organic compounds
2-Chloro-N-(3-chlorophenyl)acetamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com
The N—H bond in the title compound, C8H7Cl2NO, is anti to the meta-chloro substituent in the aromatic ring in both independent molecules comprising the The C=O bond is anti to the N—H bond and is also anti to the methylene H atoms. Intermolecular N—H⋯O hydrogen bonds link the molecules into supramolecular chains.
Related literature
For preparation and characterisation of the compound, see: Pies et al. (1971), Gowda et al. (2006). For related structures, see: Gowda et al. (2008a,b,c).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809011660/tk2407sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809011660/tk2407Isup2.hkl
Compound (I) was prepared according to the literature method (Gowda et al., 2006). The purity of (I) was checked by determining its melting point and characterised by recording its infrared, NMR and NQR spectra (Gowda et al., 2006 & Pies et al., 1971). Single crystals of (I) were obtained from an ethanolic solution held at room temperature.
The H atoms were positioned with idealised geometry using a riding model with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and were refined with isotropic displacement parameters set to 1.2 x Ueq(C).
Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell
CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C8H7Cl2NO | F(000) = 832 |
Mr = 204.05 | Dx = 1.483 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2170 reflections |
a = 4.897 (1) Å | θ = 2.2–27.3° |
b = 17.379 (3) Å | µ = 0.66 mm−1 |
c = 21.484 (4) Å | T = 299 K |
V = 1828.4 (6) Å3 | Needle, colourless |
Z = 8 | 0.45 × 0.08 × 0.02 mm |
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector | 3179 independent reflections |
Radiation source: fine-focus sealed tube | 1745 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.074 |
Rotation method data acquisition using ω and ϕ scans | θmax = 25.3°, θmin = 2.2° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | h = −5→5 |
Tmin = 0.756, Tmax = 0.987 | k = −20→20 |
10213 measured reflections | l = −25→23 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.094 | H-atom parameters constrained |
wR(F2) = 0.103 | w = 1/[σ2(Fo2) + (0.0084P)2 + 1.6742P] where P = (Fo2 + 2Fc2)/3 |
S = 1.23 | (Δ/σ)max = 0.005 |
3179 reflections | Δρmax = 0.36 e Å−3 |
217 parameters | Δρmin = −0.23 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1206 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.04 (13) |
C8H7Cl2NO | V = 1828.4 (6) Å3 |
Mr = 204.05 | Z = 8 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 4.897 (1) Å | µ = 0.66 mm−1 |
b = 17.379 (3) Å | T = 299 K |
c = 21.484 (4) Å | 0.45 × 0.08 × 0.02 mm |
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector | 3179 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 1745 reflections with I > 2σ(I) |
Tmin = 0.756, Tmax = 0.987 | Rint = 0.074 |
10213 measured reflections |
R[F2 > 2σ(F2)] = 0.094 | H-atom parameters constrained |
wR(F2) = 0.103 | Δρmax = 0.36 e Å−3 |
S = 1.23 | Δρmin = −0.23 e Å−3 |
3179 reflections | Absolute structure: Flack (1983), 1206 Friedel pairs |
217 parameters | Absolute structure parameter: 0.04 (13) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.6906 (6) | 0.02452 (11) | −0.05228 (9) | 0.1205 (10) | |
Cl2 | −0.0094 (4) | 0.03432 (10) | 0.27874 (9) | 0.0775 (6) | |
O1 | 0.3155 (10) | 0.0159 (2) | 0.16486 (19) | 0.0612 (14) | |
N1 | 0.5179 (11) | 0.1333 (3) | 0.1663 (2) | 0.0466 (14) | |
H1N | 0.5335 | 0.1741 | 0.1887 | 0.056* | |
C1 | 0.6654 (15) | 0.1331 (3) | 0.1102 (3) | 0.0429 (17) | |
C2 | 0.6148 (14) | 0.0817 (3) | 0.0628 (3) | 0.052 (2) | |
H2 | 0.4813 | 0.0441 | 0.0673 | 0.063* | |
C3 | 0.7641 (19) | 0.0868 (4) | 0.0088 (3) | 0.065 (2) | |
C4 | 0.9656 (17) | 0.1404 (5) | 0.0005 (4) | 0.071 (2) | |
H4 | 1.0676 | 0.1422 | −0.0360 | 0.086* | |
C5 | 1.0113 (16) | 0.1917 (5) | 0.0482 (4) | 0.076 (2) | |
H5 | 1.1442 | 0.2295 | 0.0436 | 0.091* | |
C6 | 0.8643 (15) | 0.1880 (4) | 0.1025 (3) | 0.059 (2) | |
H6 | 0.8996 | 0.2229 | 0.1343 | 0.071* | |
C7 | 0.3544 (15) | 0.0775 (4) | 0.1898 (3) | 0.0451 (18) | |
C8 | 0.2235 (15) | 0.1014 (3) | 0.2507 (3) | 0.062 (2) | |
H8A | 0.1310 | 0.1502 | 0.2449 | 0.074* | |
H8B | 0.3655 | 0.1089 | 0.2816 | 0.074* | |
Cl3 | 0.3476 (5) | 0.13531 (10) | 0.41715 (9) | 0.0882 (7) | |
Cl4 | −0.7058 (4) | 0.32439 (10) | 0.17867 (9) | 0.0819 (7) | |
O2 | −0.2983 (9) | 0.2490 (2) | 0.25851 (18) | 0.0523 (12) | |
N2 | −0.1818 (11) | 0.3561 (2) | 0.3135 (2) | 0.0484 (14) | |
H2N | −0.2216 | 0.4041 | 0.3169 | 0.058* | |
C9 | 0.0161 (13) | 0.3283 (4) | 0.3558 (3) | 0.0400 (16) | |
C10 | 0.0721 (13) | 0.2514 (4) | 0.3645 (3) | 0.0468 (18) | |
H10 | −0.0243 | 0.2138 | 0.3430 | 0.056* | |
C11 | 0.2759 (15) | 0.2317 (4) | 0.4062 (3) | 0.0484 (19) | |
C12 | 0.4158 (14) | 0.2849 (4) | 0.4398 (3) | 0.058 (2) | |
H12 | 0.5517 | 0.2702 | 0.4676 | 0.069* | |
C13 | 0.3504 (17) | 0.3615 (4) | 0.4315 (3) | 0.069 (2) | |
H13 | 0.4408 | 0.3989 | 0.4547 | 0.083* | |
C14 | 0.1548 (16) | 0.3833 (4) | 0.3897 (3) | 0.057 (2) | |
H14 | 0.1150 | 0.4351 | 0.3841 | 0.068* | |
C15 | −0.3165 (14) | 0.3176 (4) | 0.2684 (3) | 0.0442 (16) | |
C16 | −0.4892 (14) | 0.3714 (3) | 0.2297 (3) | 0.0599 (19) | |
H16A | −0.3697 | 0.4050 | 0.2061 | 0.072* | |
H16B | −0.5973 | 0.4033 | 0.2573 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.221 (3) | 0.0728 (13) | 0.0674 (14) | −0.0099 (18) | 0.0240 (19) | −0.0174 (12) |
Cl2 | 0.0703 (15) | 0.0686 (12) | 0.0935 (15) | −0.0124 (13) | 0.0192 (14) | 0.0007 (12) |
O1 | 0.089 (4) | 0.030 (2) | 0.064 (3) | −0.017 (3) | 0.007 (3) | −0.011 (2) |
N1 | 0.060 (4) | 0.031 (3) | 0.049 (4) | −0.009 (3) | 0.001 (3) | −0.008 (3) |
C1 | 0.051 (5) | 0.031 (4) | 0.046 (4) | 0.005 (4) | −0.001 (4) | 0.000 (4) |
C2 | 0.058 (6) | 0.041 (4) | 0.058 (5) | 0.005 (4) | 0.005 (4) | 0.006 (4) |
C3 | 0.090 (7) | 0.044 (4) | 0.061 (5) | 0.005 (5) | 0.003 (5) | 0.008 (4) |
C4 | 0.071 (6) | 0.083 (6) | 0.061 (6) | 0.019 (6) | 0.012 (5) | 0.013 (5) |
C5 | 0.055 (6) | 0.094 (7) | 0.080 (6) | −0.016 (5) | 0.007 (6) | 0.022 (6) |
C6 | 0.047 (5) | 0.063 (5) | 0.069 (6) | −0.011 (5) | −0.015 (5) | 0.004 (4) |
C7 | 0.050 (5) | 0.034 (4) | 0.051 (4) | −0.001 (4) | −0.012 (4) | 0.000 (4) |
C8 | 0.079 (6) | 0.047 (4) | 0.059 (5) | −0.008 (4) | 0.013 (5) | −0.007 (3) |
Cl3 | 0.125 (2) | 0.0597 (12) | 0.0799 (14) | 0.0279 (14) | −0.0236 (14) | 0.0066 (11) |
Cl4 | 0.0896 (16) | 0.0693 (12) | 0.0869 (14) | 0.0000 (13) | −0.0394 (13) | −0.0053 (11) |
O2 | 0.061 (3) | 0.032 (2) | 0.064 (3) | 0.006 (3) | −0.012 (3) | −0.009 (2) |
N2 | 0.056 (4) | 0.031 (3) | 0.058 (4) | 0.007 (3) | −0.009 (3) | −0.013 (3) |
C9 | 0.037 (4) | 0.043 (4) | 0.040 (4) | 0.000 (4) | −0.004 (4) | −0.006 (4) |
C10 | 0.053 (5) | 0.035 (4) | 0.052 (4) | −0.003 (4) | 0.002 (4) | −0.001 (3) |
C11 | 0.055 (5) | 0.050 (4) | 0.040 (4) | 0.012 (4) | 0.004 (4) | 0.005 (3) |
C12 | 0.049 (6) | 0.073 (5) | 0.051 (5) | 0.000 (4) | −0.007 (4) | −0.003 (4) |
C13 | 0.079 (6) | 0.061 (5) | 0.066 (6) | −0.007 (5) | −0.011 (5) | −0.016 (4) |
C14 | 0.067 (6) | 0.049 (4) | 0.055 (5) | 0.007 (5) | −0.009 (4) | −0.006 (4) |
C15 | 0.046 (4) | 0.040 (4) | 0.047 (4) | 0.010 (4) | −0.004 (4) | −0.001 (4) |
C16 | 0.059 (5) | 0.050 (4) | 0.071 (5) | −0.001 (4) | −0.029 (5) | −0.011 (4) |
Cl1—C3 | 1.739 (7) | Cl3—C11 | 1.728 (6) |
Cl2—C8 | 1.738 (6) | Cl4—C16 | 1.730 (6) |
O1—C7 | 1.212 (6) | O2—C15 | 1.215 (6) |
N1—C7 | 1.354 (7) | N2—C15 | 1.349 (7) |
N1—C1 | 1.406 (7) | N2—C9 | 1.415 (7) |
N1—H1N | 0.8600 | N2—H2N | 0.8600 |
C1—C6 | 1.373 (8) | C9—C10 | 1.376 (7) |
C1—C2 | 1.376 (7) | C9—C14 | 1.380 (8) |
C2—C3 | 1.375 (8) | C10—C11 | 1.384 (8) |
C2—H2 | 0.9300 | C10—H10 | 0.9300 |
C3—C4 | 1.369 (9) | C11—C12 | 1.359 (8) |
C4—C5 | 1.376 (9) | C12—C13 | 1.381 (8) |
C4—H4 | 0.9300 | C12—H12 | 0.9300 |
C5—C6 | 1.373 (9) | C13—C14 | 1.366 (8) |
C5—H5 | 0.9300 | C13—H13 | 0.9300 |
C6—H6 | 0.9300 | C14—H14 | 0.9300 |
C7—C8 | 1.516 (8) | C15—C16 | 1.510 (8) |
C8—H8A | 0.9700 | C16—H16A | 0.9700 |
C8—H8B | 0.9700 | C16—H16B | 0.9700 |
C7—N1—C1 | 128.4 (5) | C15—N2—C9 | 128.9 (5) |
C7—N1—H1N | 115.8 | C15—N2—H2N | 115.6 |
C1—N1—H1N | 115.8 | C9—N2—H2N | 115.6 |
C6—C1—C2 | 119.3 (6) | C10—C9—C14 | 120.2 (6) |
C6—C1—N1 | 117.8 (6) | C10—C9—N2 | 123.7 (6) |
C2—C1—N1 | 122.9 (7) | C14—C9—N2 | 116.1 (6) |
C1—C2—C3 | 119.1 (7) | C9—C10—C11 | 118.1 (6) |
C1—C2—H2 | 120.5 | C9—C10—H10 | 120.9 |
C3—C2—H2 | 120.5 | C11—C10—H10 | 120.9 |
C4—C3—C2 | 122.5 (7) | C12—C11—C10 | 122.6 (6) |
C4—C3—Cl1 | 118.3 (7) | C12—C11—Cl3 | 119.0 (6) |
C2—C3—Cl1 | 119.1 (7) | C10—C11—Cl3 | 118.3 (6) |
C3—C4—C5 | 117.4 (8) | C11—C12—C13 | 118.1 (7) |
C3—C4—H4 | 121.3 | C11—C12—H12 | 121.0 |
C5—C4—H4 | 121.3 | C13—C12—H12 | 121.0 |
C6—C5—C4 | 121.2 (8) | C14—C13—C12 | 120.9 (7) |
C6—C5—H5 | 119.4 | C14—C13—H13 | 119.5 |
C4—C5—H5 | 119.4 | C12—C13—H13 | 119.5 |
C5—C6—C1 | 120.4 (7) | C13—C14—C9 | 120.0 (7) |
C5—C6—H6 | 119.8 | C13—C14—H14 | 120.0 |
C1—C6—H6 | 119.8 | C9—C14—H14 | 120.0 |
O1—C7—N1 | 124.1 (6) | O2—C15—N2 | 125.2 (6) |
O1—C7—C8 | 123.8 (6) | O2—C15—C16 | 123.5 (6) |
N1—C7—C8 | 112.1 (5) | N2—C15—C16 | 111.3 (5) |
C7—C8—Cl2 | 113.2 (4) | C15—C16—Cl4 | 113.6 (4) |
C7—C8—H8A | 108.9 | C15—C16—H16A | 108.8 |
Cl2—C8—H8A | 108.9 | Cl4—C16—H16A | 108.8 |
C7—C8—H8B | 108.9 | C15—C16—H16B | 108.8 |
Cl2—C8—H8B | 108.9 | Cl4—C16—H16B | 108.8 |
H8A—C8—H8B | 107.8 | H16A—C16—H16B | 107.7 |
C7—N1—C1—C6 | −165.6 (6) | C15—N2—C9—C10 | −11.4 (10) |
C7—N1—C1—C2 | 15.7 (10) | C15—N2—C9—C14 | 169.1 (6) |
C6—C1—C2—C3 | −0.3 (9) | C14—C9—C10—C11 | −2.2 (9) |
N1—C1—C2—C3 | 178.4 (6) | N2—C9—C10—C11 | 178.3 (5) |
C1—C2—C3—C4 | 1.1 (10) | C9—C10—C11—C12 | 1.9 (9) |
C1—C2—C3—Cl1 | −177.3 (5) | C9—C10—C11—Cl3 | −179.8 (5) |
C2—C3—C4—C5 | −1.6 (11) | C10—C11—C12—C13 | −0.1 (10) |
Cl1—C3—C4—C5 | 176.8 (6) | Cl3—C11—C12—C13 | −178.4 (5) |
C3—C4—C5—C6 | 1.3 (11) | C11—C12—C13—C14 | −1.4 (11) |
C4—C5—C6—C1 | −0.6 (11) | C12—C13—C14—C9 | 1.1 (11) |
C2—C1—C6—C5 | 0.0 (10) | C10—C9—C14—C13 | 0.7 (10) |
N1—C1—C6—C5 | −178.7 (6) | N2—C9—C14—C13 | −179.7 (6) |
C1—N1—C7—O1 | 1.8 (10) | C9—N2—C15—O2 | 3.9 (11) |
C1—N1—C7—C8 | −177.8 (6) | C9—N2—C15—C16 | −174.2 (5) |
O1—C7—C8—Cl2 | −4.6 (9) | O2—C15—C16—Cl4 | 10.9 (9) |
N1—C7—C8—Cl2 | 175.0 (4) | N2—C15—C16—Cl4 | −170.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.86 | 2.15 | 2.962 (6) | 157 |
N2—H2N···O1ii | 0.86 | 2.04 | 2.892 (6) | 174 |
Symmetry codes: (i) x+1, y, z; (ii) −x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C8H7Cl2NO |
Mr | 204.05 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 299 |
a, b, c (Å) | 4.897 (1), 17.379 (3), 21.484 (4) |
V (Å3) | 1828.4 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.66 |
Crystal size (mm) | 0.45 × 0.08 × 0.02 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.756, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10213, 3179, 1745 |
Rint | 0.074 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.094, 0.103, 1.23 |
No. of reflections | 3179 |
No. of parameters | 217 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.23 |
Absolute structure | Flack (1983), 1206 Friedel pairs |
Absolute structure parameter | 0.04 (13) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.86 | 2.15 | 2.962 (6) | 157 |
N2—H2N···O1ii | 0.86 | 2.04 | 2.892 (6) | 174 |
Symmetry codes: (i) x+1, y, z; (ii) −x, y+1/2, −z+1/2. |
References
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2008a). Acta Cryst. E64, o381. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2008b). Acta Cryst. E64, o419. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595–599. CAS Google Scholar
Gowda, B. T., Svoboda, I., Foro, S., Dou, S. & Fuess, H. (2008c). Acta Cryst. E64, o208. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany. Google Scholar
Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany. Google Scholar
Pies, W., Rager, H. & Weiss, A. (1971). Org. Magn. Reson. 3, 147–176. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of a study of the effect of ring and side-chain substitutions on the solid-state geometry of aromatic amides (Gowda et al., 2008a, b, c), in the present work the structure of 2-chloro-N-(3-chlorophenyl)acetamide (I) has been determined. The N—H bond is anti to the meta-chloro substituent in the aromatic ring (Fig. 1), similar to that observed in N-(3-chlorophenyl)acetamide (Gowda et al., 2008a), but in contrast to the syn conformations observed with respect to the meta-methyl group in 2-chloro-N-(3-methylphenyl)acetamide (Gowda et al., 2008c) and with respect to both chloro substituents in 2-chloro-N-(2,3-dichlorophenyl)acetamide (Gowda et al., 2008b). Further, the C=O bond is not only anti to the N—H bond but also to the methylene-H-atoms. The asymmetric unit of the structure contains two molecules that are orthogonal to each other. The molecules in (I) are linked into infinite chains through intermolecular N1—H1···O2 and N2—H2—O1 hydrogen bonding (Table 1) as viewed down the a-axis (Fig. 2).