organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,3-Di­methyl­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com

(Received 30 March 2009; accepted 31 March 2009; online 8 April 2009)

The conformation of the N—H bond in the structure of the title compound, C10H13NO, is syn to both the 2- and 3-methyl substituents on the aromatic ring, and is anti to the C=O bond. N—H⋯O hydrogen bonds link the mol­ecules into supra­molecular chains.

Related literature

For preparation of the compound, see: Gowda et al. (2006[Gowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595-599.]). For related structures, see: Gowda et al. (2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2631-o2632.],b[Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007b). Acta Cryst. E63, o1977-o1978.]; 2008[Gowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o11.])

[Scheme 1]

Experimental

Crystal data
  • C10H13NO

  • Mr = 163.21

  • Monoclinic, P 21 /n

  • a = 4.7961 (5) Å

  • b = 12.385 (1) Å

  • c = 15.475 (2) Å

  • β = 96.23 (1)°

  • V = 913.78 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 299 K

  • 0.45 × 0.08 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.967, Tmax = 0.993

  • 5890 measured reflections

  • 1660 independent reflections

  • 1121 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.156

  • S = 1.26

  • 1660 reflections

  • 115 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (3) 2.06 (3) 2.901 (3) 169 (3)
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the ring- and side-chain substitutions on the crystal structures of chemically and biologically important class of compounds such as acetanilides (Gowda et al., 2007a,b; 2008), we report herein the crystal structure of N-(2,3-dimethylphenyl)acetamide, (I). The conformation of the C=O bond is anti to the N—H bond, Fig. 1. The conformation of the N—H bond is syn to both the 2- and 3-methyl substituents in the aromatic ring, similar to that observed with respect to to the 2- and 3-chloro substituents in N-(2,3-dichlorophenyl)acetamide (Gowda et al., 2007a), but in contrast to the anti conformation observed with respect to the 2-methyl group in N-(2-methylphenyl)acetamide (Gowda et al., 2007b). The molecules in (I) are linked into supramolecular chains along the a axis through intermolecular N1—H1···O1 hydrogen bonding (Table 1) as shown in Fig. 2.

Related literature top

For preparation of the compound, see: Gowda et al. (2006). For related structures, see: Gowda et al. (2007a,b; 2008)

Experimental top

Compound (I) was prepared according to the literature method (Gowda et al., 2006) and crystals were obtained from its ethanol solution held at room temperature.

Refinement top

The N-bound H atom was located in difference map, and refined with N—H = 0.85 (3) Å. The remaining H atoms were positioned with in their idealized geometry using a riding model with C—H = 0.93–0.96 Å, and with Uiso(H) set to 1.2 x Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-(2,3-Dimethylphenyl)acetamide top
Crystal data top
C10H13NOF(000) = 352
Mr = 163.21Dx = 1.186 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2448 reflections
a = 4.7961 (5) Åθ = 2.6–27.6°
b = 12.385 (1) ŵ = 0.08 mm1
c = 15.475 (2) ÅT = 299 K
β = 96.23 (1)°Needle, colourless
V = 913.78 (17) Å30.45 × 0.08 × 0.04 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1660 independent reflections
Radiation source: fine-focus sealed tube1121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Rotation method data acquisition using ω and phi scans.θmax = 25.3°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 35
Tmin = 0.967, Tmax = 0.993k = 1413
5890 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.26 w = 1/[σ2(Fo2) + (0.0286P)2 + 0.8009P]
where P = (Fo2 + 2Fc2)/3
1660 reflections(Δ/σ)max = 0.001
115 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C10H13NOV = 913.78 (17) Å3
Mr = 163.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.7961 (5) ŵ = 0.08 mm1
b = 12.385 (1) ÅT = 299 K
c = 15.475 (2) Å0.45 × 0.08 × 0.04 mm
β = 96.23 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1660 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1121 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.993Rint = 0.035
5890 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.26Δρmax = 0.23 e Å3
1660 reflectionsΔρmin = 0.18 e Å3
115 parameters
Special details top

Experimental. Absorption correction details: CrysAlis RED, Oxford Diffraction Ltd., 2007 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0442 (6)0.9157 (3)0.87038 (19)0.0414 (8)
C20.0495 (6)0.9258 (3)0.7884 (2)0.0424 (8)
C30.0385 (6)1.0149 (3)0.7370 (2)0.0502 (9)
C40.2211 (7)1.0883 (3)0.7678 (3)0.0620 (10)
H40.28111.14730.73350.074*
C50.3162 (7)1.0761 (3)0.8479 (3)0.0639 (11)
H50.44131.12600.86680.077*
C60.2269 (6)0.9905 (3)0.9001 (2)0.0521 (9)
H60.28810.98280.95480.063*
C70.1038 (6)0.7664 (3)0.9715 (2)0.0468 (8)
C80.0486 (7)0.6820 (3)1.0266 (2)0.0606 (10)
H8A0.03830.69841.08680.073*
H8B0.24140.68031.01530.073*
H8C0.03570.61281.01320.073*
C90.2419 (7)0.8429 (3)0.7556 (2)0.0523 (9)
H9A0.25240.78110.79320.063*
H9B0.42560.87340.75480.063*
H9C0.17030.82140.69780.063*
C100.0608 (8)1.0314 (3)0.6489 (2)0.0690 (11)
H10A0.00290.97260.61140.083*
H10B0.26201.03410.65470.083*
H10C0.01341.09800.62440.083*
N10.0539 (5)0.8282 (2)0.92501 (16)0.0432 (7)
H1N0.230 (7)0.818 (3)0.931 (2)0.052*
O10.3582 (4)0.7763 (2)0.96925 (18)0.0722 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0283 (15)0.045 (2)0.0503 (19)0.0009 (14)0.0004 (13)0.0039 (15)
C20.0317 (16)0.045 (2)0.0497 (19)0.0051 (14)0.0012 (13)0.0040 (15)
C30.0429 (18)0.047 (2)0.058 (2)0.0068 (16)0.0060 (15)0.0043 (17)
C40.054 (2)0.046 (2)0.082 (3)0.0039 (18)0.010 (2)0.008 (2)
C50.050 (2)0.057 (3)0.083 (3)0.0135 (18)0.0006 (19)0.012 (2)
C60.0428 (18)0.057 (2)0.056 (2)0.0048 (17)0.0034 (15)0.0088 (18)
C70.0351 (18)0.056 (2)0.0500 (19)0.0013 (16)0.0092 (14)0.0032 (17)
C80.048 (2)0.071 (3)0.065 (2)0.0048 (18)0.0144 (17)0.015 (2)
C90.0497 (19)0.059 (2)0.0499 (19)0.0009 (17)0.0121 (15)0.0004 (17)
C100.074 (3)0.071 (3)0.060 (2)0.009 (2)0.0039 (19)0.014 (2)
N10.0272 (13)0.0530 (17)0.0504 (15)0.0043 (13)0.0084 (12)0.0046 (14)
O10.0289 (12)0.085 (2)0.104 (2)0.0005 (12)0.0148 (12)0.0147 (16)
Geometric parameters (Å, º) top
C1—C61.388 (4)C7—N11.339 (4)
C1—C21.396 (4)C7—C81.490 (5)
C1—N11.423 (4)C8—H8A0.9600
C2—C31.399 (4)C8—H8B0.9600
C2—C91.504 (4)C8—H8C0.9600
C3—C41.382 (5)C9—H9A0.9600
C3—C101.506 (5)C9—H9B0.9600
C4—C51.374 (5)C9—H9C0.9600
C4—H40.9300C10—H10A0.9600
C5—C61.373 (5)C10—H10B0.9600
C5—H50.9300C10—H10C0.9600
C6—H60.9300N1—H1N0.85 (3)
C7—O11.223 (3)
C6—C1—C2121.2 (3)C7—C8—H8A109.5
C6—C1—N1119.5 (3)C7—C8—H8B109.5
C2—C1—N1119.3 (3)H8A—C8—H8B109.5
C1—C2—C3118.7 (3)C7—C8—H8C109.5
C1—C2—C9121.0 (3)H8A—C8—H8C109.5
C3—C2—C9120.3 (3)H8B—C8—H8C109.5
C4—C3—C2119.1 (3)C2—C9—H9A109.5
C4—C3—C10119.8 (3)C2—C9—H9B109.5
C2—C3—C10121.1 (3)H9A—C9—H9B109.5
C5—C4—C3121.6 (3)C2—C9—H9C109.5
C5—C4—H4119.2H9A—C9—H9C109.5
C3—C4—H4119.2H9B—C9—H9C109.5
C6—C5—C4120.2 (3)C3—C10—H10A109.5
C6—C5—H5119.9C3—C10—H10B109.5
C4—C5—H5119.9H10A—C10—H10B109.5
C5—C6—C1119.3 (3)C3—C10—H10C109.5
C5—C6—H6120.4H10A—C10—H10C109.5
C1—C6—H6120.4H10B—C10—H10C109.5
O1—C7—N1123.2 (3)C7—N1—C1125.8 (3)
O1—C7—C8120.9 (3)C7—N1—H1N117 (2)
N1—C7—C8116.0 (3)C1—N1—H1N117 (2)
C6—C1—C2—C31.7 (4)C10—C3—C4—C5179.9 (3)
N1—C1—C2—C3177.1 (3)C3—C4—C5—C61.0 (5)
C6—C1—C2—C9178.5 (3)C4—C5—C6—C11.2 (5)
N1—C1—C2—C92.8 (4)C2—C1—C6—C50.2 (5)
C1—C2—C3—C41.8 (4)N1—C1—C6—C5178.6 (3)
C9—C2—C3—C4178.3 (3)O1—C7—N1—C13.0 (5)
C1—C2—C3—C10178.6 (3)C8—C7—N1—C1177.8 (3)
C9—C2—C3—C101.2 (5)C6—C1—N1—C745.2 (4)
C2—C3—C4—C50.5 (5)C2—C1—N1—C7136.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (3)2.06 (3)2.901 (3)169 (3)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H13NO
Mr163.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)4.7961 (5), 12.385 (1), 15.475 (2)
β (°) 96.23 (1)
V3)913.78 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.08 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.967, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
5890, 1660, 1121
Rint0.035
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.156, 1.26
No. of reflections1660
No. of parameters115
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (3)2.06 (3)2.901 (3)169 (3)
Symmetry code: (i) x+1, y, z.
 

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2631–o2632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o11.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007b). Acta Cryst. E63, o1977–o1978.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595–599.  CAS Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds