organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1063

2-(4-Methyl­phen­yl)-1H-anthraceno[1,2-d]imidazole-6,11-dione: a fluorescent chemosensor

aNúcleo de Pesquisas em Produtos Naturais, Universidade Federal do Rio de Janeiro, 21944-971 Rio de Janeiro, RJ, Brazil, bInstituto de Química, Universidade de Brasília, 70910-970 Brasília, DF, Brazil, cUniversidade Estadual da Zona Oeste (UEZO), 23070-200 Rio de Janeiro, RJ, Brazil, and dInstituto de Física de São Carlos, Universidade de São Paulo – USP, 13560-970 São Carlos, SP, Brazil
*Correspondence e-mail: casimone@ifsc.usp.br

(Received 6 April 2009; accepted 10 April 2009; online 18 April 2009)

In the title compound, C22H14N2O2, the five rings of the mol­ecule are not coplanar. There is a significant twist between the four fused rings, which have a slightly arched conformation, and the pendant aromatic ring, as seen in the dihedral angle of 13.16 (8)° between the anthraquinonic ring system and the pendant aromatic ring plane.

Related literature

For general background on organic fluoro­phores, see: Czarnik (1994[Czarnik, A. W. (1994). Acc. Chem. Res. 27, 302-308.]); Friend et al. (1999[Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bre'das, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121-128.]); Joux & Lebaron (2000[Joux, F. & Lebaron, P. (2000). Microbes Infect. 2, 1523-1535.]); Kasten (1999[Kasten, F. H. (1999). Biological Techniques: Fluorescent and Luminescent Probes for Biological Activity - A Practical Guide to Technology for Quantitative Realtime Analysis, 2nd ed., edited by W. T. Mason, pp. 17-39. San Diego: Academic Press.]); Soukos et al. (2000[Soukos, N. S., Crowley, K., Bamberg, M. P., Gillies, R., Doukas, A. G., Evans, R. & Kollias, N. (2000). Forensic Sci. Int. 114, 133-138.]); Zhu et al. (2008[Zhu, X., Gong, A., Wang, B. & Yu, S. (2008). J. Lumin. 128, 1815-1818.]). For related structures and applications, see: Peng et al. (2005[Peng, X., Wu, Y., Fan, J., Tian, M. & Han, K. (2005). J. Org. Chem. 70, 10524-10531.]); Boiocchi et al. (2004[Boiocchi, M., Del Boca, L., Gmez, D. E., Fabbrizzi, L., Licchelli, M. & Monzani, E. (2004). J. Am. Chem. Soc. 126, 16507-16514.]); Yoshida et al. (2002[Yoshida, K., Ooyama, Y., Miyazaki, H. & Watanabe, S. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 700-707.]).

[Scheme 1]

Experimental

Crystal data
  • C22H14N2O2

  • Mr = 338.35

  • Orthorhombic, P b c a

  • a = 7.3850 (10) Å

  • b = 14.0730 (4) Å

  • c = 30.5630 (9) Å

  • V = 3176.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.14 × 0.14 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 20847 measured reflections

  • 3643 independent reflections

  • 2282 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.155

  • S = 1.05

  • 3643 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, much attention has been devoted to the study of organic fluorophores because of their potential use in analytical chemistry (Czarnik, 1994), optoeletronics (Friend et al., 1999), dye technologies (Joux & Lebaron, 1988; Kasten, 1999), forensic chemistry (Soukos et al., 2000), and in pharmaceutical analysis evaluations (Zhu et al., 2008). In addition, specific and sensitive chemosensors for anions are of great importance in environmental science (Peng et al., 2005). The N—H···F interaction is already well known (Boiocchi et al., 2004) and can be exploited in the development of new molecules to function as fluorescent probes for fluoride. For instance, one such class of probe are the anthraimidazolic-derived quinones that can be deprotonated in the presence of anions to enhance their natural fluorescence by a supposed mechanism of photo-induced electron transfer (PET) or via a bathochromic shift of the absorption bands promoted by charge transfer (CT) (Peng et al., 2005). Although many photophysical properties of fluorophores are well known in solution, only a few are known in solid-state (Yoshida et al., 2002). In this paper we report the molecular structure of the 2-p-tolyl-1H-anthra[1,2-d]imidazole-6,11-dione, (I), a fluorescent probe synthesized in our laboratory.

In (I), the rings are not co-planar (Fig. 1). The anthraquinonic ring is almost planar with the greatest deviation from the least-squares plane of 0.102 (2) Å being exhibited by atom C7. The dihedral angle between the anthraquinonic ring [C2—C11] and the benzene ring [C12—C17] planes is 13.16 (8)°.

Related literature top

For general background on organic

fluorophores, see: Czarnik (1994); Friend et al. (1999); Joux & Lebaron (1988); Kasten (1999); Soukos et al. (2000); Zhu et al. (2008). For related structures and applications, see: Peng et al. (2005); Boiocchi et al. (2004); Yoshida et al. (2002).

Experimental top

To an acetic acid solution (25 ml) of the 1,2-diaminoanthraquinone (238 mg, 1 mmol), p-methyl-benzaldehyde (132 mg, 1.1 mmol) and sodium acetate (107 mg, 1.3 mmol) were added. The mixture was left under agitation and reflux for 30 min. The reaction was leaked into cold water (50 ml) which precipitated a yellow solid that was filtered under vacuum. The new anthraimidazole derivate (I) was purified by column chromatography over silica-gel, using a dichloromethane/ethyl acetate (5:1) mixture as eluent and obtained as yellow crystals in 69.5% yield (235 mg, 0.70 mmol); m.p. 522 K. 1H NMR (300 MHz, CDCl3) δ: 8.33–8.30 (m, 1H); 8.27–8.24 (m, 1H); 8.20 (d, J = 8.79 Hz, 1H); 8.08 (d, J = 7.91 Hz, 2H); 8.03 (d, J = 8.79 Hz, 1H); 7.83–7.75 (m, 2H); 7.37 (d, J = 7.91 Hz, 2H); 2.46 p.p.m. (s, 3H); N—H not obs. 13C NMR (300 MHz, CDCl3): δ: 21.8, 117.82, 121.87, 125.40, 125.74, 126.37, 126.79, 126.91, 127.48, 128.35, 129.91, 129.91, 133.14, 133.23, 133.63, 133.94, 134.29, 141.94, 149.53, 156.78, 183.1, 183.1 p.p.m.

Refinement top

H atoms were located on stereochemical grounds and refined with fixed geometry, each riding on a carrier atom, with C—H = 0.93 - 0.98 Å and Uiso = 1.5 (for methyl-H) and 1.2 (other H atoms) Ueq(carrier atom).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Projection of (I), showing the atom labelling with 50% probability displacement ellipsoids.
2-(4-Methylphenyl)-1H-anthraceno[1,2-d]imidazole-6,11-dione top
Crystal data top
C22H14N2O2F(000) = 1408
Mr = 338.35Dx = 1.415 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 14527 reflections
a = 7.385 (1) Åθ = 2.9–27.5°
b = 14.0730 (4) ŵ = 0.09 mm1
c = 30.5630 (9) ÅT = 295 K
V = 3176.4 (4) Å3Prism, yellow
Z = 80.14 × 0.14 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
2282 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590Rint = 0.066
Horizonally mounted graphite crystal monochromatorθmax = 27.5°, θmin = 3.0°
Detector resolution: 9 pixels mm-1h = 97
CCD rotation images, thick slices scansk = 1418
20847 measured reflectionsl = 3938
3643 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0589P)2 + 1.2992P]
where P = (Fo2 + 2Fc2)/3
3643 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C22H14N2O2V = 3176.4 (4) Å3
Mr = 338.35Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.385 (1) ŵ = 0.09 mm1
b = 14.0730 (4) ÅT = 295 K
c = 30.5630 (9) Å0.14 × 0.14 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
2282 reflections with I > 2σ(I)
20847 measured reflectionsRint = 0.066
3643 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
3643 reflectionsΔρmin = 0.20 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7524 (2)0.58882 (10)0.24672 (5)0.0537 (4)
O20.4748 (2)0.25831 (11)0.30424 (6)0.0632 (5)
N10.6678 (2)0.53709 (11)0.16053 (6)0.0413 (4)
H1N0.70630.59040.17060.050*
N20.5832 (2)0.42641 (11)0.11186 (6)0.0454 (4)
C10.6423 (3)0.51458 (14)0.11723 (7)0.0420 (5)
C20.5674 (3)0.39056 (14)0.15381 (7)0.0420 (5)
C30.5055 (3)0.30226 (14)0.16831 (8)0.0480 (5)
H30.47090.25560.14840.058*
C40.4967 (3)0.28566 (14)0.21264 (8)0.0476 (5)
H40.45460.22720.22250.057*
C4A0.5494 (3)0.35426 (13)0.24325 (7)0.0406 (5)
C50.5310 (3)0.33481 (15)0.29076 (8)0.0454 (5)
C5A0.5811 (3)0.41206 (14)0.32185 (7)0.0440 (5)
C60.5545 (3)0.39803 (18)0.36653 (8)0.0567 (6)
H60.50560.34120.37660.068*
C70.6007 (3)0.46845 (19)0.39578 (8)0.0632 (7)
H70.57870.45970.42550.076*
C80.6794 (3)0.55197 (18)0.38151 (8)0.0621 (7)
H80.71330.59820.40160.075*
C90.7077 (3)0.56666 (16)0.33750 (8)0.0506 (6)
H90.76090.62280.32790.061*
C9A0.6566 (3)0.49753 (14)0.30745 (7)0.0420 (5)
C100.6808 (3)0.51561 (14)0.26033 (7)0.0399 (5)
C10A0.6161 (3)0.44294 (13)0.22942 (7)0.0380 (5)
C110.6208 (3)0.45918 (13)0.18450 (7)0.0381 (5)
C120.6719 (3)0.58162 (14)0.08136 (7)0.0428 (5)
C130.7054 (3)0.67704 (15)0.08847 (8)0.0504 (6)
H130.71510.69970.11700.060*
C140.7245 (3)0.73941 (16)0.05371 (8)0.0558 (6)
H140.74810.80320.05930.067*
C150.7090 (3)0.70857 (17)0.01088 (8)0.0526 (6)
C160.6790 (3)0.61297 (17)0.00396 (8)0.0595 (6)
H160.67020.59040.02460.071*
C170.6617 (3)0.55016 (16)0.03836 (8)0.0560 (6)
H170.64290.48600.03270.067*
C180.7200 (4)0.7767 (2)0.02702 (9)0.0722 (8)
H18A0.84010.80260.02870.108*
H18B0.63450.82730.02280.108*
H18C0.69260.74370.05370.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0679 (10)0.0417 (8)0.0517 (10)0.0081 (7)0.0037 (8)0.0011 (7)
O20.0776 (11)0.0491 (9)0.0630 (11)0.0064 (8)0.0067 (9)0.0101 (8)
N10.0463 (9)0.0352 (9)0.0424 (11)0.0031 (7)0.0018 (8)0.0024 (8)
N20.0500 (10)0.0411 (10)0.0452 (11)0.0008 (8)0.0006 (8)0.0064 (8)
C10.0414 (11)0.0418 (11)0.0427 (13)0.0036 (9)0.0024 (9)0.0058 (10)
C20.0402 (10)0.0403 (11)0.0456 (12)0.0030 (9)0.0003 (9)0.0045 (10)
C30.0529 (13)0.0362 (11)0.0550 (15)0.0020 (9)0.0011 (11)0.0098 (10)
C40.0491 (12)0.0351 (11)0.0586 (15)0.0019 (9)0.0037 (11)0.0012 (10)
C4A0.0379 (10)0.0360 (10)0.0478 (13)0.0042 (8)0.0018 (9)0.0012 (10)
C50.0398 (11)0.0414 (12)0.0550 (14)0.0047 (9)0.0035 (10)0.0074 (10)
C5A0.0382 (11)0.0488 (12)0.0452 (13)0.0075 (9)0.0030 (9)0.0022 (10)
C60.0529 (13)0.0672 (15)0.0499 (15)0.0062 (11)0.0004 (11)0.0078 (13)
C70.0656 (15)0.0835 (19)0.0405 (14)0.0123 (14)0.0019 (12)0.0012 (13)
C80.0679 (16)0.0670 (16)0.0515 (16)0.0107 (13)0.0098 (12)0.0144 (13)
C90.0547 (13)0.0490 (12)0.0482 (14)0.0087 (10)0.0067 (11)0.0057 (11)
C9A0.0400 (11)0.0428 (11)0.0432 (13)0.0098 (9)0.0037 (9)0.0006 (10)
C100.0391 (10)0.0338 (10)0.0468 (13)0.0044 (9)0.0032 (9)0.0005 (9)
C10A0.0344 (10)0.0369 (10)0.0426 (12)0.0051 (8)0.0004 (8)0.0027 (9)
C110.0369 (10)0.0341 (10)0.0435 (12)0.0013 (8)0.0002 (9)0.0029 (9)
C120.0431 (11)0.0441 (12)0.0412 (12)0.0005 (9)0.0005 (9)0.0028 (10)
C130.0598 (14)0.0479 (13)0.0434 (13)0.0037 (10)0.0031 (10)0.0052 (10)
C140.0656 (15)0.0490 (13)0.0526 (15)0.0101 (11)0.0020 (11)0.0014 (11)
C150.0445 (12)0.0649 (15)0.0484 (14)0.0049 (11)0.0024 (10)0.0066 (12)
C160.0709 (16)0.0690 (16)0.0387 (13)0.0046 (13)0.0007 (11)0.0036 (12)
C170.0713 (15)0.0505 (13)0.0463 (14)0.0040 (11)0.0021 (11)0.0087 (11)
C180.0713 (17)0.0866 (19)0.0587 (17)0.0103 (14)0.0009 (13)0.0207 (15)
Geometric parameters (Å, º) top
O1—C101.231 (2)C7—H70.9300
O2—C51.225 (2)C8—C91.377 (3)
N1—C111.364 (2)C8—H80.9300
N1—C11.374 (3)C9—C9A1.390 (3)
N1—H1N0.8600C9—H90.9300
N2—C11.325 (2)C9A—C101.473 (3)
N2—C21.383 (3)C10—C10A1.472 (3)
C1—C121.463 (3)C10A—C111.392 (3)
C2—C31.396 (3)C12—C131.383 (3)
C2—C111.403 (3)C12—C171.389 (3)
C3—C41.376 (3)C13—C141.385 (3)
C3—H30.9300C13—H130.9300
C4—C4A1.399 (3)C14—C151.384 (3)
C4—H40.9300C14—H140.9300
C4A—C10A1.407 (3)C15—C161.380 (3)
C4A—C51.484 (3)C15—C181.506 (3)
C5—C5A1.491 (3)C16—C171.380 (3)
C5A—C61.393 (3)C16—H160.9300
C5A—C9A1.397 (3)C17—H170.9300
C6—C71.378 (3)C18—H18A0.9600
C6—H60.9300C18—H18B0.9600
C7—C81.382 (3)C18—H18C0.9600
C11—N1—C1107.29 (16)C9—C9A—C5A120.2 (2)
C11—N1—H1N126.4C9—C9A—C10119.47 (19)
C1—N1—H1N126.4C5A—C9A—C10120.34 (19)
C1—N2—C2104.75 (17)O1—C10—C10A120.28 (19)
N2—C1—N1112.35 (18)O1—C10—C9A121.81 (19)
N2—C1—C12124.07 (19)C10A—C10—C9A117.91 (18)
N1—C1—C12123.55 (18)C11—C10A—C4A116.79 (18)
N2—C2—C3130.29 (19)C11—C10A—C10120.72 (18)
N2—C2—C11110.19 (17)C4A—C10A—C10122.48 (19)
C3—C2—C11119.5 (2)N1—C11—C10A131.92 (18)
C4—C3—C2118.6 (2)N1—C11—C2105.41 (18)
C4—C3—H3120.7C10A—C11—C2122.65 (18)
C2—C3—H3120.7C13—C12—C17117.9 (2)
C3—C4—C4A121.86 (19)C13—C12—C1122.37 (19)
C3—C4—H4119.1C17—C12—C1119.70 (19)
C4A—C4—H4119.1C12—C13—C14120.9 (2)
C4—C4A—C10A120.6 (2)C12—C13—H13119.6
C4—C4A—C5120.09 (18)C14—C13—H13119.6
C10A—C4A—C5119.33 (18)C15—C14—C13121.2 (2)
O2—C5—C4A121.5 (2)C15—C14—H14119.4
O2—C5—C5A120.7 (2)C13—C14—H14119.4
C4A—C5—C5A117.81 (18)C16—C15—C14117.6 (2)
C6—C5A—C9A119.1 (2)C16—C15—C18120.8 (2)
C6—C5A—C5119.1 (2)C14—C15—C18121.6 (2)
C9A—C5A—C5121.8 (2)C17—C16—C15121.5 (2)
C7—C6—C5A119.9 (2)C17—C16—H16119.2
C7—C6—H6120.0C15—C16—H16119.2
C5A—C6—H6120.0C16—C17—C12120.8 (2)
C6—C7—C8120.8 (2)C16—C17—H17119.6
C6—C7—H7119.6C12—C17—H17119.6
C8—C7—H7119.6C15—C18—H18A109.5
C9—C8—C7120.0 (2)C15—C18—H18B109.5
C9—C8—H8120.0H18A—C18—H18B109.5
C7—C8—H8120.0C15—C18—H18C109.5
C8—C9—C9A120.0 (2)H18A—C18—H18C109.5
C8—C9—H9120.0H18B—C18—H18C109.5
C9A—C9—H9120.0
C2—N2—C1—N10.8 (2)C5A—C9A—C10—C10A2.6 (3)
C2—N2—C1—C12177.41 (18)C4—C4A—C10A—C112.0 (3)
C11—N1—C1—N20.6 (2)C5—C4A—C10A—C11176.46 (17)
C11—N1—C1—C12177.64 (18)C4—C4A—C10A—C10177.16 (18)
C1—N2—C2—C3177.6 (2)C5—C4A—C10A—C104.4 (3)
C1—N2—C2—C110.7 (2)O1—C10—C10A—C115.4 (3)
N2—C2—C3—C4177.4 (2)C9A—C10—C10A—C11174.48 (17)
C11—C2—C3—C40.8 (3)O1—C10—C10A—C4A173.70 (18)
C2—C3—C4—C4A0.6 (3)C9A—C10—C10A—C4A6.4 (3)
C3—C4—C4A—C10A0.9 (3)C1—N1—C11—C10A178.3 (2)
C3—C4—C4A—C5177.60 (18)C1—N1—C11—C20.1 (2)
C4—C4A—C5—O22.1 (3)C4A—C10A—C11—N1176.36 (19)
C10A—C4A—C5—O2179.44 (19)C10—C10A—C11—N14.5 (3)
C4—C4A—C5—C5A177.22 (18)C4A—C10A—C11—C21.8 (3)
C10A—C4A—C5—C5A1.2 (3)C10—C10A—C11—C2177.34 (17)
O2—C5—C5A—C63.3 (3)N2—C2—C11—N10.4 (2)
C4A—C5—C5A—C6176.00 (18)C3—C2—C11—N1178.13 (17)
O2—C5—C5A—C9A175.73 (19)N2—C2—C11—C10A179.00 (17)
C4A—C5—C5A—C9A5.0 (3)C3—C2—C11—C10A0.5 (3)
C9A—C5A—C6—C70.7 (3)N2—C1—C12—C13169.3 (2)
C5—C5A—C6—C7179.74 (19)N1—C1—C12—C138.7 (3)
C5A—C6—C7—C82.3 (3)N2—C1—C12—C178.8 (3)
C6—C7—C8—C91.9 (4)N1—C1—C12—C17173.16 (19)
C7—C8—C9—C9A0.1 (3)C17—C12—C13—C141.2 (3)
C8—C9—C9A—C5A1.7 (3)C1—C12—C13—C14177.0 (2)
C8—C9—C9A—C10177.59 (19)C12—C13—C14—C150.7 (4)
C6—C5A—C9A—C91.3 (3)C13—C14—C15—C161.8 (3)
C5—C5A—C9A—C9177.70 (18)C13—C14—C15—C18176.8 (2)
C6—C5A—C9A—C10178.00 (18)C14—C15—C16—C171.1 (3)
C5—C5A—C9A—C103.0 (3)C18—C15—C16—C17177.5 (2)
C9—C9A—C10—O13.2 (3)C15—C16—C17—C120.7 (4)
C5A—C9A—C10—O1177.51 (18)C13—C12—C17—C161.9 (3)
C9—C9A—C10—C10A176.75 (17)C1—C12—C17—C16176.3 (2)

Experimental details

Crystal data
Chemical formulaC22H14N2O2
Mr338.35
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)7.385 (1), 14.0730 (4), 30.5630 (9)
V3)3176.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.14 × 0.14 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20847, 3643, 2282
Rint0.066
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.155, 1.05
No. of reflections3643
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

This work has received partial support from CNPq, FAPERJ, CAPES, FAPEAL, IM–INOFAR, USP and FINEP.

References

First citationBoiocchi, M., Del Boca, L., Gmez, D. E., Fabbrizzi, L., Licchelli, M. & Monzani, E. (2004). J. Am. Chem. Soc. 126, 16507–16514.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCzarnik, A. W. (1994). Acc. Chem. Res. 27, 302–308.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFriend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bre'das, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121–128.  Web of Science CrossRef CAS Google Scholar
First citationJoux, F. & Lebaron, P. (2000). Microbes Infect. 2, 1523–1535.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKasten, F. H. (1999). Biological Techniques: Fluorescent and Luminescent Probes for Biological Activity – A Practical Guide to Technology for Quantitative Realtime Analysis, 2nd ed., edited by W. T. Mason, pp. 17–39. San Diego: Academic Press.  Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPeng, X., Wu, Y., Fan, J., Tian, M. & Han, K. (2005). J. Org. Chem. 70, 10524–10531.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoukos, N. S., Crowley, K., Bamberg, M. P., Gillies, R., Doukas, A. G., Evans, R. & Kollias, N. (2000). Forensic Sci. Int. 114, 133–138.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYoshida, K., Ooyama, Y., Miyazaki, H. & Watanabe, S. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 700–707.  CSD CrossRef Google Scholar
First citationZhu, X., Gong, A., Wang, B. & Yu, S. (2008). J. Lumin. 128, 1815–1818.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1063
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds