organic compounds
2-(4-Methylphenyl)-1H-anthraceno[1,2-d]imidazole-6,11-dione: a fluorescent chemosensor
aNúcleo de Pesquisas em Produtos Naturais, Universidade Federal do Rio de Janeiro, 21944-971 Rio de Janeiro, RJ, Brazil, bInstituto de Química, Universidade de Brasília, 70910-970 Brasília, DF, Brazil, cUniversidade Estadual da Zona Oeste (UEZO), 23070-200 Rio de Janeiro, RJ, Brazil, and dInstituto de Física de São Carlos, Universidade de São Paulo – USP, 13560-970 São Carlos, SP, Brazil
*Correspondence e-mail: casimone@ifsc.usp.br
In the title compound, C22H14N2O2, the five rings of the molecule are not coplanar. There is a significant twist between the four fused rings, which have a slightly arched conformation, and the pendant aromatic ring, as seen in the dihedral angle of 13.16 (8)° between the anthraquinonic ring system and the pendant aromatic ring plane.
Related literature
For general background on organic fluorophores, see: Czarnik (1994); Friend et al. (1999); Joux & Lebaron (2000); Kasten (1999); Soukos et al. (2000); Zhu et al. (2008). For related structures and applications, see: Peng et al. (2005); Boiocchi et al. (2004); Yoshida et al. (2002).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809013634/tk2418sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809013634/tk2418Isup2.hkl
To an acetic acid solution (25 ml) of the 1,2-diaminoanthraquinone (238 mg, 1 mmol), p-methyl-benzaldehyde (132 mg, 1.1 mmol) and sodium acetate (107 mg, 1.3 mmol) were added. The mixture was left under agitation and reflux for 30 min. The reaction was leaked into cold water (50 ml) which precipitated a yellow solid that was filtered under vacuum. The new anthraimidazole derivate (I) was purified by δ: 8.33–8.30 (m, 1H); 8.27–8.24 (m, 1H); 8.20 (d, J = 8.79 Hz, 1H); 8.08 (d, J = 7.91 Hz, 2H); 8.03 (d, J = 8.79 Hz, 1H); 7.83–7.75 (m, 2H); 7.37 (d, J = 7.91 Hz, 2H); 2.46 p.p.m. (s, 3H); N—H not obs. 13C NMR (300 MHz, CDCl3): δ: 21.8, 117.82, 121.87, 125.40, 125.74, 126.37, 126.79, 126.91, 127.48, 128.35, 129.91, 129.91, 133.14, 133.23, 133.63, 133.94, 134.29, 141.94, 149.53, 156.78, 183.1, 183.1 p.p.m.
over silica-gel, using a dichloromethane/ethyl acetate (5:1) mixture as and obtained as yellow crystals in 69.5% yield (235 mg, 0.70 mmol); m.p. 522 K. 1H NMR (300 MHz, CDCl3)H atoms were located on stereochemical grounds and refined with fixed geometry, each riding on a
with C—H = 0.93 - 0.98 Å and Uiso = 1.5 (for methyl-H) and 1.2 (other H atoms) Ueq(carrier atom).Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Projection of (I), showing the atom labelling with 50% probability displacement ellipsoids. |
C22H14N2O2 | F(000) = 1408 |
Mr = 338.35 | Dx = 1.415 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 14527 reflections |
a = 7.385 (1) Å | θ = 2.9–27.5° |
b = 14.0730 (4) Å | µ = 0.09 mm−1 |
c = 30.5630 (9) Å | T = 295 K |
V = 3176.4 (4) Å3 | Prism, yellow |
Z = 8 | 0.14 × 0.14 × 0.07 mm |
Nonius KappaCCD diffractometer | 2282 reflections with I > 2σ(I) |
Radiation source: Enraf–Nonius FR590 | Rint = 0.066 |
Horizonally mounted graphite crystal monochromator | θmax = 27.5°, θmin = 3.0° |
Detector resolution: 9 pixels mm-1 | h = −9→7 |
CCD rotation images, thick slices scans | k = −14→18 |
20847 measured reflections | l = −39→38 |
3643 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.155 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0589P)2 + 1.2992P] where P = (Fo2 + 2Fc2)/3 |
3643 reflections | (Δ/σ)max < 0.001 |
235 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C22H14N2O2 | V = 3176.4 (4) Å3 |
Mr = 338.35 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 7.385 (1) Å | µ = 0.09 mm−1 |
b = 14.0730 (4) Å | T = 295 K |
c = 30.5630 (9) Å | 0.14 × 0.14 × 0.07 mm |
Nonius KappaCCD diffractometer | 2282 reflections with I > 2σ(I) |
20847 measured reflections | Rint = 0.066 |
3643 independent reflections |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.155 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.18 e Å−3 |
3643 reflections | Δρmin = −0.20 e Å−3 |
235 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7524 (2) | 0.58882 (10) | 0.24672 (5) | 0.0537 (4) | |
O2 | 0.4748 (2) | 0.25831 (11) | 0.30424 (6) | 0.0632 (5) | |
N1 | 0.6678 (2) | 0.53709 (11) | 0.16053 (6) | 0.0413 (4) | |
H1N | 0.7063 | 0.5904 | 0.1706 | 0.050* | |
N2 | 0.5832 (2) | 0.42641 (11) | 0.11186 (6) | 0.0454 (4) | |
C1 | 0.6423 (3) | 0.51458 (14) | 0.11723 (7) | 0.0420 (5) | |
C2 | 0.5674 (3) | 0.39056 (14) | 0.15381 (7) | 0.0420 (5) | |
C3 | 0.5055 (3) | 0.30226 (14) | 0.16831 (8) | 0.0480 (5) | |
H3 | 0.4709 | 0.2556 | 0.1484 | 0.058* | |
C4 | 0.4967 (3) | 0.28566 (14) | 0.21264 (8) | 0.0476 (5) | |
H4 | 0.4546 | 0.2272 | 0.2225 | 0.057* | |
C4A | 0.5494 (3) | 0.35426 (13) | 0.24325 (7) | 0.0406 (5) | |
C5 | 0.5310 (3) | 0.33481 (15) | 0.29076 (8) | 0.0454 (5) | |
C5A | 0.5811 (3) | 0.41206 (14) | 0.32185 (7) | 0.0440 (5) | |
C6 | 0.5545 (3) | 0.39803 (18) | 0.36653 (8) | 0.0567 (6) | |
H6 | 0.5056 | 0.3412 | 0.3766 | 0.068* | |
C7 | 0.6007 (3) | 0.46845 (19) | 0.39578 (8) | 0.0632 (7) | |
H7 | 0.5787 | 0.4597 | 0.4255 | 0.076* | |
C8 | 0.6794 (3) | 0.55197 (18) | 0.38151 (8) | 0.0621 (7) | |
H8 | 0.7133 | 0.5982 | 0.4016 | 0.075* | |
C9 | 0.7077 (3) | 0.56666 (16) | 0.33750 (8) | 0.0506 (6) | |
H9 | 0.7609 | 0.6228 | 0.3279 | 0.061* | |
C9A | 0.6566 (3) | 0.49753 (14) | 0.30745 (7) | 0.0420 (5) | |
C10 | 0.6808 (3) | 0.51561 (14) | 0.26033 (7) | 0.0399 (5) | |
C10A | 0.6161 (3) | 0.44294 (13) | 0.22942 (7) | 0.0380 (5) | |
C11 | 0.6208 (3) | 0.45918 (13) | 0.18450 (7) | 0.0381 (5) | |
C12 | 0.6719 (3) | 0.58162 (14) | 0.08136 (7) | 0.0428 (5) | |
C13 | 0.7054 (3) | 0.67704 (15) | 0.08847 (8) | 0.0504 (6) | |
H13 | 0.7151 | 0.6997 | 0.1170 | 0.060* | |
C14 | 0.7245 (3) | 0.73941 (16) | 0.05371 (8) | 0.0558 (6) | |
H14 | 0.7481 | 0.8032 | 0.0593 | 0.067* | |
C15 | 0.7090 (3) | 0.70857 (17) | 0.01088 (8) | 0.0526 (6) | |
C16 | 0.6790 (3) | 0.61297 (17) | 0.00396 (8) | 0.0595 (6) | |
H16 | 0.6702 | 0.5904 | −0.0246 | 0.071* | |
C17 | 0.6617 (3) | 0.55016 (16) | 0.03836 (8) | 0.0560 (6) | |
H17 | 0.6429 | 0.4860 | 0.0327 | 0.067* | |
C18 | 0.7200 (4) | 0.7767 (2) | −0.02702 (9) | 0.0722 (8) | |
H18A | 0.8401 | 0.8026 | −0.0287 | 0.108* | |
H18B | 0.6345 | 0.8273 | −0.0228 | 0.108* | |
H18C | 0.6926 | 0.7437 | −0.0537 | 0.108* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0679 (10) | 0.0417 (8) | 0.0517 (10) | −0.0081 (7) | −0.0037 (8) | −0.0011 (7) |
O2 | 0.0776 (11) | 0.0491 (9) | 0.0630 (11) | −0.0064 (8) | 0.0067 (9) | 0.0101 (8) |
N1 | 0.0463 (9) | 0.0352 (9) | 0.0424 (11) | −0.0031 (7) | −0.0018 (8) | −0.0024 (8) |
N2 | 0.0500 (10) | 0.0411 (10) | 0.0452 (11) | 0.0008 (8) | 0.0006 (8) | −0.0064 (8) |
C1 | 0.0414 (11) | 0.0418 (11) | 0.0427 (13) | 0.0036 (9) | −0.0024 (9) | −0.0058 (10) |
C2 | 0.0402 (10) | 0.0403 (11) | 0.0456 (12) | 0.0030 (9) | −0.0003 (9) | −0.0045 (10) |
C3 | 0.0529 (13) | 0.0362 (11) | 0.0550 (15) | −0.0020 (9) | 0.0011 (11) | −0.0098 (10) |
C4 | 0.0491 (12) | 0.0351 (11) | 0.0586 (15) | −0.0019 (9) | 0.0037 (11) | −0.0012 (10) |
C4A | 0.0379 (10) | 0.0360 (10) | 0.0478 (13) | 0.0042 (8) | 0.0018 (9) | 0.0012 (10) |
C5 | 0.0398 (11) | 0.0414 (12) | 0.0550 (14) | 0.0047 (9) | 0.0035 (10) | 0.0074 (10) |
C5A | 0.0382 (11) | 0.0488 (12) | 0.0452 (13) | 0.0075 (9) | −0.0030 (9) | 0.0022 (10) |
C6 | 0.0529 (13) | 0.0672 (15) | 0.0499 (15) | 0.0062 (11) | 0.0004 (11) | 0.0078 (13) |
C7 | 0.0656 (15) | 0.0835 (19) | 0.0405 (14) | 0.0123 (14) | −0.0019 (12) | 0.0012 (13) |
C8 | 0.0679 (16) | 0.0670 (16) | 0.0515 (16) | 0.0107 (13) | −0.0098 (12) | −0.0144 (13) |
C9 | 0.0547 (13) | 0.0490 (12) | 0.0482 (14) | 0.0087 (10) | −0.0067 (11) | −0.0057 (11) |
C9A | 0.0400 (11) | 0.0428 (11) | 0.0432 (13) | 0.0098 (9) | −0.0037 (9) | −0.0006 (10) |
C10 | 0.0391 (10) | 0.0338 (10) | 0.0468 (13) | 0.0044 (9) | −0.0032 (9) | 0.0005 (9) |
C10A | 0.0344 (10) | 0.0369 (10) | 0.0426 (12) | 0.0051 (8) | 0.0004 (8) | −0.0027 (9) |
C11 | 0.0369 (10) | 0.0341 (10) | 0.0435 (12) | 0.0013 (8) | −0.0002 (9) | −0.0029 (9) |
C12 | 0.0431 (11) | 0.0441 (12) | 0.0412 (12) | 0.0005 (9) | 0.0005 (9) | −0.0028 (10) |
C13 | 0.0598 (14) | 0.0479 (13) | 0.0434 (13) | −0.0037 (10) | −0.0031 (10) | −0.0052 (10) |
C14 | 0.0656 (15) | 0.0490 (13) | 0.0526 (15) | −0.0101 (11) | −0.0020 (11) | 0.0014 (11) |
C15 | 0.0445 (12) | 0.0649 (15) | 0.0484 (14) | −0.0049 (11) | 0.0024 (10) | 0.0066 (12) |
C16 | 0.0709 (16) | 0.0690 (16) | 0.0387 (13) | −0.0046 (13) | 0.0007 (11) | −0.0036 (12) |
C17 | 0.0713 (15) | 0.0505 (13) | 0.0463 (14) | −0.0040 (11) | 0.0021 (11) | −0.0087 (11) |
C18 | 0.0713 (17) | 0.0866 (19) | 0.0587 (17) | −0.0103 (14) | −0.0009 (13) | 0.0207 (15) |
O1—C10 | 1.231 (2) | C7—H7 | 0.9300 |
O2—C5 | 1.225 (2) | C8—C9 | 1.377 (3) |
N1—C11 | 1.364 (2) | C8—H8 | 0.9300 |
N1—C1 | 1.374 (3) | C9—C9A | 1.390 (3) |
N1—H1N | 0.8600 | C9—H9 | 0.9300 |
N2—C1 | 1.325 (2) | C9A—C10 | 1.473 (3) |
N2—C2 | 1.383 (3) | C10—C10A | 1.472 (3) |
C1—C12 | 1.463 (3) | C10A—C11 | 1.392 (3) |
C2—C3 | 1.396 (3) | C12—C13 | 1.383 (3) |
C2—C11 | 1.403 (3) | C12—C17 | 1.389 (3) |
C3—C4 | 1.376 (3) | C13—C14 | 1.385 (3) |
C3—H3 | 0.9300 | C13—H13 | 0.9300 |
C4—C4A | 1.399 (3) | C14—C15 | 1.384 (3) |
C4—H4 | 0.9300 | C14—H14 | 0.9300 |
C4A—C10A | 1.407 (3) | C15—C16 | 1.380 (3) |
C4A—C5 | 1.484 (3) | C15—C18 | 1.506 (3) |
C5—C5A | 1.491 (3) | C16—C17 | 1.380 (3) |
C5A—C6 | 1.393 (3) | C16—H16 | 0.9300 |
C5A—C9A | 1.397 (3) | C17—H17 | 0.9300 |
C6—C7 | 1.378 (3) | C18—H18A | 0.9600 |
C6—H6 | 0.9300 | C18—H18B | 0.9600 |
C7—C8 | 1.382 (3) | C18—H18C | 0.9600 |
C11—N1—C1 | 107.29 (16) | C9—C9A—C5A | 120.2 (2) |
C11—N1—H1N | 126.4 | C9—C9A—C10 | 119.47 (19) |
C1—N1—H1N | 126.4 | C5A—C9A—C10 | 120.34 (19) |
C1—N2—C2 | 104.75 (17) | O1—C10—C10A | 120.28 (19) |
N2—C1—N1 | 112.35 (18) | O1—C10—C9A | 121.81 (19) |
N2—C1—C12 | 124.07 (19) | C10A—C10—C9A | 117.91 (18) |
N1—C1—C12 | 123.55 (18) | C11—C10A—C4A | 116.79 (18) |
N2—C2—C3 | 130.29 (19) | C11—C10A—C10 | 120.72 (18) |
N2—C2—C11 | 110.19 (17) | C4A—C10A—C10 | 122.48 (19) |
C3—C2—C11 | 119.5 (2) | N1—C11—C10A | 131.92 (18) |
C4—C3—C2 | 118.6 (2) | N1—C11—C2 | 105.41 (18) |
C4—C3—H3 | 120.7 | C10A—C11—C2 | 122.65 (18) |
C2—C3—H3 | 120.7 | C13—C12—C17 | 117.9 (2) |
C3—C4—C4A | 121.86 (19) | C13—C12—C1 | 122.37 (19) |
C3—C4—H4 | 119.1 | C17—C12—C1 | 119.70 (19) |
C4A—C4—H4 | 119.1 | C12—C13—C14 | 120.9 (2) |
C4—C4A—C10A | 120.6 (2) | C12—C13—H13 | 119.6 |
C4—C4A—C5 | 120.09 (18) | C14—C13—H13 | 119.6 |
C10A—C4A—C5 | 119.33 (18) | C15—C14—C13 | 121.2 (2) |
O2—C5—C4A | 121.5 (2) | C15—C14—H14 | 119.4 |
O2—C5—C5A | 120.7 (2) | C13—C14—H14 | 119.4 |
C4A—C5—C5A | 117.81 (18) | C16—C15—C14 | 117.6 (2) |
C6—C5A—C9A | 119.1 (2) | C16—C15—C18 | 120.8 (2) |
C6—C5A—C5 | 119.1 (2) | C14—C15—C18 | 121.6 (2) |
C9A—C5A—C5 | 121.8 (2) | C17—C16—C15 | 121.5 (2) |
C7—C6—C5A | 119.9 (2) | C17—C16—H16 | 119.2 |
C7—C6—H6 | 120.0 | C15—C16—H16 | 119.2 |
C5A—C6—H6 | 120.0 | C16—C17—C12 | 120.8 (2) |
C6—C7—C8 | 120.8 (2) | C16—C17—H17 | 119.6 |
C6—C7—H7 | 119.6 | C12—C17—H17 | 119.6 |
C8—C7—H7 | 119.6 | C15—C18—H18A | 109.5 |
C9—C8—C7 | 120.0 (2) | C15—C18—H18B | 109.5 |
C9—C8—H8 | 120.0 | H18A—C18—H18B | 109.5 |
C7—C8—H8 | 120.0 | C15—C18—H18C | 109.5 |
C8—C9—C9A | 120.0 (2) | H18A—C18—H18C | 109.5 |
C8—C9—H9 | 120.0 | H18B—C18—H18C | 109.5 |
C9A—C9—H9 | 120.0 | ||
C2—N2—C1—N1 | 0.8 (2) | C5A—C9A—C10—C10A | 2.6 (3) |
C2—N2—C1—C12 | −177.41 (18) | C4—C4A—C10A—C11 | 2.0 (3) |
C11—N1—C1—N2 | −0.6 (2) | C5—C4A—C10A—C11 | −176.46 (17) |
C11—N1—C1—C12 | 177.64 (18) | C4—C4A—C10A—C10 | −177.16 (18) |
C1—N2—C2—C3 | 177.6 (2) | C5—C4A—C10A—C10 | 4.4 (3) |
C1—N2—C2—C11 | −0.7 (2) | O1—C10—C10A—C11 | −5.4 (3) |
N2—C2—C3—C4 | −177.4 (2) | C9A—C10—C10A—C11 | 174.48 (17) |
C11—C2—C3—C4 | 0.8 (3) | O1—C10—C10A—C4A | 173.70 (18) |
C2—C3—C4—C4A | −0.6 (3) | C9A—C10—C10A—C4A | −6.4 (3) |
C3—C4—C4A—C10A | −0.9 (3) | C1—N1—C11—C10A | −178.3 (2) |
C3—C4—C4A—C5 | 177.60 (18) | C1—N1—C11—C2 | 0.1 (2) |
C4—C4A—C5—O2 | 2.1 (3) | C4A—C10A—C11—N1 | 176.36 (19) |
C10A—C4A—C5—O2 | −179.44 (19) | C10—C10A—C11—N1 | −4.5 (3) |
C4—C4A—C5—C5A | −177.22 (18) | C4A—C10A—C11—C2 | −1.8 (3) |
C10A—C4A—C5—C5A | 1.2 (3) | C10—C10A—C11—C2 | 177.34 (17) |
O2—C5—C5A—C6 | −3.3 (3) | N2—C2—C11—N1 | 0.4 (2) |
C4A—C5—C5A—C6 | 176.00 (18) | C3—C2—C11—N1 | −178.13 (17) |
O2—C5—C5A—C9A | 175.73 (19) | N2—C2—C11—C10A | 179.00 (17) |
C4A—C5—C5A—C9A | −5.0 (3) | C3—C2—C11—C10A | 0.5 (3) |
C9A—C5A—C6—C7 | 0.7 (3) | N2—C1—C12—C13 | 169.3 (2) |
C5—C5A—C6—C7 | 179.74 (19) | N1—C1—C12—C13 | −8.7 (3) |
C5A—C6—C7—C8 | −2.3 (3) | N2—C1—C12—C17 | −8.8 (3) |
C6—C7—C8—C9 | 1.9 (4) | N1—C1—C12—C17 | 173.16 (19) |
C7—C8—C9—C9A | 0.1 (3) | C17—C12—C13—C14 | 1.2 (3) |
C8—C9—C9A—C5A | −1.7 (3) | C1—C12—C13—C14 | −177.0 (2) |
C8—C9—C9A—C10 | 177.59 (19) | C12—C13—C14—C15 | 0.7 (4) |
C6—C5A—C9A—C9 | 1.3 (3) | C13—C14—C15—C16 | −1.8 (3) |
C5—C5A—C9A—C9 | −177.70 (18) | C13—C14—C15—C18 | 176.8 (2) |
C6—C5A—C9A—C10 | −178.00 (18) | C14—C15—C16—C17 | 1.1 (3) |
C5—C5A—C9A—C10 | 3.0 (3) | C18—C15—C16—C17 | −177.5 (2) |
C9—C9A—C10—O1 | 3.2 (3) | C15—C16—C17—C12 | 0.7 (4) |
C5A—C9A—C10—O1 | −177.51 (18) | C13—C12—C17—C16 | −1.9 (3) |
C9—C9A—C10—C10A | −176.75 (17) | C1—C12—C17—C16 | 176.3 (2) |
Experimental details
Crystal data | |
Chemical formula | C22H14N2O2 |
Mr | 338.35 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 295 |
a, b, c (Å) | 7.385 (1), 14.0730 (4), 30.5630 (9) |
V (Å3) | 3176.4 (4) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.14 × 0.14 × 0.07 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20847, 3643, 2282 |
Rint | 0.066 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.155, 1.05 |
No. of reflections | 3643 |
No. of parameters | 235 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.20 |
Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
This work has received partial support from CNPq, FAPERJ, CAPES, FAPEAL, IM–INOFAR, USP and FINEP.
References
Boiocchi, M., Del Boca, L., Gmez, D. E., Fabbrizzi, L., Licchelli, M. & Monzani, E. (2004). J. Am. Chem. Soc. 126, 16507–16514. Web of Science CSD CrossRef PubMed CAS Google Scholar
Czarnik, A. W. (1994). Acc. Chem. Res. 27, 302–308. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bre'das, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121–128. Web of Science CrossRef CAS Google Scholar
Joux, F. & Lebaron, P. (2000). Microbes Infect. 2, 1523–1535. Web of Science CrossRef PubMed CAS Google Scholar
Kasten, F. H. (1999). Biological Techniques: Fluorescent and Luminescent Probes for Biological Activity – A Practical Guide to Technology for Quantitative Realtime Analysis, 2nd ed., edited by W. T. Mason, pp. 17–39. San Diego: Academic Press. Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Peng, X., Wu, Y., Fan, J., Tian, M. & Han, K. (2005). J. Org. Chem. 70, 10524–10531. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soukos, N. S., Crowley, K., Bamberg, M. P., Gillies, R., Doukas, A. G., Evans, R. & Kollias, N. (2000). Forensic Sci. Int. 114, 133–138. Web of Science CrossRef PubMed CAS Google Scholar
Yoshida, K., Ooyama, Y., Miyazaki, H. & Watanabe, S. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 700–707. CSD CrossRef Google Scholar
Zhu, X., Gong, A., Wang, B. & Yu, S. (2008). J. Lumin. 128, 1815–1818. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, much attention has been devoted to the study of organic fluorophores because of their potential use in analytical chemistry (Czarnik, 1994), optoeletronics (Friend et al., 1999), dye technologies (Joux & Lebaron, 1988; Kasten, 1999), forensic chemistry (Soukos et al., 2000), and in pharmaceutical analysis evaluations (Zhu et al., 2008). In addition, specific and sensitive chemosensors for anions are of great importance in environmental science (Peng et al., 2005). The N—H···F interaction is already well known (Boiocchi et al., 2004) and can be exploited in the development of new molecules to function as fluorescent probes for fluoride. For instance, one such class of probe are the anthraimidazolic-derived quinones that can be deprotonated in the presence of anions to enhance their natural fluorescence by a supposed mechanism of photo-induced electron transfer (PET) or via a bathochromic shift of the absorption bands promoted by charge transfer (CT) (Peng et al., 2005). Although many photophysical properties of fluorophores are well known in solution, only a few are known in solid-state (Yoshida et al., 2002). In this paper we report the molecular structure of the 2-p-tolyl-1H-anthra[1,2-d]imidazole-6,11-dione, (I), a fluorescent probe synthesized in our laboratory.
In (I), the rings are not co-planar (Fig. 1). The anthraquinonic ring is almost planar with the greatest deviation from the least-squares plane of 0.102 (2) Å being exhibited by atom C7. The dihedral angle between the anthraquinonic ring [C2—C11] and the benzene ring [C12—C17] planes is 13.16 (8)°.