0.0449 (16)0.0039 (15)0.0052 (15)0.0023 (13)
C60.0342 (15)0.0350 (16)0.0355 (14)0.0051 (13)0.0041 (12)0.0003 (12)
C70.0328 (14)0.0279 (13)0.0331 (13)0.0020 (12)0.0032 (11)0.0063 (11)
C80.0262 (15)0.0406 (15)0.0311 (13)0.0002 (12)0.0038 (11)0.0040 (11)
C90.0395 (17)0.0361 (16)0.0371 (14)0.0012 (14)0.0048 (14)0.0040 (12)
C100.0313 (16)0.067 (2)0.0489 (18)0.0017 (16)0.0049 (14)0.0135 (17)
C110.0396 (18)0.069 (2)0.0469 (18)0.0107 (17)0.0071 (15)0.0043 (17)
C120.052 (2)0.0467 (18)0.0488 (18)0.0114 (17)0.0033 (16)0.0061 (13)
C130.0352 (16)0.0389 (17)0.0433 (16)0.0003 (13)0.0017 (13)0.0010 (13)
C140.0427 (18)0.051 (2)0.061 (2)0.0049 (15)0.0136 (16)0.0063 (16)
C150.071 (3)0.066 (2)0.0437 (18)0.009 (2)0.0214 (18)0.0159 (16)
C160.063 (2)0.093 (3)0.0397 (18)0.023 (2)0.0042 (17)0.0035 (19)
C170.074 (3)0.0376 (19)0.073 (2)0.0052 (17)0.020 (2)0.0111 (16)
C180.049 (2)0.068 (2)0.0507 (19)0.0196 (18)0.0025 (16)0.0013 (17)
C190.0427 (17)0.0503 (19)0.0349 (15)0.0009 (15)0.0037 (12)0.0006 (13)
C200.047 (2)0.062 (2)0.063 (2)0.0124 (18)0.0082 (17)0.0220 (18)
F10.0529 (12)0.0404 (10)0.0646 (11)0.0095 (8)0.0089 (10)0.0038 (8)
N10.0441 (15)0.0428 (15)0.0387 (13)0.0033 (12)0.0117 (12)0.0068 (11)
O10.0298 (10)0.0329 (10)0.0331 (9)0.0040 (8)0.0009 (7)0.0037 (7)
Geometric parameters (Å, º) top
Al1—O11.9200 (19)C11—C121.369 (5)
Al1—C201.971 (3)C11—H110.9300
Al1—C181.978 (3)C12—C131.387 (4)
Al1—C191.984 (3)C12—H120.9300
Al2—O11.8165 (19)C13—H130.9300
Al2—C171.952 (4)C14—N11.506 (4)
Al2—C161.956 (4)C14—H14A0.9600
Al2—N12.030 (3)C14—H14B0.9600
C1—C21.391 (4)C14—H14C0.9600
C1—C61.399 (4)C15—N11.508 (4)
C1—N11.471 (4)C15—H15A0.9600
C2—C31.361 (5)C15—H15B0.9600
C2—H20.9300C15—H15C0.9600
C3—C41.370 (5)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.372 (4)C16—H16C0.9600
C4—H40.9300C17—H17A0.9600
C5—C61.386 (4)C17—H17B0.9600
C5—H50.9300C17—H17C0.9600
C6—C71.540 (4)C18—H18A0.9600
C7—O11.435 (3)C18—H18B0.9600
C7—C81.525 (4)C18—H18C0.9600
C7—H70.9800C19—H19A0.9600
C8—C91.391 (4)C19—H19B0.9600
C8—C131.395 (4)C19—H19C0.9600
C9—F11.352 (3)C20—H20A0.9600
C9—C101.387 (4)C20—H20B0.9600
C10—C111.366 (5)C20—H20C0.9600
C10—H100.9300
O1—Al1—C20102.42 (12)C8—C13—H13118.9
O1—Al1—C18103.56 (13)N1—C14—H14A109.5
C20—Al1—C18116.26 (16)N1—C14—H14B109.5
O1—Al1—C19104.29 (11)H14A—C14—H14B109.5
C20—Al1—C19115.31 (16)N1—C14—H14C109.5
C18—Al1—C19112.79 (14)H14A—C14—H14C109.5
O1—Al2—C17112.96 (14)H14B—C14—H14C109.5
O1—Al2—C16108.04 (14)N1—C15—H15A109.5
C17—Al2—C16122.89 (17)N1—C15—H15B109.5
O1—Al2—N199.28 (10)H15A—C15—H15B109.5
C17—Al2—N1106.28 (15)N1—C15—H15C109.5
C16—Al2—N1104.34 (14)H15A—C15—H15C109.5
C2—C1—C6119.1 (3)H15B—C15—H15C109.5
C2—C1—N1121.1 (3)Al2—C16—H16A109.5
C6—C1—N1119.8 (2)Al2—C16—H16B109.5
C3—C2—C1121.2 (3)H16A—C16—H16B109.5
C3—C2—H2119.4Al2—C16—H16C109.5
C1—C2—H2119.4H16A—C16—H16C109.5
C2—C3—C4120.2 (3)H16B—C16—H16C109.5
C2—C3—H3119.9Al2—C17—H17A109.5
C4—C3—H3119.9Al2—C17—H17B109.5
C3—C4—C5119.5 (3)H17A—C17—H17B109.5
C3—C4—H4120.2Al2—C17—H17C109.5
C5—C4—H4120.2H17A—C17—H17C109.5
C4—C5—C6121.9 (3)H17B—C17—H17C109.5
C4—C5—H5119.1Al1—C18—H18A109.5
C6—C5—H5119.1Al1—C18—H18B109.5
C5—C6—C1118.1 (3)H18A—C18—H18B109.5
C5—C6—C7116.8 (3)Al1—C18—H18C109.5
C1—C6—C7125.0 (2)H18A—C18—H18C109.5
O1—C7—C8109.7 (2)H18B—C18—H18C109.5
O1—C7—C6110.8 (2)Al1—C19—H19A109.5
C8—C7—C6117.5 (2)Al1—C19—H19B109.5
O1—C7—H7106.0H19A—C19—H19B109.5
C8—C7—H7106.0Al1—C19—H19C109.5
C6—C7—H7106.0H19A—C19—H19C109.5
C9—C8—C13115.5 (3)H19B—C19—H19C109.5
C9—C8—C7121.7 (2)Al1—C20—H20A109.5
C13—C8—C7122.7 (2)Al1—C20—H20B109.5
F1—C9—C10118.2 (3)H20A—C20—H20B109.5
F1—C9—C8118.7 (3)Al1—C20—H20C109.5
C10—C9—C8123.1 (3)H20A—C20—H20C109.5
C11—C10—C9119.0 (3)H20B—C20—H20C109.5
C11—C10—H10120.5C1—N1—C14109.6 (2)
C9—C10—H10120.5C1—N1—C15112.6 (2)
C10—C11—C12120.5 (3)C14—N1—C15105.8 (3)
C10—C11—H11119.8C1—N1—Al2108.64 (17)
C12—C11—H11119.8C14—N1—Al2117.10 (19)
C11—C12—C13119.7 (3)C15—N1—Al2103.0 (2)
C11—C12—H12120.1C7—O1—Al2122.10 (15)
C13—C12—H12120.1C7—O1—Al1114.61 (15)
C12—C13—C8122.2 (3)Al2—O1—Al1121.66 (10)
C12—C13—H13118.9

Experimental details

Crystal data
Chemical formula[Al2(CH3)5(C15H15FNO)]
Mr373.41
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)9.1089 (7), 13.1601 (10), 18.3443 (15)
V3)2199.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.21 × 0.13 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.970, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
12338, 4318, 3641
Rint0.039
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.130, 1.09
No. of reflections4318
No. of parameters233
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.17

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the National Natural Science Foundation of China (grant Nos. 20772044 and 20674024).

References

First citationAl-Masri, H. T., Sieler, J., Lönnecke, P., Blaurock, S., Domasevitch, K. & Hey-Hawkins, E. (2004a). Tetrahedron, 60, 333–339.  Web of Science CSD CrossRef CAS Google Scholar
First citationAl-Masri, H. T., Sieler, J., Lönnecke, P., Junk, P. C. & Hey-Hawkins, E. (2004b). Inorg. Chem. 43, 7162–7169.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAtwood, D. A. & Harvey, M. J. (2001). Chem. Rev. 101, 37–52.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDechy-Cabaret, O., Martin-Vaca, B. & Bourissou, D. (2004). Chem. Rev. 104, 6147–6176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIzod, K. (2002). Coord. Chem. Rev. 227, 153–173.  Web of Science CrossRef CAS Google Scholar
First citationLinton, D. J., Schooler, P. & Wheatley, A. E. H. (2001). Coord. Chem. Rev. 223, 53–115.  Web of Science CrossRef CAS Google Scholar
First citationLiu, S., Munoz-Hernandez, M.-A., Wei, P. & Atwood, D. A. (2000). J. Mol. Struct. 550–551, 467–472.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, H., Melillo, G., Oliva, L., Spaniol, T. P. & Okuda, J. (2005). Acta Cryst. E61, m221–m222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNomura, N., Aoyama, T., Ishii, R. & Kondo, T. (2005). Macromolecules, 38, 5363–5366.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds