organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1075

2-(4-Meth­oxy­phenyl­sulfin­yl)cyclo­hexan-1-one

aUniversidade Federal de São Carlos, Laboratório de Cristalografia, Estereodinâmica e Modelagem Molecular, Departamento de Química, São Carlos, SP, Brazil, and bUniversidade de São Paulo, Conformational Analysis and Electronic Interactions Laboratory, Instituto de Química, São Paulo, SP, Brazil
*Correspondence e-mail: julio@power.ufscar.br

(Received 8 April 2009; accepted 11 April 2009; online 18 April 2009)

The cyclo­hexa­none ring in the title compound, C13H16O3S, is in a distorted chair conformation. The intra­molecular S⋯Ocarbon­yl distance is 2.814 (2) Å. Mol­ecules are connected into a two-dimensional array via C—H⋯O contacts involving the carbonyl and sulfinyl O atoms.

Related literature

For related literature, see: Zukerman-Schpector, da Silva et al. (2006[Zukerman-Schpector, J., da Silva, R. O., Olivato, P. R., Vinhato, E., Rodrigues, A. & Cerqueira, C. R. Jr (2006). Z. Kristallogr. New Cryst. Struct. 221, 311-312.]). For structure analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Iulek & Zukerman-Schpector (1997[Iulek, J. & Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433-434.]). For details of synthesis, see: Bradscher et al. (1954[Bradscher, C. K., Brown, F. C. & Grantham, R. J. (1954). J. Am. Chem. Soc. 76, 114-115.]); Zukerman-Schpector, Maganhi et al. (2006[Zukerman-Schpector, J., Maganhi, S., Olivato, P. R., Vinhato, E. & Cerqueira, C. R. Jr (2006). Z. Kristallogr. New Cryst. Struct. 221, 165-166.]); Drabowicz & Mikolajczyk (1978[Drabowicz, J. & Mikolajczyk, M. (1978). Synthesis, 10, 758-759.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16O3S

  • Mr = 252.33

  • Monoclinic, P 21 /c

  • a = 11.0510 (4) Å

  • b = 10.0875 (2) Å

  • c = 11.3672 (5) Å

  • β = 93.886 (2)°

  • V = 1264.27 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 290 K

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 8283 measured reflections

  • 2872 independent reflections

  • 2508 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.113

  • S = 1.06

  • 2872 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.98 2.47 3.257 (2) 137
C3—H3A⋯O2i 0.97 2.59 3.323 (2) 133
C11—H11⋯O1ii 0.93 2.59 3.500 (2) 167
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SADABS (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and MarvinSketch (ChemAxon, 2008[ChemAxon (2008). MarvinSketch. http://www.chemaxon.com .]).

Supporting information


Comment top

The obtained product, which has stereogenic centres at S and C1, was a 3:1 mixture of the [C1(R)S(S)/C1(S)S(R)] and [C1(R)S(R)/C1(S)S(S)] diastereomeric sulfoxides, respectively, as determined from 1H NMR spectroscopy. From hexane/ethanol fractional crystallization, the pure [C1(R)S(S)/C1(S)S(R)] diastereomer, (I), was obtained. The cyclohexanone ring is in a distorted chair conformation as shown by the ring-puckering parameters (Cremer & Pople, 1975; Iulek & Zukerman-Schpector, 1997) q2 = 0.143 (2) Å, q3 = 0.499 (2) Å, Q = 0.519 (2) Å, ϕ2 = -130.9 (8)°. The methyl moiety is slightly out of the phenyl plane as shown by the C13-O3-C10-C11 torsion angle of 4.9 (2)°. The molecules are linked via intermolecular C—H···O interactions involving the carbonyl- and sulfinyl-oxygen atoms into a 2-D array (Table 1).

Related literature top

For related literature [please be more specific (the second reference is not cited at all in the rest of the CIF)], see: Zukerman-Schpector, Maganhi et al. (2006); Zukerman-Schpector, da Silva et al. (2006). For structure analysis, see: Cremer & Pople (1975); Iulek & Zukerman-Schpector (1997). For details of synthesis, see: Bradscher et al. (1954); Zukerman-Schpector, Maganhi et al. (2006); Drabowicz & Mikolajczyk (1978).

Experimental top

The starting 2-(4-methoxyphenylthio)cyclohexanone was prepared from the reaction of 2-chlorocyclohexanone and 4-methoxythiophenol as previously reported (Bradscher et al. 1954). The sulfoxide 2-[(4-methoxybenzene)sulfinyl]cyclohexanone was prepared by oxidation of 2-(4-methoxyphenylthio)cyclohexanone (Zukerman-Schpector, Maganhi et al. 2006; Drabowicz & Mikolajczyk, 1978). A CH3OH (10 ml) solution of SeO2 (1.23 g, 11.08 mmol) and hydrogen peroxide (30% H2O2 in aqueous solution; 1.25 ml, 11.08 mmol) was added drop-wise, at 273 K, to a solution of 2-(4-methoxyphenylthio)cyclohexanone (2.62 g, 11.08 mmol) in CH3OH (5 ml). The reaction mixture was stirred at 273 K for 2 h and then at room temperature for 2 h. After completion of the reaction, a saturated aqueous NaCl solution (30 ml) was added, the aqueous layer was extracted with CH2Cl2 (3 x 20 ml) and dried over anhydrous Na2SO4. After solvent evaporation under reduced pressure, 1.39 g (5.5 mmol, yield 50%; m.p. 363–365 K) of the crude 2-[(4-methoxybenzene)sulfinyl]cyclohexanone (I) was obtained. Colourless crystals of (I) were obtained by vapour diffusion from n-hexane/acetone at 298 K.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.98 Å, and with Uiso set to 1.2—1.5 times Ueq(parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT and SADABS (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and MarvinSketch (ChemAxon, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).
2-(4-Methoxyphenylsulfinyl)cyclohexan-1-one top
Crystal data top
C13H16O3SF(000) = 536
Mr = 252.33Dx = 1.326 Mg m3
Monoclinic, P21/cMelting point = 363–364 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.0510 (4) ÅCell parameters from 5749 reflections
b = 10.0875 (2) Åθ = 1.0–27.5°
c = 11.3672 (5) ŵ = 0.25 mm1
β = 93.886 (2)°T = 290 K
V = 1264.27 (8) Å3Irregular, colourless
Z = 40.15 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2508 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 27.5°, θmin = 2.7°
ϕ and ω scansh = 1014
8283 measured reflectionsk = 1113
2872 independent reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.055P)2 + 0.314P]
where P = (Fo2 + 2Fc2)/3
2872 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C13H16O3SV = 1264.27 (8) Å3
Mr = 252.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0510 (4) ŵ = 0.25 mm1
b = 10.0875 (2) ÅT = 290 K
c = 11.3672 (5) Å0.15 × 0.10 × 0.10 mm
β = 93.886 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2508 reflections with I > 2σ(I)
8283 measured reflectionsRint = 0.024
2872 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
2872 reflectionsΔρmin = 0.23 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.56721 (4)0.34807 (4)0.33452 (3)0.04990 (15)
O10.79251 (14)0.37910 (14)0.46227 (15)0.0817 (4)
O20.62133 (13)0.32131 (15)0.22034 (11)0.0697 (4)
O30.05306 (12)0.18455 (16)0.27603 (13)0.0739 (4)
C10.63097 (13)0.22233 (13)0.43728 (12)0.0417 (3)
H10.58370.22390.50720.050*
C20.75982 (15)0.26614 (16)0.47557 (14)0.0527 (4)
C30.84104 (17)0.16348 (19)0.5352 (2)0.0672 (5)
H3A0.82180.15600.61690.081*
H3B0.92450.19300.53430.081*
C40.82992 (16)0.02795 (18)0.47825 (18)0.0634 (5)
H4A0.86300.03070.40140.076*
H4B0.87620.03600.52650.076*
C50.69875 (16)0.01463 (16)0.46473 (17)0.0592 (4)
H5A0.66620.01910.54180.071*
H5B0.69330.10240.42990.071*
C60.62411 (16)0.08211 (15)0.38717 (15)0.0546 (4)
H6A0.54020.05320.38050.066*
H6B0.65370.08230.30870.066*
C70.41425 (14)0.29147 (14)0.31844 (12)0.0458 (3)
C80.32744 (16)0.35031 (15)0.38466 (14)0.0536 (4)
H80.35020.41510.44000.064*
C90.20829 (17)0.31257 (19)0.36820 (16)0.0599 (4)
H90.15040.35210.41240.072*
C100.17349 (15)0.21533 (17)0.28560 (14)0.0547 (4)
C110.25949 (16)0.15680 (16)0.21873 (14)0.0521 (4)
H110.23680.09180.16360.063*
C120.37932 (15)0.19623 (15)0.23499 (13)0.0490 (3)
H120.43710.15850.18950.059*
C130.0152 (2)0.0786 (3)0.1988 (2)0.0827 (6)
H13A0.03600.09890.12020.124*
H13B0.07110.06740.19950.124*
H13C0.05500.00180.22490.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0664 (3)0.0368 (2)0.0455 (2)0.00370 (15)0.00423 (17)0.00762 (14)
O10.0843 (9)0.0525 (7)0.1038 (11)0.0195 (7)0.0274 (8)0.0100 (7)
O20.0803 (9)0.0861 (9)0.0433 (6)0.0128 (7)0.0071 (6)0.0172 (6)
O30.0567 (7)0.0870 (10)0.0771 (9)0.0022 (7)0.0026 (6)0.0003 (7)
C10.0524 (8)0.0375 (7)0.0347 (6)0.0003 (6)0.0003 (5)0.0025 (5)
C20.0593 (9)0.0462 (8)0.0517 (8)0.0041 (7)0.0037 (7)0.0007 (7)
C30.0525 (9)0.0611 (11)0.0856 (13)0.0019 (8)0.0126 (9)0.0083 (9)
C40.0613 (10)0.0573 (10)0.0726 (11)0.0142 (8)0.0112 (8)0.0089 (9)
C50.0703 (11)0.0389 (8)0.0668 (10)0.0034 (7)0.0073 (8)0.0049 (7)
C60.0688 (10)0.0370 (7)0.0560 (9)0.0013 (7)0.0107 (7)0.0000 (7)
C70.0617 (9)0.0356 (7)0.0389 (7)0.0043 (6)0.0052 (6)0.0052 (5)
C80.0712 (11)0.0419 (8)0.0465 (8)0.0104 (7)0.0038 (7)0.0032 (6)
C90.0674 (10)0.0588 (10)0.0535 (9)0.0166 (8)0.0038 (8)0.0002 (8)
C100.0581 (9)0.0538 (9)0.0511 (8)0.0065 (7)0.0050 (7)0.0094 (7)
C110.0645 (10)0.0448 (8)0.0455 (8)0.0035 (7)0.0073 (7)0.0008 (6)
C120.0622 (9)0.0426 (8)0.0415 (7)0.0066 (6)0.0013 (6)0.0006 (6)
C130.0746 (13)0.0998 (17)0.0715 (13)0.0175 (12)0.0124 (10)0.0023 (12)
Geometric parameters (Å, º) top
S—O21.4900 (13)C5—H5A0.9700
S—C71.7819 (16)C5—H5B0.9700
S—C11.8325 (14)C6—H6A0.9700
O1—C21.208 (2)C6—H6B0.9700
O3—C101.364 (2)C7—C121.386 (2)
O3—C131.428 (3)C7—C81.392 (2)
C1—C61.525 (2)C8—C91.371 (3)
C1—C21.526 (2)C8—H80.9300
C1—H10.9800C9—C101.394 (2)
C2—C31.501 (2)C9—H90.9300
C3—C41.514 (3)C10—C111.388 (2)
C3—H3A0.9700C11—C121.383 (2)
C3—H3B0.9700C11—H110.9300
C4—C51.510 (3)C12—H120.9300
C4—H4A0.9700C13—H13A0.9600
C4—H4B0.9700C13—H13B0.9600
C5—C61.520 (2)C13—H13C0.9600
O2—S—C7106.65 (7)C5—C6—C1111.56 (13)
O2—S—C1105.67 (7)C5—C6—H6A109.3
C7—S—C199.48 (6)C1—C6—H6A109.3
C10—O3—C13117.62 (16)C5—C6—H6B109.3
C6—C1—C2113.39 (13)C1—C6—H6B109.3
C6—C1—S113.37 (10)H6A—C6—H6B108.0
C2—C1—S107.00 (10)C12—C7—C8119.70 (15)
C6—C1—H1107.6C12—C7—S120.69 (12)
C2—C1—H1107.6C8—C7—S119.45 (12)
S—C1—H1107.6C9—C8—C7119.90 (15)
O1—C2—C3122.17 (16)C9—C8—H8120.0
O1—C2—C1121.24 (15)C7—C8—H8120.0
C3—C2—C1116.53 (14)C8—C9—C10120.38 (16)
C2—C3—C4113.65 (16)C8—C9—H9119.8
C2—C3—H3A108.8C10—C9—H9119.8
C4—C3—H3A108.8O3—C10—C11124.06 (16)
C2—C3—H3B108.8O3—C10—C9115.92 (16)
C4—C3—H3B108.8C11—C10—C9120.02 (16)
H3A—C3—H3B107.7C12—C11—C10119.29 (15)
C5—C4—C3110.49 (15)C12—C11—H11120.4
C5—C4—H4A109.6C10—C11—H11120.4
C3—C4—H4A109.6C11—C12—C7120.69 (15)
C5—C4—H4B109.6C11—C12—H12119.7
C3—C4—H4B109.6C7—C12—H12119.7
H4A—C4—H4B108.1O3—C13—H13A109.5
C4—C5—C6110.84 (14)O3—C13—H13B109.5
C4—C5—H5A109.5H13A—C13—H13B109.5
C6—C5—H5A109.5O3—C13—H13C109.5
C4—C5—H5B109.5H13A—C13—H13C109.5
C6—C5—H5B109.5H13B—C13—H13C109.5
H5A—C5—H5B108.1
O2—S—C1—C648.31 (13)C1—S—C7—C1286.59 (13)
C7—S—C1—C662.09 (13)O2—S—C7—C8152.43 (12)
O2—S—C1—C277.46 (11)C1—S—C7—C897.95 (13)
C7—S—C1—C2172.14 (10)C12—C7—C8—C90.9 (2)
C6—C1—C2—O1143.42 (18)S—C7—C8—C9176.38 (12)
S—C1—C2—O117.7 (2)C7—C8—C9—C100.1 (2)
C6—C1—C2—C339.3 (2)C13—O3—C10—C114.9 (2)
S—C1—C2—C3165.05 (14)C13—O3—C10—C9175.42 (17)
O1—C2—C3—C4140.82 (19)C8—C9—C10—O3179.84 (15)
C1—C2—C3—C441.9 (2)C8—C9—C10—C110.5 (2)
C2—C3—C4—C551.8 (2)O3—C10—C11—C12179.51 (15)
C3—C4—C5—C660.5 (2)C9—C10—C11—C120.1 (2)
C4—C5—C6—C158.4 (2)C10—C11—C12—C71.1 (2)
C2—C1—C6—C546.78 (19)C8—C7—C12—C111.5 (2)
S—C1—C6—C5169.06 (12)S—C7—C12—C11176.95 (11)
O2—S—C7—C1223.03 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.982.473.257 (2)137
C3—H3A···O2i0.972.593.323 (2)133
C11—H11···O1ii0.932.593.500 (2)167
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H16O3S
Mr252.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)11.0510 (4), 10.0875 (2), 11.3672 (5)
β (°) 93.886 (2)
V3)1264.27 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8283, 2872, 2508
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 1.06
No. of reflections2872
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.23

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SAINT and SADABS (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and MarvinSketch (ChemAxon, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.982.473.257 (2)137
C3—H3A···O2i0.972.593.323 (2)133
C11—H11···O1ii0.932.593.500 (2)167
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

We thank FAPESP (grant No. 2008/02531-5 to JZ-S), CNPq and CAPES for financial support. Professor R. A. Burrow of the Federal University of Santa Maria is gratefully acknowledged for helping with the collection of intensity data.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBradscher, C. K., Brown, F. C. & Grantham, R. J. (1954). J. Am. Chem. Soc. 76, 114–115.  Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChemAxon (2008). MarvinSketch. http://www.chemaxon.comGoogle Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDrabowicz, J. & Mikolajczyk, M. (1978). Synthesis, 10, 758–759.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIulek, J. & Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433–434.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZukerman-Schpector, J., da Silva, R. O., Olivato, P. R., Vinhato, E., Rodrigues, A. & Cerqueira, C. R. Jr (2006). Z. Kristallogr. New Cryst. Struct. 221, 311–312.  CAS Google Scholar
First citationZukerman-Schpector, J., Maganhi, S., Olivato, P. R., Vinhato, E. & Cerqueira, C. R. Jr (2006). Z. Kristallogr. New Cryst. Struct. 221, 165–166.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1075
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds