organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1039

N-(3-Bromo­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com

(Received 6 April 2009; accepted 7 April 2009; online 18 April 2009)

The conformation of the N—H bond in the structure of the title compound, C8H8BrNO, is anti to the C=O bond and to the meta-bromo substituent of the aromatic ring in both independent mol­ecules comprising the asymmetric unit. Mol­ecules are linked through N—H⋯O hydrogen bonding into supra­molecular chains with a twisted topology.

Related literature

For the preparation of the compound, see: Gowda et al. (2006[Gowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595-599.]). For related structures, see: Gowda et al. (2007[Gowda, B. T., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3267.], 2008[Gowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o381.], 2009[Gowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o949.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8BrNO

  • Mr = 214.06

  • Orthorhombic, P 21 21 21

  • a = 4.7836 (6) Å

  • b = 18.765 (1) Å

  • c = 19.379 (2) Å

  • V = 1739.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.67 mm−1

  • T = 299 K

  • 0.44 × 0.10 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.226, Tmax = 0.685

  • 9612 measured reflections

  • 3449 independent reflections

  • 2043 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.093

  • S = 0.99

  • 3449 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.49 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1366 Friedel pairs

  • Flack parameter: −0.008 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 2.05 2.887 (5) 166
N2—H2N⋯O1 0.86 2.10 2.953 (5) 169
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the effect of ring and side-chain substitutions on the crystal structures of aromatic amides (Gowda et al., 2007, 2008, 2009), in the present work, the structure of N-(3-bromophenyl)acetamide (I) has been determined. The conformation of the N—H bond in the structure is anti to the meta-bromo substituent of the aromatic ring (Fig. 1), in both independent molecules comprising the asymmetric unit, similar to that observed in N-(3-chlorophenyl)acetamide (Gowda et al., 2008). Further, the conformation of the C=O bond is anti to the N—H bond. The two independent molecules in (I) are linked through intermolecular N—H···O hydrogen bonding into a supramolecular chains with a twisted topology (Table 1, Fig. 2).

Related literature top

For the preparation of the compound, see: Gowda et al. (2006). For related structures, see: Gowda et al. (2007, 2008, 2009)

Experimental top

Compound (I) was prepared according to the literature method (Gowda et al., 2006). Single crystals were obtained from an ethanolic solution of (I).

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å and N—H = 0.86 Å, and with Uiso set to 1.2 times Ueq(parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids drawn at the 50% probability level. The intermolecular N-H···O hydrogen is shown as a dashed line.
[Figure 2] Fig. 2. Molecular packing of (I) viewed in projection down the a-axis highlighting the supramolecular chains mediated by hydrogen bonding (shown as dashed lines).
N-(3-Bromophenyl)acetamide top
Crystal data top
C8H8BrNOF(000) = 848
Mr = 214.06Dx = 1.635 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3601 reflections
a = 4.7836 (6) Åθ = 2.4–27.6°
b = 18.765 (1) ŵ = 4.67 mm1
c = 19.379 (2) ÅT = 299 K
V = 1739.5 (3) Å3Long needle, colourless
Z = 80.44 × 0.10 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3449 independent reflections
Radiation source: fine-focus sealed tube2043 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 55
Tmin = 0.226, Tmax = 0.685k = 2223
9612 measured reflectionsl = 2024
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.0252P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
3449 reflectionsΔρmax = 0.31 e Å3
201 parametersΔρmin = 0.49 e Å3
0 restraintsAbsolute structure: Flack (1983), 1366 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.008 (13)
Crystal data top
C8H8BrNOV = 1739.5 (3) Å3
Mr = 214.06Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 4.7836 (6) ŵ = 4.67 mm1
b = 18.765 (1) ÅT = 299 K
c = 19.379 (2) Å0.44 × 0.10 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3449 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2043 reflections with I > 2σ(I)
Tmin = 0.226, Tmax = 0.685Rint = 0.034
9612 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.31 e Å3
S = 0.99Δρmin = 0.49 e Å3
3449 reflectionsAbsolute structure: Flack (1983), 1366 Friedel pairs
201 parametersAbsolute structure parameter: 0.008 (13)
0 restraints
Special details top

Experimental. Absorption correction: CrysAlis RED, Oxford Diffraction Ltd. (2007). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.64658 (17)0.36438 (3)0.40336 (3)0.0961 (3)
O11.0611 (8)0.22271 (18)0.20168 (19)0.0786 (12)
N10.9531 (7)0.13129 (19)0.27225 (19)0.0531 (10)
H1N0.97820.08630.27790.064*
C10.7804 (10)0.1647 (2)0.3206 (2)0.0492 (12)
C20.7903 (10)0.2377 (2)0.3338 (2)0.0524 (12)
H20.91110.26700.30920.063*
C30.6192 (12)0.2656 (3)0.3838 (2)0.0606 (14)
C40.4398 (12)0.2247 (4)0.4216 (3)0.0740 (17)
H40.32690.24500.45530.089*
C50.4300 (12)0.1519 (3)0.4084 (3)0.0848 (18)
H50.30680.12340.43310.102*
C60.6000 (11)0.1215 (3)0.3592 (3)0.0691 (15)
H60.59510.07260.35160.083*
C71.0850 (10)0.1608 (3)0.2180 (2)0.0546 (13)
C81.2664 (11)0.1102 (2)0.1767 (2)0.0726 (17)
H8A1.22400.06200.18950.087*
H8B1.45970.11990.18610.087*
H8C1.23030.11660.12840.087*
Br20.30944 (16)0.49664 (3)0.03009 (3)0.0919 (3)
O20.9050 (8)0.48750 (17)0.18809 (18)0.0709 (10)
N20.8933 (8)0.36972 (18)0.16644 (18)0.0475 (9)
H2N0.96340.32940.17850.057*
C90.6865 (9)0.3675 (2)0.11456 (19)0.0397 (10)
C100.6162 (10)0.4252 (2)0.0737 (2)0.0464 (11)
H100.70390.46900.07990.056*
C110.4147 (10)0.4168 (2)0.0239 (2)0.0499 (12)
C120.2819 (9)0.3533 (3)0.0127 (2)0.0528 (12)
H120.14760.34890.02180.063*
C130.3519 (12)0.2959 (3)0.0536 (2)0.0576 (13)
H130.26190.25250.04730.069*
C140.5532 (9)0.3025 (2)0.1035 (2)0.0490 (12)
H140.60130.26320.13020.059*
C150.9939 (9)0.4277 (3)0.1993 (2)0.0490 (12)
C161.2135 (10)0.4133 (3)0.2521 (3)0.0652 (14)
H16A1.26630.36400.25020.078*
H16B1.14160.42420.29710.078*
H16C1.37390.44260.24290.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1400 (6)0.0715 (4)0.0768 (4)0.0319 (4)0.0121 (4)0.0259 (3)
O10.110 (3)0.046 (2)0.080 (2)0.013 (2)0.022 (2)0.0251 (19)
N10.067 (3)0.035 (2)0.057 (2)0.0055 (19)0.003 (2)0.012 (2)
C10.058 (3)0.045 (3)0.044 (3)0.005 (2)0.005 (2)0.006 (2)
C20.065 (3)0.045 (3)0.047 (2)0.004 (2)0.003 (3)0.003 (2)
C30.075 (4)0.064 (3)0.043 (3)0.021 (3)0.007 (3)0.006 (3)
C40.068 (4)0.108 (5)0.046 (3)0.021 (3)0.008 (3)0.009 (3)
C50.089 (5)0.096 (5)0.070 (4)0.020 (3)0.014 (4)0.002 (4)
C60.083 (4)0.059 (3)0.065 (3)0.009 (3)0.003 (3)0.009 (3)
C70.067 (4)0.045 (3)0.052 (3)0.007 (2)0.002 (3)0.008 (2)
C80.086 (5)0.065 (3)0.066 (3)0.005 (3)0.012 (3)0.002 (3)
Br20.1222 (5)0.0670 (4)0.0866 (4)0.0074 (4)0.0273 (4)0.0277 (3)
O20.091 (3)0.0351 (18)0.086 (2)0.0039 (19)0.014 (2)0.0108 (17)
N20.058 (3)0.0299 (19)0.054 (2)0.0034 (19)0.000 (2)0.0001 (18)
C90.044 (3)0.035 (2)0.040 (2)0.000 (2)0.004 (2)0.003 (2)
C100.051 (3)0.035 (2)0.053 (3)0.002 (2)0.001 (3)0.005 (2)
C110.059 (3)0.044 (3)0.047 (3)0.008 (2)0.003 (3)0.007 (2)
C120.048 (3)0.058 (3)0.052 (3)0.002 (2)0.003 (2)0.006 (2)
C130.056 (3)0.051 (3)0.066 (3)0.002 (3)0.007 (3)0.011 (3)
C140.053 (3)0.035 (3)0.058 (3)0.000 (2)0.006 (3)0.002 (2)
C150.050 (3)0.047 (3)0.050 (3)0.001 (3)0.001 (3)0.007 (3)
C160.065 (4)0.062 (3)0.069 (3)0.009 (3)0.007 (3)0.012 (3)
Geometric parameters (Å, º) top
Br1—C31.897 (5)Br2—C111.895 (4)
O1—C71.209 (5)O2—C151.220 (5)
N1—C71.346 (5)N2—C151.349 (5)
N1—C11.398 (5)N2—C91.411 (5)
N1—H1N0.8600N2—H2N0.8600
C1—C21.394 (6)C9—C101.383 (5)
C1—C61.400 (6)C9—C141.392 (6)
C2—C31.372 (6)C10—C111.374 (6)
C2—H20.9300C10—H100.9300
C3—C41.364 (7)C11—C121.369 (6)
C4—C51.390 (7)C12—C131.377 (6)
C4—H40.9300C12—H120.9300
C5—C61.377 (7)C13—C141.371 (6)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H140.9300
C7—C81.514 (6)C15—C161.490 (6)
C8—H8A0.9600C16—H16A0.9600
C8—H8B0.9600C16—H16B0.9600
C8—H8C0.9600C16—H16C0.9600
C7—N1—C1128.1 (4)C15—N2—C9127.6 (4)
C7—N1—H1N116.0C15—N2—H2N116.2
C1—N1—H1N116.0C9—N2—H2N116.2
C2—C1—N1123.0 (4)C10—C9—C14119.1 (4)
C2—C1—C6119.5 (5)C10—C9—N2123.7 (4)
N1—C1—C6117.5 (4)C14—C9—N2117.2 (4)
C3—C2—C1119.0 (5)C11—C10—C9118.9 (4)
C3—C2—H2120.5C11—C10—H10120.5
C1—C2—H2120.5C9—C10—H10120.5
C4—C3—C2122.7 (5)C12—C11—C10122.5 (4)
C4—C3—Br1119.1 (4)C12—C11—Br2118.5 (4)
C2—C3—Br1118.2 (4)C10—C11—Br2119.0 (3)
C3—C4—C5118.3 (5)C11—C12—C13118.4 (4)
C3—C4—H4120.8C11—C12—H12120.8
C5—C4—H4120.8C13—C12—H12120.8
C6—C5—C4121.0 (5)C14—C13—C12120.4 (4)
C6—C5—H5119.5C14—C13—H13119.8
C4—C5—H5119.5C12—C13—H13119.8
C5—C6—C1119.6 (5)C13—C14—C9120.6 (4)
C5—C6—H6120.2C13—C14—H14119.7
C1—C6—H6120.2C9—C14—H14119.7
O1—C7—N1123.7 (4)O2—C15—N2122.2 (4)
O1—C7—C8121.3 (4)O2—C15—C16122.3 (4)
N1—C7—C8115.0 (4)N2—C15—C16115.5 (4)
C7—C8—H8A109.5C15—C16—H16A109.5
C7—C8—H8B109.5C15—C16—H16B109.5
H8A—C8—H8B109.5H16A—C16—H16B109.5
C7—C8—H8C109.5C15—C16—H16C109.5
H8A—C8—H8C109.5H16A—C16—H16C109.5
H8B—C8—H8C109.5H16B—C16—H16C109.5
C7—N1—C1—C222.3 (7)C15—N2—C9—C1021.5 (6)
C7—N1—C1—C6160.8 (4)C15—N2—C9—C14160.2 (4)
N1—C1—C2—C3177.9 (4)C14—C9—C10—C110.7 (6)
C6—C1—C2—C31.0 (7)N2—C9—C10—C11178.9 (4)
C1—C2—C3—C40.4 (7)C9—C10—C11—C120.5 (7)
C1—C2—C3—Br1177.6 (3)C9—C10—C11—Br2178.0 (3)
C2—C3—C4—C50.4 (8)C10—C11—C12—C130.7 (7)
Br1—C3—C4—C5177.6 (4)Br2—C11—C12—C13177.8 (4)
C3—C4—C5—C61.0 (8)C11—C12—C13—C141.1 (7)
C4—C5—C6—C11.7 (8)C12—C13—C14—C91.2 (7)
C2—C1—C6—C51.7 (7)C10—C9—C14—C131.0 (6)
N1—C1—C6—C5178.7 (4)N2—C9—C14—C13179.4 (4)
C1—N1—C7—O13.1 (8)C9—N2—C15—O22.2 (7)
C1—N1—C7—C8177.9 (4)C9—N2—C15—C16179.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.052.887 (5)166
N2—H2N···O10.862.102.953 (5)169
Symmetry code: (i) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H8BrNO
Mr214.06
Crystal system, space groupOrthorhombic, P212121
Temperature (K)299
a, b, c (Å)4.7836 (6), 18.765 (1), 19.379 (2)
V3)1739.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)4.67
Crystal size (mm)0.44 × 0.10 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.226, 0.685
No. of measured, independent and
observed [I > 2σ(I)] reflections
9612, 3449, 2043
Rint0.034
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.093, 0.99
No. of reflections3449
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.49
Absolute structureFlack (1983), 1366 Friedel pairs
Absolute structure parameter0.008 (13)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.052.887 (5)166
N2—H2N···O10.862.102.953 (5)169
Symmetry code: (i) x+2, y1/2, z+1/2.
 

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o949.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595–599.  CAS Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1039
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds