organic compounds
Ethyl 2-[(4-chlorophenyl)hydrazono]-3-oxobutanoate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Chemistry, National Institute of Technology–Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my
The molecule of the title oxobutanoate derivative, C12H13ClN2O3, is nearly planar; the interplanar angle between the benzene ring and the mean plane through the hydrazono-3-oxobutanoate unit is 2.69 (3)°. An intramolecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal packing, C—H⋯O(3-oxo) interactions link molecules into dimers. The dimers thus formed are linked through C—H⋯O(carboxylate C=O) interactions, leading to the formation of ribbons along the [01] direction, which are stabilized via Cl⋯Cl [3.2916 (3) Å] contacts. The ribbons are stacked via C⋯O contacts [3.2367 (12)–3.3948 (12) Å].
Related literature
For hydrogen-bond motifs, see Bernstein et al. (1995). For background to the bioactivity and applications of oxobutanoate derivatives, see: Alpaslan et al. (2005); Billington et al. (1979); Stancho et al. (2008). For the synthesis, see Amir & Agarwal (1997). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809012951/tk2415sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809012951/tk2415Isup2.hkl
Compound (I) was prepared as reported in literature (Amir & Agarwal, 1997). 4-Chloroaniline (1.27 g, 10 mmol) was dissolved in dilute hydrochloric acid (11.0 ml) and cooled to 273 K in an ice bath. To this cold solution, sodium nitrite (1.6 g in 5.0 ml water) was added. The temperature of the reaction mixture was not allowed to raise above 323 K. The resulting diazonium salt solution was then filtered into a cooled solution of ethylacetoacetate (1.7 ml) and sodium acetate (3.5 g) in ethanol (50 ml). The resulting yellow solid was filtered, washed with ice-cold water, dried and recrystallized from methanol. The yield was 1.95 g (81%); M.p. 365 K.
All H atoms were placed in calculated positions with d(N—H) = 0.91 Å, d(C—H) = 0.93 Å for aromatic, 0.97 Å for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the
for methyl-H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl substituents.Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C12H13ClN2O3 | F(000) = 560 |
Mr = 268.69 | Dx = 1.413 Mg m−3 |
Monoclinic, P21/c | Melting point: 365 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 4.0259 (1) Å | Cell parameters from 4723 reflections |
b = 17.0892 (4) Å | θ = 1.6–32.9° |
c = 18.4934 (5) Å | µ = 0.30 mm−1 |
β = 96.802 (1)° | T = 100 K |
V = 1263.38 (6) Å3 | Needle, brown |
Z = 4 | 0.77 × 0.13 × 0.06 mm |
Bruker APEXII CCD area-detector diffractometer | 4723 independent reflections |
Radiation source: sealed tube | 3972 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
ϕ and ω scans | θmax = 32.9°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −6→6 |
Tmin = 0.799, Tmax = 0.982 | k = −26→25 |
38796 measured reflections | l = −28→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0602P)2 + 0.255P] where P = (Fo2 + 2Fc2)/3 |
4723 reflections | (Δ/σ)max = 0.002 |
165 parameters | Δρmax = 0.53 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C12H13ClN2O3 | V = 1263.38 (6) Å3 |
Mr = 268.69 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 4.0259 (1) Å | µ = 0.30 mm−1 |
b = 17.0892 (4) Å | T = 100 K |
c = 18.4934 (5) Å | 0.77 × 0.13 × 0.06 mm |
β = 96.802 (1)° |
Bruker APEXII CCD area-detector diffractometer | 4723 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 3972 reflections with I > 2σ(I) |
Tmin = 0.799, Tmax = 0.982 | Rint = 0.039 |
38796 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.53 e Å−3 |
4723 reflections | Δρmin = −0.24 e Å−3 |
165 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.33403 (7) | 0.917736 (14) | 0.966487 (14) | 0.02331 (8) | |
O1 | 1.1283 (2) | 0.43897 (5) | 0.92388 (4) | 0.02458 (17) | |
O2 | 0.4082 (2) | 0.41534 (4) | 0.74203 (5) | 0.02490 (17) | |
O3 | 0.40449 (18) | 0.54627 (4) | 0.73206 (4) | 0.01834 (15) | |
N1 | 1.0478 (2) | 0.58595 (5) | 0.89744 (5) | 0.01680 (16) | |
H1 | 1.1461 | 0.5484 | 0.9277 | 0.020* | |
N2 | 0.8324 (2) | 0.56553 (5) | 0.84259 (4) | 0.01607 (15) | |
C1 | 0.9700 (2) | 0.72408 (6) | 0.86488 (5) | 0.01779 (18) | |
H1A | 0.8269 | 0.7109 | 0.8235 | 0.021* | |
C2 | 1.0384 (3) | 0.80222 (6) | 0.88190 (5) | 0.01815 (18) | |
H2A | 0.9413 | 0.8418 | 0.8521 | 0.022* | |
C3 | 1.2535 (2) | 0.82023 (5) | 0.94400 (5) | 0.01668 (17) | |
C4 | 1.4070 (2) | 0.76234 (6) | 0.98899 (5) | 0.01816 (18) | |
H4A | 1.5530 | 0.7756 | 1.0299 | 0.022* | |
C5 | 1.3393 (2) | 0.68425 (6) | 0.97197 (5) | 0.01727 (17) | |
H5A | 1.4408 | 0.6447 | 1.0013 | 0.021* | |
C6 | 1.1185 (2) | 0.66568 (5) | 0.91065 (5) | 0.01550 (17) | |
C7 | 0.7628 (2) | 0.49093 (5) | 0.82808 (5) | 0.01602 (17) | |
C8 | 0.9246 (2) | 0.42509 (6) | 0.86964 (5) | 0.01779 (18) | |
C9 | 0.8553 (3) | 0.34161 (6) | 0.84741 (6) | 0.02176 (19) | |
H9A | 0.9875 | 0.3074 | 0.8804 | 0.033* | |
H9B | 0.9116 | 0.3337 | 0.7989 | 0.033* | |
H9C | 0.6223 | 0.3304 | 0.8486 | 0.033* | |
C10 | 0.5100 (2) | 0.47889 (6) | 0.76369 (5) | 0.01646 (17) | |
C11 | 0.1696 (2) | 0.53891 (6) | 0.66655 (5) | 0.01926 (18) | |
H11A | −0.0131 | 0.5044 | 0.6752 | 0.023* | |
H11B | 0.2804 | 0.5174 | 0.6272 | 0.023* | |
C12 | 0.0397 (3) | 0.61975 (7) | 0.64728 (6) | 0.0245 (2) | |
H12A | −0.1123 | 0.6175 | 0.6032 | 0.037* | |
H12B | 0.2235 | 0.6536 | 0.6403 | 0.037* | |
H12C | −0.0749 | 0.6397 | 0.6861 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.03064 (14) | 0.01473 (12) | 0.02328 (13) | −0.00497 (9) | −0.00211 (9) | −0.00104 (8) |
O1 | 0.0277 (4) | 0.0185 (3) | 0.0251 (4) | 0.0003 (3) | −0.0070 (3) | 0.0031 (3) |
O2 | 0.0306 (4) | 0.0165 (3) | 0.0254 (4) | −0.0037 (3) | −0.0057 (3) | −0.0015 (3) |
O3 | 0.0185 (3) | 0.0163 (3) | 0.0190 (3) | −0.0001 (2) | −0.0030 (2) | 0.0012 (2) |
N1 | 0.0185 (4) | 0.0146 (3) | 0.0163 (4) | −0.0003 (3) | −0.0018 (3) | 0.0001 (3) |
N2 | 0.0163 (3) | 0.0162 (3) | 0.0156 (3) | −0.0012 (3) | 0.0012 (3) | −0.0015 (3) |
C1 | 0.0200 (4) | 0.0162 (4) | 0.0162 (4) | −0.0009 (3) | −0.0022 (3) | 0.0005 (3) |
C2 | 0.0203 (4) | 0.0157 (4) | 0.0176 (4) | −0.0005 (3) | −0.0011 (3) | 0.0010 (3) |
C3 | 0.0191 (4) | 0.0137 (4) | 0.0170 (4) | −0.0018 (3) | 0.0014 (3) | −0.0006 (3) |
C4 | 0.0187 (4) | 0.0179 (4) | 0.0169 (4) | −0.0016 (3) | −0.0023 (3) | 0.0007 (3) |
C5 | 0.0178 (4) | 0.0163 (4) | 0.0169 (4) | 0.0000 (3) | −0.0014 (3) | 0.0011 (3) |
C6 | 0.0163 (4) | 0.0135 (4) | 0.0165 (4) | −0.0005 (3) | 0.0012 (3) | −0.0003 (3) |
C7 | 0.0168 (4) | 0.0147 (4) | 0.0162 (4) | −0.0008 (3) | 0.0002 (3) | 0.0008 (3) |
C8 | 0.0189 (4) | 0.0155 (4) | 0.0189 (4) | −0.0003 (3) | 0.0019 (3) | 0.0015 (3) |
C9 | 0.0250 (5) | 0.0149 (4) | 0.0248 (5) | 0.0003 (4) | 0.0001 (4) | 0.0017 (3) |
C10 | 0.0170 (4) | 0.0162 (4) | 0.0160 (4) | −0.0005 (3) | 0.0015 (3) | 0.0001 (3) |
C11 | 0.0186 (4) | 0.0216 (4) | 0.0169 (4) | 0.0008 (3) | −0.0012 (3) | 0.0006 (3) |
C12 | 0.0238 (5) | 0.0235 (5) | 0.0253 (5) | 0.0032 (4) | −0.0016 (4) | 0.0039 (4) |
Cl1—C3 | 1.7386 (9) | C4—H4A | 0.9300 |
O1—C8 | 1.2412 (12) | C5—C6 | 1.3924 (13) |
O2—C10 | 1.2121 (12) | C5—H5A | 0.9300 |
O3—C10 | 1.3378 (12) | C7—C8 | 1.4703 (13) |
O3—C11 | 1.4514 (11) | C7—C10 | 1.4864 (13) |
N1—N2 | 1.3018 (11) | C8—C9 | 1.5017 (14) |
N1—C6 | 1.4072 (12) | C9—H9A | 0.9600 |
N1—H1 | 0.9104 | C9—H9B | 0.9600 |
N2—C7 | 1.3258 (12) | C9—H9C | 0.9600 |
C1—C2 | 1.3918 (14) | C11—C12 | 1.5049 (15) |
C1—C6 | 1.3964 (13) | C11—H11A | 0.9700 |
C1—H1A | 0.9300 | C11—H11B | 0.9700 |
C2—C3 | 1.3885 (13) | C12—H12A | 0.9600 |
C2—H2A | 0.9300 | C12—H12B | 0.9600 |
C3—C4 | 1.3895 (13) | C12—H12C | 0.9600 |
C4—C5 | 1.3906 (14) | ||
C10—O3—C11 | 115.60 (8) | C8—C7—C10 | 122.13 (8) |
N2—N1—C6 | 119.81 (8) | O1—C8—C7 | 119.05 (9) |
N2—N1—H1 | 119.4 | O1—C8—C9 | 119.11 (9) |
C6—N1—H1 | 120.7 | C7—C8—C9 | 121.82 (9) |
N1—N2—C7 | 121.37 (8) | C8—C9—H9A | 109.5 |
C2—C1—C6 | 119.32 (9) | C8—C9—H9B | 109.5 |
C2—C1—H1A | 120.3 | H9A—C9—H9B | 109.5 |
C6—C1—H1A | 120.3 | C8—C9—H9C | 109.5 |
C3—C2—C1 | 119.14 (9) | H9A—C9—H9C | 109.5 |
C3—C2—H2A | 120.4 | H9B—C9—H9C | 109.5 |
C1—C2—H2A | 120.4 | O2—C10—O3 | 123.32 (9) |
C2—C3—C4 | 121.80 (9) | O2—C10—C7 | 124.16 (9) |
C2—C3—Cl1 | 119.38 (7) | O3—C10—C7 | 112.52 (8) |
C4—C3—Cl1 | 118.82 (7) | O3—C11—C12 | 106.97 (8) |
C3—C4—C5 | 119.11 (9) | O3—C11—H11A | 110.3 |
C3—C4—H4A | 120.4 | C12—C11—H11A | 110.3 |
C5—C4—H4A | 120.4 | O3—C11—H11B | 110.3 |
C4—C5—C6 | 119.48 (9) | C12—C11—H11B | 110.3 |
C4—C5—H5A | 120.3 | H11A—C11—H11B | 108.6 |
C6—C5—H5A | 120.3 | C11—C12—H12A | 109.5 |
C5—C6—C1 | 121.12 (9) | C11—C12—H12B | 109.5 |
C5—C6—N1 | 117.30 (8) | H12A—C12—H12B | 109.5 |
C1—C6—N1 | 121.57 (8) | C11—C12—H12C | 109.5 |
N2—C7—C8 | 124.07 (8) | H12A—C12—H12C | 109.5 |
N2—C7—C10 | 113.78 (8) | H12B—C12—H12C | 109.5 |
C6—N1—N2—C7 | 179.20 (9) | N1—N2—C7—C8 | −2.05 (15) |
C6—C1—C2—C3 | 0.13 (15) | N1—N2—C7—C10 | 179.71 (9) |
C1—C2—C3—C4 | 1.12 (16) | N2—C7—C8—O1 | 3.50 (16) |
C1—C2—C3—Cl1 | −178.83 (8) | C10—C7—C8—O1 | −178.40 (10) |
C2—C3—C4—C5 | −1.00 (15) | N2—C7—C8—C9 | −175.28 (10) |
Cl1—C3—C4—C5 | 178.94 (8) | C10—C7—C8—C9 | 2.81 (15) |
C3—C4—C5—C6 | −0.36 (15) | C11—O3—C10—O2 | −3.29 (14) |
C4—C5—C6—C1 | 1.61 (15) | C11—O3—C10—C7 | 177.01 (8) |
C4—C5—C6—N1 | −177.46 (9) | N2—C7—C10—O2 | −178.82 (10) |
C2—C1—C6—C5 | −1.49 (15) | C8—C7—C10—O2 | 2.90 (16) |
C2—C1—C6—N1 | 177.54 (9) | N2—C7—C10—O3 | 0.88 (12) |
N2—N1—C6—C5 | 177.14 (9) | C8—C7—C10—O3 | −177.40 (9) |
N2—N1—C6—C1 | −1.93 (15) | C10—O3—C11—C12 | 170.62 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.91 | 1.87 | 2.5721 (12) | 132 |
C2—H2A···O2i | 0.93 | 2.45 | 3.3536 (13) | 164 |
C5—H5A···O1ii | 0.93 | 2.53 | 3.4293 (12) | 163 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+3, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C12H13ClN2O3 |
Mr | 268.69 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 4.0259 (1), 17.0892 (4), 18.4934 (5) |
β (°) | 96.802 (1) |
V (Å3) | 1263.38 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.77 × 0.13 × 0.06 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.799, 0.982 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 38796, 4723, 3972 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.764 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.108, 1.06 |
No. of reflections | 4723 |
No. of parameters | 165 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.53, −0.24 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.91 | 1.87 | 2.5721 (12) | 132 |
C2—H2A···O2i | 0.93 | 2.45 | 3.3536 (13) | 164 |
C5—H5A···O1ii | 0.93 | 2.53 | 3.4293 (12) | 163 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+3, −y+1, −z+2. |
Acknowledgements
AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities. The authors thank the Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.
References
Alpaslan, G., Özdamar, O., Odabaşogˇlu, M., Ersanlı, C. C., Erdönmez, A. & Ocak Ískeleli, N. (2005). Acta Cryst. E61, o3442–o3444. Web of Science CSD CrossRef IUCr Journals Google Scholar
Amir, M. & Agarwal, R. (1997). J. Indian Chem. Soc. 74, 154–155. CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Billington, D. C., Golding, B. T. & Primrose, S. B. (1979). Biochem. J. 182, 827–836. CAS PubMed Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stancho, S., Georgi, M., Frank, J. & Ilia, M. (2008). Eur. J. Med. Chem. 43, 694–706. Web of Science PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Derivatives of oxobutanoates are biologically important. 4-Methylthio-2-oxobutanoate was identified in the culture fluids of a range of bacteria, e.g. the yeast Saccharomyces cerevisiae and the fungus Penicillium digitatum (Billington et al., 1979). Some oxobutanoates exhibit cytotoxic properties (Stancho et al., 2008). The crystal structure of ethyl 4-chloro-2-[2-(2-methoxyphenyl)hydrazono]-3-oxobutanoate has been reported (Alpaslan et al., 2005).
The molecule of the title oxobutanoate derivative, (I), is nearly planar which can be readily indicated by the interplanar angle between the benzene ring and the mean plane through the hydrazono-3-oxobutanoate unit (N1–N2/O1–O3/C7–C10) is 2.69 (3)°, and the C10–C7–C8–C9 torsion angle of 2.81 (15)°. The ethyl group is slightly deviated from the mean plane of the molecule with the torsion angle C10–O3–C11–C12 being 170.6 (9)°. Within the molecule, an intramolecular N1—H1···O1 hydrogen bond generates a S(6) ring motif (Bernstein et al., 1995) (Table 1).
In the crystal packing, the C5—H5A···O1 interactions link two molecules into a dimer (Table 1 and Fig. 2). The dimers are linked together through C2—H2A···O2 interactions to form molecular ribbons along the [011] direction; these ribbons are further stabilized by Cl···Cl [3.2916 (3)Å] contacts. These ribbons are stacked, being connected by C···O [3.2367 (12), 3.3716 (14) and 3.3948 (12)Å] contacts.