metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Ethanol-κO)[2-(4-hy­droxy­phen­yl)quinoline-4-carboxyl­ato-κO]tri­phenyl­tin(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 31 March 2009; accepted 1 April 2009; online 8 April 2009)

The Sn atom in the title mol­ecule, [Sn(C6H5)3(C16H10NO3)(C2H6O)], shows a trans-C3SnO2 trigonal bipyramidal coord­in­ation. Adjacent mol­ecules are linked by O—H⋯O and O—H⋯N hydrogen bonds into a two-dimensional array parallel to (100). The ethanol ligand is disordered, with two sites of equal occupancy being resolved for the ethyl group.

Related literature

Triphenyl­tin carboxyl­ates are coordinately saturated, and do not generally afford adducts; for some unusual examples of adducts with oxygen-donor ligands, see: Ng & Kumar Das (1997[Ng, S. W. & Kumar Das, V. G. (1997). Trends Organomet. Chem. 2, 107-115.]). For reviews of the structural chemistry of organotin carboxyl­ates, see: Tiekink (1991[Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.], 1994[Tiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71-116.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C16H10NO3)(C2H6O)]

  • Mr = 660.31

  • Monoclinic, C 2/c

  • a = 38.9542 (5) Å

  • b = 9.7259 (2) Å

  • c = 17.8594 (3) Å

  • β = 116.632 (1)°

  • V = 6048.4 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.777, Tmax = 0.917

  • 23944 measured reflections

  • 6937 independent reflections

  • 5517 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.104

  • S = 1.26

  • 6937 reflections

  • 395 parameters

  • 19 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.21 e Å−3

  • Δρmin = −1.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.85 (1) 1.83 (2) 2.661 (3) 166 (6)
O4—H4⋯N1ii 0.84 (1) 1.95 (1) 2.789 (4) 175 (4)
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publlCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

Triphenyltin carboxylates are coordinately saturated, and do not generally afford adducts; for some unusual examples of adducts with oxygen-donor ligands, see: Ng & Kumar Das (1997). For reviews of the structural chemistry of organotin carboxylates, see: Tiekink (1991, 1994).

Experimental top

Re-distilled benzaldehyde (12 ml) and pyruvic acid (11 g) were boiled in ethanol (100 ml) and to the solution was added 4-hydroxyaniline (11.5 ml). The mixture was heated for another 3 h. The solution was cooled and the solid product recrystallized from ethanol to give yellow 2-(4-hydroxyphenyl)quinoline-4-carboxylic acid.

Triphenyltin hydroxide (0.37 g, 1 mmol) and 2-(4-hydroxyphenyl)quinoline-4-carboxylic acid (0.27 g, 1 mol) were heated in ethanol (25 mol) until the reactants dissolved completely. The solution was filtered and the solvent allowed to evaporate slowly. Crystals were deposited after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C). The hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.84±0.01 Å.

The coordinated ethanol molecule is disordered over two positions in the carbon atoms; the occupancies could not be refined, and were arbitrarily fixed as 50:50. The O–C distances were restrained to 1.45±0.01 Å and the C–C distances to 1.54±0.01 Å; the O···C distance was restrained to 2.45±0.01 Å. Additionally, the displacement parameters of the C35 atom were restrained to those of the C36 atom (and those of the C35' atom to those of the C36' atom). Restraining the temperature factors of the C35 and C35' pair of atoms to be equal led to larger peaks/deeper holes. The anisotropic displacement factors of the disordered atoms were restrained to be nearly isotropic.

The final difference Fourier map had a large peak in the vicinity of the Sn1 atom and a deep hole in the vicinity of the disordered atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. 70% Probability thermal ellipsoid plot (Barbour, 2001) of Sn(C6H5)3(C2H6O)(C15H10NO). Hydrogen atoms are drawn as spheres of arbitrary radii. The disorder in the ethanol molecule is not shown.
(Ethanol-κO)[2-(4-hydroxyphenyl)quinoline-4-carboxylato- κO]triphenyltin(IV) top
Crystal data top
[Sn(C6H5)3(C16H10NO3)(C2H6O)]F(000) = 2688
Mr = 660.31Dx = 1.450 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7502 reflections
a = 38.9542 (5) Åθ = 2.3–27.9°
b = 9.7259 (2) ŵ = 0.89 mm1
c = 17.8594 (3) ÅT = 100 K
β = 116.632 (1)°Irregular block, yellow
V = 6048.4 (2) Å30.30 × 0.20 × 0.10 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
6937 independent reflections
Radiation source: fine-focus sealed tube5517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.5°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 5050
Tmin = 0.777, Tmax = 0.917k = 1212
23944 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.26 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
6937 reflections(Δ/σ)max = 0.001
395 parametersΔρmax = 1.21 e Å3
19 restraintsΔρmin = 1.30 e Å3
Crystal data top
[Sn(C6H5)3(C16H10NO3)(C2H6O)]V = 6048.4 (2) Å3
Mr = 660.31Z = 8
Monoclinic, C2/cMo Kα radiation
a = 38.9542 (5) ŵ = 0.89 mm1
b = 9.7259 (2) ÅT = 100 K
c = 17.8594 (3) Å0.30 × 0.20 × 0.10 mm
β = 116.632 (1)°
Data collection top
Bruker SMART APEX
diffractometer
6937 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5517 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 0.917Rint = 0.038
23944 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03619 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.26Δρmax = 1.21 e Å3
6937 reflectionsΔρmin = 1.30 e Å3
395 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.644792 (5)0.66381 (2)0.651964 (13)0.01976 (8)
O10.64978 (6)0.4794 (2)0.72684 (13)0.0230 (5)
O20.58946 (6)0.4207 (2)0.64055 (13)0.0259 (5)
O30.46240 (7)0.2226 (3)0.92855 (17)0.0363 (6)
H30.4486 (14)0.294 (4)0.913 (4)0.09 (2)*
O40.63966 (7)0.8677 (2)0.57574 (15)0.0275 (5)
H40.6351 (11)0.861 (4)0.5250 (10)0.040 (12)*
N10.61942 (7)0.1541 (3)0.90533 (16)0.0210 (5)
C10.59940 (9)0.7431 (3)0.6739 (2)0.0257 (7)
C20.56082 (9)0.7165 (4)0.6215 (2)0.0314 (8)
H20.55390.66000.57350.038*
C30.53252 (10)0.7721 (5)0.6392 (3)0.0429 (10)
H3A0.50620.75480.60280.051*
C40.54256 (12)0.8532 (4)0.7101 (3)0.0466 (11)
H4A0.52310.88990.72240.056*
C50.58029 (11)0.8807 (4)0.7621 (2)0.0414 (9)
H50.58690.93700.81010.050*
C60.60898 (10)0.8257 (4)0.7446 (2)0.0324 (8)
H60.63520.84450.78090.039*
C70.70093 (8)0.7263 (3)0.74125 (19)0.0210 (6)
C80.71841 (9)0.6630 (3)0.8197 (2)0.0254 (7)
H80.70490.59440.83370.030*
C90.75550 (10)0.6996 (4)0.8775 (2)0.0329 (8)
H90.76700.65600.93080.040*
C100.77560 (9)0.7981 (4)0.8582 (2)0.0321 (8)
H100.80090.82220.89770.038*
C110.75878 (10)0.8613 (4)0.7815 (2)0.0310 (8)
H110.77260.92920.76790.037*
C120.72155 (9)0.8269 (3)0.7230 (2)0.0275 (7)
H120.71020.87240.67040.033*
C130.64468 (9)0.5595 (3)0.54688 (19)0.0218 (6)
C140.61920 (9)0.4569 (4)0.5032 (2)0.0289 (7)
H140.59900.43380.51700.035*
C150.62271 (11)0.3867 (4)0.4391 (2)0.0372 (8)
H150.60480.31670.40900.045*
C160.65208 (10)0.4186 (4)0.4192 (2)0.0360 (8)
H160.65470.36960.37610.043*
C170.67774 (10)0.5222 (4)0.4621 (2)0.0308 (8)
H170.69780.54520.44800.037*
C180.67411 (9)0.5921 (3)0.5256 (2)0.0253 (7)
H180.69180.66300.55500.030*
C190.61924 (8)0.4091 (3)0.70774 (19)0.0207 (6)
C200.62011 (8)0.3120 (3)0.77441 (19)0.0208 (6)
C210.65106 (8)0.2215 (3)0.81930 (19)0.0201 (6)
C220.68306 (9)0.2038 (3)0.8023 (2)0.0245 (7)
H220.68470.25580.75890.029*
C230.71155 (9)0.1129 (4)0.8476 (2)0.0297 (7)
H230.73280.10210.83550.036*
C240.70965 (10)0.0351 (4)0.9119 (2)0.0329 (8)
H240.72960.02820.94290.039*
C250.67905 (9)0.0498 (4)0.9305 (2)0.0300 (7)
H250.67810.00280.97430.036*
C260.64924 (8)0.1431 (3)0.8845 (2)0.0222 (7)
C270.59012 (8)0.2362 (3)0.85988 (19)0.0203 (6)
C280.58973 (8)0.3161 (3)0.79347 (19)0.0218 (6)
H280.56830.37310.76180.026*
C290.55701 (8)0.2372 (3)0.87918 (19)0.0206 (6)
C300.54731 (9)0.1182 (3)0.9091 (2)0.0242 (7)
H300.56270.03820.91890.029*
C310.51552 (9)0.1148 (4)0.9249 (2)0.0273 (7)
H310.50910.03270.94450.033*
C320.49321 (9)0.2316 (4)0.9118 (2)0.0262 (7)
C330.50289 (9)0.3521 (3)0.8844 (2)0.0254 (7)
H330.48810.43290.87720.030*
C340.53440 (8)0.3541 (3)0.8673 (2)0.0236 (7)
H340.54060.43630.84720.028*
C350.6218 (2)0.9877 (7)0.5981 (5)0.0383 (12)0.50
H35A0.63210.99500.65970.046*0.50
H35B0.59360.97560.57360.046*0.50
C360.6315 (2)1.1177 (6)0.5627 (5)0.0383 (12)0.50
H36A0.65931.12140.58090.057*0.50
H36B0.62361.19920.58320.057*0.50
H36C0.61801.11550.50140.057*0.50
C35'0.6461 (3)1.0012 (8)0.6165 (8)0.084 (3)0.50
H35C0.66161.05860.59730.101*0.50
H35D0.66100.98830.67780.101*0.50
C36'0.6073 (3)1.0809 (9)0.5981 (8)0.084 (3)0.50
H36D0.59611.11840.54120.126*0.50
H36E0.61281.15610.63840.126*0.50
H36F0.58901.01700.60340.126*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01769 (11)0.02596 (12)0.01585 (12)0.00055 (8)0.00772 (9)0.00158 (9)
O10.0202 (10)0.0300 (12)0.0210 (11)0.0031 (9)0.0112 (9)0.0010 (9)
O20.0216 (11)0.0377 (13)0.0186 (12)0.0011 (10)0.0090 (9)0.0034 (10)
O30.0231 (12)0.0563 (17)0.0374 (15)0.0086 (12)0.0206 (11)0.0141 (13)
O40.0355 (13)0.0270 (12)0.0168 (12)0.0026 (10)0.0088 (10)0.0001 (10)
N10.0198 (12)0.0272 (14)0.0177 (13)0.0009 (10)0.0098 (11)0.0007 (11)
C10.0254 (16)0.0329 (18)0.0207 (17)0.0053 (13)0.0120 (13)0.0011 (14)
C20.0283 (17)0.0400 (19)0.0254 (19)0.0053 (15)0.0116 (15)0.0015 (16)
C30.0260 (18)0.063 (3)0.039 (2)0.0108 (18)0.0136 (17)0.002 (2)
C40.040 (2)0.064 (3)0.046 (3)0.0192 (19)0.029 (2)0.001 (2)
C50.047 (2)0.049 (2)0.032 (2)0.0128 (19)0.0218 (18)0.0069 (18)
C60.0304 (17)0.040 (2)0.0262 (19)0.0037 (15)0.0122 (15)0.0052 (16)
C70.0182 (14)0.0276 (16)0.0181 (16)0.0013 (12)0.0090 (12)0.0032 (13)
C80.0236 (15)0.0324 (17)0.0217 (17)0.0029 (13)0.0115 (13)0.0029 (14)
C90.0264 (17)0.044 (2)0.0235 (19)0.0006 (15)0.0063 (14)0.0029 (16)
C100.0207 (15)0.0377 (19)0.035 (2)0.0045 (14)0.0094 (15)0.0077 (16)
C110.0264 (17)0.0342 (19)0.037 (2)0.0086 (14)0.0182 (16)0.0053 (16)
C120.0286 (16)0.0325 (18)0.0212 (17)0.0011 (14)0.0110 (14)0.0020 (14)
C130.0220 (14)0.0271 (16)0.0169 (15)0.0054 (12)0.0092 (12)0.0024 (13)
C140.0293 (17)0.0385 (19)0.0226 (18)0.0019 (14)0.0151 (14)0.0039 (15)
C150.038 (2)0.047 (2)0.027 (2)0.0056 (17)0.0145 (16)0.0123 (17)
C160.042 (2)0.049 (2)0.0227 (19)0.0059 (17)0.0189 (16)0.0024 (17)
C170.0330 (17)0.040 (2)0.0254 (18)0.0068 (15)0.0185 (15)0.0036 (15)
C180.0246 (15)0.0306 (18)0.0215 (17)0.0019 (13)0.0109 (13)0.0026 (14)
C190.0200 (14)0.0265 (16)0.0186 (16)0.0007 (12)0.0115 (13)0.0006 (13)
C200.0187 (14)0.0267 (16)0.0165 (15)0.0056 (12)0.0074 (12)0.0031 (12)
C210.0192 (14)0.0249 (15)0.0163 (15)0.0022 (12)0.0082 (12)0.0016 (13)
C220.0242 (15)0.0318 (17)0.0212 (17)0.0004 (13)0.0136 (13)0.0016 (14)
C230.0247 (16)0.0375 (18)0.033 (2)0.0010 (15)0.0178 (15)0.0002 (16)
C240.0271 (17)0.040 (2)0.032 (2)0.0123 (15)0.0131 (15)0.0077 (16)
C250.0257 (16)0.0387 (19)0.0271 (18)0.0065 (14)0.0133 (14)0.0069 (15)
C260.0168 (14)0.0279 (17)0.0219 (17)0.0029 (12)0.0086 (12)0.0022 (13)
C270.0172 (14)0.0249 (16)0.0187 (16)0.0022 (12)0.0080 (12)0.0009 (13)
C280.0161 (13)0.0300 (17)0.0172 (15)0.0005 (12)0.0054 (12)0.0015 (13)
C290.0161 (13)0.0304 (17)0.0168 (15)0.0012 (12)0.0085 (12)0.0009 (13)
C300.0233 (15)0.0269 (16)0.0244 (17)0.0030 (13)0.0125 (14)0.0022 (14)
C310.0236 (16)0.0345 (17)0.0248 (18)0.0011 (14)0.0118 (14)0.0056 (15)
C320.0194 (15)0.0396 (19)0.0207 (17)0.0014 (14)0.0100 (13)0.0022 (15)
C330.0192 (14)0.0347 (18)0.0215 (17)0.0061 (13)0.0085 (13)0.0035 (14)
C340.0201 (14)0.0311 (17)0.0189 (16)0.0018 (13)0.0081 (13)0.0045 (13)
C350.035 (3)0.040 (3)0.036 (3)0.003 (2)0.013 (2)0.002 (2)
C360.035 (3)0.040 (3)0.036 (3)0.003 (2)0.013 (2)0.002 (2)
C35'0.065 (5)0.032 (3)0.109 (6)0.013 (3)0.001 (4)0.012 (4)
C36'0.065 (5)0.032 (3)0.109 (6)0.013 (3)0.001 (4)0.012 (4)
Geometric parameters (Å, º) top
Sn1—C12.120 (3)C16—H160.9500
Sn1—C132.131 (3)C17—C181.382 (4)
Sn1—C72.138 (3)C17—H170.9500
Sn1—O12.193 (2)C18—H180.9500
Sn1—O42.363 (2)C19—C201.509 (4)
O1—C191.279 (3)C20—C281.371 (4)
O2—C191.245 (4)C20—C211.416 (4)
O3—C321.363 (4)C21—C261.419 (4)
O3—H30.846 (10)C21—C221.420 (4)
O4—C35'1.454 (7)C22—C231.365 (5)
O4—C351.502 (6)C22—H220.9500
O4—H40.844 (10)C23—C241.405 (5)
N1—C271.330 (4)C23—H230.9500
N1—C261.374 (4)C24—C251.380 (4)
C1—C21.393 (5)C24—H240.9500
C1—C61.399 (5)C25—C261.411 (4)
C2—C31.386 (5)C25—H250.9500
C2—H20.9500C27—C281.412 (4)
C3—C41.391 (6)C27—C291.477 (4)
C3—H3A0.9500C28—H280.9500
C4—C51.368 (6)C29—C341.395 (4)
C4—H4A0.9500C29—C301.396 (4)
C5—C61.396 (5)C30—C311.387 (4)
C5—H50.9500C30—H300.9500
C6—H60.9500C31—C321.385 (5)
C7—C121.393 (4)C31—H310.9500
C7—C81.396 (4)C32—C331.386 (5)
C8—C91.394 (5)C33—C341.391 (4)
C8—H80.9500C33—H330.9500
C9—C101.376 (5)C34—H340.9500
C9—H90.9500C35—C361.537 (7)
C10—C111.371 (5)C35—H35A0.9900
C10—H100.9500C35—H35B0.9900
C11—C121.396 (5)C36—H36A0.9800
C11—H110.9500C36—H36B0.9800
C12—H120.9500C36—H36C0.9800
C13—C141.377 (5)C35'—C36'1.595 (13)
C13—C181.397 (4)C35'—H35C0.9900
C14—C151.391 (5)C35'—H35D0.9900
C14—H140.9500C36'—H36D0.9800
C15—C161.377 (5)C36'—H36E0.9800
C15—H150.9500C36'—H36F0.9800
C16—C171.384 (5)
C1—Sn1—C13131.51 (12)C17—C18—C13120.7 (3)
C1—Sn1—C7114.71 (12)C17—C18—H18119.7
C13—Sn1—C7112.95 (11)C13—C18—H18119.7
C1—Sn1—O192.20 (10)O2—C19—O1124.2 (3)
C13—Sn1—O196.45 (10)O2—C19—C20119.9 (3)
C7—Sn1—O189.79 (10)O1—C19—C20115.8 (3)
C1—Sn1—O486.49 (11)C28—C20—C21119.2 (3)
C13—Sn1—O485.76 (10)C28—C20—C19117.5 (3)
C7—Sn1—O489.14 (10)C21—C20—C19123.3 (3)
O1—Sn1—O4177.78 (8)C20—C21—C26117.1 (3)
C19—O1—Sn1117.18 (19)C20—C21—C22124.1 (3)
C32—O3—H3111 (4)C26—C21—C22118.8 (3)
C35'—O4—Sn1120.6 (6)C23—C22—C21120.7 (3)
C35—O4—Sn1115.3 (3)C23—C22—H22119.7
C35'—O4—H4121 (3)C21—C22—H22119.7
C35—O4—H4116 (3)C22—C23—C24120.4 (3)
Sn1—O4—H4119 (3)C22—C23—H23119.8
C27—N1—C26118.7 (3)C24—C23—H23119.8
C2—C1—C6118.9 (3)C25—C24—C23120.6 (3)
C2—C1—Sn1123.1 (2)C25—C24—H24119.7
C6—C1—Sn1117.9 (2)C23—C24—H24119.7
C3—C2—C1120.2 (3)C24—C25—C26120.0 (3)
C3—C2—H2119.9C24—C25—H25120.0
C1—C2—H2119.9C26—C25—H25120.0
C2—C3—C4120.1 (4)N1—C26—C25117.8 (3)
C2—C3—H3A120.0N1—C26—C21122.7 (3)
C4—C3—H3A120.0C25—C26—C21119.5 (3)
C5—C4—C3120.5 (3)N1—C27—C28121.7 (3)
C5—C4—H4A119.7N1—C27—C29117.5 (3)
C3—C4—H4A119.7C28—C27—C29120.7 (3)
C4—C5—C6119.8 (4)C20—C28—C27120.5 (3)
C4—C5—H5120.1C20—C28—H28119.8
C6—C5—H5120.1C27—C28—H28119.8
C5—C6—C1120.4 (3)C34—C29—C30118.2 (3)
C5—C6—H6119.8C34—C29—C27121.9 (3)
C1—C6—H6119.8C30—C29—C27119.9 (3)
C12—C7—C8118.1 (3)C31—C30—C29121.1 (3)
C12—C7—Sn1122.0 (2)C31—C30—H30119.4
C8—C7—Sn1119.9 (2)C29—C30—H30119.4
C9—C8—C7120.6 (3)C32—C31—C30119.7 (3)
C9—C8—H8119.7C32—C31—H31120.1
C7—C8—H8119.7C30—C31—H31120.1
C10—C9—C8120.6 (3)O3—C32—C31117.3 (3)
C10—C9—H9119.7O3—C32—C33122.5 (3)
C8—C9—H9119.7C31—C32—C33120.2 (3)
C11—C10—C9119.5 (3)C32—C33—C34119.8 (3)
C11—C10—H10120.3C32—C33—H33120.1
C9—C10—H10120.3C34—C33—H33120.1
C10—C11—C12120.7 (3)C33—C34—C29120.9 (3)
C10—C11—H11119.6C33—C34—H34119.5
C12—C11—H11119.6C29—C34—H34119.5
C7—C12—C11120.5 (3)O4—C35—C36107.4 (5)
C7—C12—H12119.7O4—C35—H35A110.2
C11—C12—H12119.7C36—C35—H35A110.2
C14—C13—C18118.8 (3)O4—C35—H35B110.2
C14—C13—Sn1124.1 (2)C36—C35—H35B110.2
C18—C13—Sn1117.0 (2)H35A—C35—H35B108.5
C13—C14—C15120.7 (3)O4—C35'—C36'113.3 (8)
C13—C14—H14119.7O4—C35'—H35C108.9
C15—C14—H14119.7C36'—C35'—H35C108.9
C16—C15—C14120.1 (3)O4—C35'—H35D108.9
C16—C15—H15119.9C36'—C35'—H35D108.9
C14—C15—H15119.9H35C—C35'—H35D107.7
C15—C16—C17119.9 (3)C35'—C36'—H36D109.5
C15—C16—H16120.1C35'—C36'—H36E109.5
C17—C16—H16120.1H36D—C36'—H36E109.5
C18—C17—C16119.9 (3)C35'—C36'—H36F109.5
C18—C17—H17120.0H36D—C36'—H36F109.5
C16—C17—H17120.0H36E—C36'—H36F109.5
C1—Sn1—O1—C1953.6 (2)C14—C15—C16—C171.1 (6)
C13—Sn1—O1—C1978.6 (2)C15—C16—C17—C180.9 (5)
C7—Sn1—O1—C19168.4 (2)C16—C17—C18—C130.2 (5)
C1—Sn1—O4—C35'61.0 (6)C14—C13—C18—C170.3 (5)
C13—Sn1—O4—C35'166.9 (6)Sn1—C13—C18—C17175.4 (2)
C7—Sn1—O4—C35'53.8 (6)Sn1—O1—C19—O215.7 (4)
C1—Sn1—O4—C3523.0 (4)Sn1—O1—C19—C20161.42 (19)
C13—Sn1—O4—C35155.1 (4)O2—C19—C20—C2846.6 (4)
C7—Sn1—O4—C3591.8 (4)O1—C19—C20—C28130.7 (3)
C13—Sn1—C1—C29.9 (4)O2—C19—C20—C21135.5 (3)
C7—Sn1—C1—C2178.5 (3)O1—C19—C20—C2147.2 (4)
O1—Sn1—C1—C290.7 (3)C28—C20—C21—C262.3 (4)
O4—Sn1—C1—C291.1 (3)C19—C20—C21—C26175.5 (3)
C13—Sn1—C1—C6170.3 (2)C28—C20—C21—C22176.8 (3)
C7—Sn1—C1—C61.7 (3)C19—C20—C21—C225.3 (5)
O1—Sn1—C1—C689.1 (3)C20—C21—C22—C23179.0 (3)
O4—Sn1—C1—C689.1 (3)C26—C21—C22—C230.1 (5)
C6—C1—C2—C30.5 (5)C21—C22—C23—C240.0 (5)
Sn1—C1—C2—C3179.7 (3)C22—C23—C24—C250.3 (6)
C1—C2—C3—C40.9 (6)C23—C24—C25—C260.3 (5)
C2—C3—C4—C51.0 (7)C27—N1—C26—C25176.6 (3)
C3—C4—C5—C60.7 (7)C27—N1—C26—C213.5 (4)
C4—C5—C6—C10.2 (6)C24—C25—C26—N1180.0 (3)
C2—C1—C6—C50.1 (5)C24—C25—C26—C210.2 (5)
Sn1—C1—C6—C5180.0 (3)C20—C21—C26—N11.0 (4)
C1—Sn1—C7—C12103.7 (3)C22—C21—C26—N1179.8 (3)
C13—Sn1—C7—C1267.1 (3)C20—C21—C26—C25179.1 (3)
O1—Sn1—C7—C12164.0 (3)C22—C21—C26—C250.1 (5)
O4—Sn1—C7—C1217.9 (3)C26—N1—C27—C282.7 (4)
C1—Sn1—C7—C878.2 (3)C26—N1—C27—C29175.0 (3)
C13—Sn1—C7—C8111.0 (3)C21—C20—C28—C273.2 (5)
O1—Sn1—C7—C814.1 (2)C19—C20—C28—C27174.8 (3)
O4—Sn1—C7—C8163.9 (3)N1—C27—C28—C200.7 (5)
C12—C7—C8—C90.3 (5)C29—C27—C28—C20178.3 (3)
Sn1—C7—C8—C9177.9 (3)N1—C27—C29—C34149.5 (3)
C7—C8—C9—C100.3 (5)C28—C27—C29—C3432.8 (4)
C8—C9—C10—C110.4 (5)N1—C27—C29—C3031.4 (4)
C9—C10—C11—C120.2 (5)C28—C27—C29—C30146.3 (3)
C8—C7—C12—C110.9 (5)C34—C29—C30—C311.5 (5)
Sn1—C7—C12—C11177.3 (2)C27—C29—C30—C31177.6 (3)
C10—C11—C12—C70.8 (5)C29—C30—C31—C320.9 (5)
C1—Sn1—C13—C1443.2 (3)C30—C31—C32—O3179.8 (3)
C7—Sn1—C13—C14148.0 (3)C30—C31—C32—C330.9 (5)
O1—Sn1—C13—C1455.5 (3)O3—C32—C33—C34179.1 (3)
O4—Sn1—C13—C14124.7 (3)C31—C32—C33—C342.1 (5)
C1—Sn1—C13—C18141.4 (2)C32—C33—C34—C291.4 (5)
C7—Sn1—C13—C1827.4 (3)C30—C29—C34—C330.3 (5)
O1—Sn1—C13—C18119.9 (2)C27—C29—C34—C33178.8 (3)
O4—Sn1—C13—C1859.9 (2)C35'—O4—C35—C3655.8 (11)
C18—C13—C14—C150.1 (5)Sn1—O4—C35—C36163.7 (4)
Sn1—C13—C14—C15175.3 (3)C35—O4—C35'—C36'10.5 (8)
C13—C14—C15—C160.6 (6)Sn1—O4—C35'—C36'101.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.85 (1)1.83 (2)2.661 (3)166 (6)
O4—H4···N1ii0.84 (1)1.95 (1)2.789 (4)175 (4)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C16H10NO3)(C2H6O)]
Mr660.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)38.9542 (5), 9.7259 (2), 17.8594 (3)
β (°) 116.632 (1)
V3)6048.4 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.777, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
23944, 6937, 5517
Rint0.038
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.104, 1.26
No. of reflections6937
No. of parameters395
No. of restraints19
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.21, 1.30

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.85 (1)1.83 (2)2.661 (3)166 (6)
O4—H4···N1ii0.84 (1)1.95 (1)2.789 (4)175 (4)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y+1, z1/2.
 

Acknowledgements

We thank the University of Malaya (FS3392008A) for funding this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNg, S. W. & Kumar Das, V. G. (1997). Trends Organomet. Chem. 2, 107–115.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1–23.  CrossRef CAS Web of Science Google Scholar
First citationTiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71–116.  Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds