metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Hydr­­oxy-2-methyl­quinolinium di­chlorido(2-methyl­quinolin-8-olato-κ2N,O)zincate(II) methanol solvate

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 April 2009; accepted 16 April 2009; online 22 April 2009)

The reaction of zinc chloride and 2-methyl-8-hydroxy­quinoline in methanol yielded the title monosolvated salt, (C10H10NO)[ZnCl2(C10H8NO)]·CH3OH, which has the Zn atom within a distorted Cl2NO tetra­hedral coordination geometry. Supra­molecular chains feature in the crystal structure, comprising all components of the structure stabilized by a combination of O—H⋯O, N—H⋯O and O—H⋯Cl hydrogen bonding.

Related literature

Unlike 8-hydroxy­quinoline, which yields a large number of metal derivatives, 2-methyl-8-hydroxy­quinoline forms only a small number of metal chelates. Besides a related acetate salt (Sattarzadeh et al., 2009[Sattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m554.]), there is only one crystal structure report of another zinc derivative; for aqua­bis(2-methyl­quinolin-8-ato)zinc, see: da Silva et al. (2007[Silva, L. E. da, Joussef, A. C., Rebelo, R. A., Foro, S. & Schmidt, B. (2007). Acta Cryst. E63, m129-m131.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H10NO)[ZnCl2(C10H8NO)]·CH4O

  • Mr = 486.68

  • Monoclinic, P 21 /n

  • a = 10.0717 (2) Å

  • b = 13.7886 (3) Å

  • c = 15.4828 (3) Å

  • β = 105.48 (1)°

  • V = 2072.15 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 100 K

  • 0.32 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.651, Tmax = 0.892

  • 18982 measured reflections

  • 4753 independent reflections

  • 3600 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.02

  • 4753 reflections

  • 277 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.08 e Å−3

  • Δρmin = −1.00 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1 0.84 (1) 1.70 (1) 2.534 (3) 177 (4)
O3—H3O⋯Cl1i 0.84 (1) 2.47 (3) 3.239 (4) 153 (5)
N2—H2N⋯O3 0.88 (1) 1.87 (2) 2.727 (4) 163 (3)
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

Unlike 8-hydroxyquinoline, which yields a large number of metal derivatives, 2-methyl-8-hydroxyquinoline forms only a small number of metal chelates. There is only one crystal structure report of a zinc derivative; for aquabis(2-methylquinolin-8-ato)zinc, see: da Silva et al. (2007).

Experimental top

Zinc chloride (0.10 g, 0.75 mmol) and 2-methyl-8-hydroxyquinoline (0.24 g, 1.5 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The O–H and N–H hydrogen atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 Å and N–H 0.88±01 Å; their temperature factors were freely refined.

The final difference Fourier map had a large peak/deep hole in the vicinity of the O3 atom.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [C10H10NO][Zn(C10H8NO)Cl2].CH3OH; ellipsoids are drawn at the 70% probability level and H atoms of arbitrary radius.
8-Hydroxy-2-methylquinolinium dichlorido(2-methylquinolin-8-olato-κ2N,O)zincate(II) methanol solvate top
Crystal data top
(C10H10NO)[ZnCl2(C10H8NO)]·CH4OF(000) = 1000
Mr = 486.68Dx = 1.560 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4908 reflections
a = 10.0717 (2) Åθ = 2.6–27.1°
b = 13.7886 (3) ŵ = 1.47 mm1
c = 15.4828 (3) ÅT = 100 K
β = 105.48 (1)°Block, yellow
V = 2072.15 (7) Å30.32 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
4753 independent reflections
Radiation source: fine-focus sealed tube3600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.651, Tmax = 0.892k = 1717
18982 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0493P)2 + 2.8684P]
where P = (Fo2 + 2Fc2)/3
4753 reflections(Δ/σ)max = 0.001
277 parametersΔρmax = 1.08 e Å3
3 restraintsΔρmin = 1.00 e Å3
Crystal data top
(C10H10NO)[ZnCl2(C10H8NO)]·CH4OV = 2072.15 (7) Å3
Mr = 486.68Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0717 (2) ŵ = 1.47 mm1
b = 13.7886 (3) ÅT = 100 K
c = 15.4828 (3) Å0.32 × 0.12 × 0.08 mm
β = 105.48 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4753 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3600 reflections with I > 2σ(I)
Tmin = 0.651, Tmax = 0.892Rint = 0.036
18982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0393 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.08 e Å3
4753 reflectionsΔρmin = 1.00 e Å3
277 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50382 (3)0.63261 (3)0.23689 (2)0.02655 (11)
Cl10.48941 (8)0.76378 (6)0.31836 (5)0.03149 (18)
Cl20.39683 (8)0.50528 (6)0.27699 (5)0.03503 (19)
O10.6980 (2)0.60686 (17)0.23887 (13)0.0318 (5)
O20.9135 (2)0.63848 (15)0.36428 (13)0.0258 (4)
H2O0.843 (3)0.626 (3)0.3225 (19)0.054 (13)*
O31.1916 (3)0.6985 (4)0.3410 (2)0.1114 (18)
H3O1.2770 (14)0.706 (5)0.353 (4)0.11 (2)*
N10.4760 (2)0.63643 (17)0.10133 (15)0.0232 (5)
N21.1439 (2)0.64419 (17)0.49938 (16)0.0239 (5)
H2N1.143 (4)0.657 (3)0.4435 (10)0.040 (10)*
C10.7143 (3)0.6004 (2)0.15652 (19)0.0257 (6)
C20.8383 (3)0.5781 (2)0.1389 (2)0.0345 (7)
H20.91780.56760.18720.041*
C30.8481 (3)0.5708 (2)0.0502 (2)0.0363 (8)
H30.93470.55570.04010.044*
C40.7372 (4)0.5847 (2)0.0217 (2)0.0344 (7)
H40.74660.57930.08100.041*
C50.6079 (3)0.6075 (2)0.00683 (19)0.0280 (6)
C60.5975 (3)0.6156 (2)0.08206 (18)0.0238 (6)
C70.4857 (4)0.6220 (2)0.0757 (2)0.0324 (7)
H70.48730.61720.13660.039*
C80.3656 (3)0.6428 (2)0.05527 (19)0.0303 (7)
H80.28390.65300.10200.036*
C90.3619 (3)0.6491 (2)0.03512 (19)0.0259 (6)
C100.2318 (3)0.6695 (2)0.0599 (2)0.0322 (7)
H10A0.24450.72640.09920.048*
H10B0.20740.61340.09140.048*
H10C0.15770.68230.00560.048*
C110.8990 (3)0.61926 (19)0.44627 (18)0.0211 (5)
C120.7783 (3)0.5956 (2)0.46570 (19)0.0254 (6)
H120.69530.59260.41890.031*
C130.7759 (3)0.5758 (2)0.5544 (2)0.0267 (6)
H130.69090.55940.56640.032*
C140.8927 (3)0.5795 (2)0.62372 (19)0.0279 (6)
H140.88870.56570.68310.033*
C151.0188 (3)0.6040 (2)0.60665 (18)0.0241 (6)
C161.0214 (3)0.62310 (19)0.51737 (18)0.0218 (6)
C171.1463 (3)0.6076 (2)0.6733 (2)0.0300 (7)
H171.14880.59610.73420.036*
C181.2650 (3)0.6276 (2)0.6509 (2)0.0309 (7)
H181.34960.62930.69640.037*
C191.2646 (3)0.6457 (2)0.5617 (2)0.0284 (6)
C201.3919 (3)0.6644 (3)0.5335 (2)0.0381 (8)
H20A1.39320.62270.48250.057*
H20B1.47260.65040.58340.057*
H20C1.39400.73260.51580.057*
C211.1182 (4)0.7302 (3)0.2615 (2)0.0478 (9)
H21C1.15770.79110.24710.072*
H21B1.02280.74130.26320.072*
H21A1.12000.68170.21560.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02484 (18)0.0370 (2)0.01749 (17)0.00010 (14)0.00511 (13)0.00387 (14)
Cl10.0333 (4)0.0367 (4)0.0238 (3)0.0047 (3)0.0066 (3)0.0003 (3)
Cl20.0401 (4)0.0349 (4)0.0342 (4)0.0009 (3)0.0170 (3)0.0076 (3)
O10.0251 (11)0.0528 (14)0.0170 (10)0.0012 (10)0.0047 (8)0.0001 (9)
O20.0260 (10)0.0327 (11)0.0173 (10)0.0003 (9)0.0032 (8)0.0002 (8)
O30.0368 (18)0.240 (5)0.063 (2)0.040 (2)0.0233 (16)0.091 (3)
N10.0269 (12)0.0231 (12)0.0180 (11)0.0054 (10)0.0029 (9)0.0023 (9)
N20.0252 (12)0.0233 (12)0.0219 (12)0.0037 (10)0.0037 (10)0.0026 (10)
C10.0268 (15)0.0291 (15)0.0212 (14)0.0070 (12)0.0063 (11)0.0022 (11)
C20.0294 (16)0.0411 (19)0.0340 (17)0.0086 (14)0.0100 (13)0.0070 (14)
C30.0348 (18)0.0404 (19)0.0404 (19)0.0108 (14)0.0216 (15)0.0121 (15)
C40.048 (2)0.0317 (17)0.0290 (16)0.0104 (15)0.0197 (15)0.0057 (13)
C50.0413 (17)0.0217 (14)0.0222 (14)0.0087 (12)0.0108 (13)0.0003 (11)
C60.0286 (15)0.0237 (14)0.0189 (13)0.0073 (11)0.0062 (11)0.0001 (10)
C70.053 (2)0.0247 (15)0.0175 (14)0.0061 (14)0.0055 (13)0.0002 (11)
C80.0424 (18)0.0250 (15)0.0162 (13)0.0023 (13)0.0050 (12)0.0019 (11)
C90.0306 (15)0.0206 (14)0.0230 (14)0.0036 (11)0.0009 (12)0.0017 (11)
C100.0299 (16)0.0333 (16)0.0288 (16)0.0019 (13)0.0001 (13)0.0029 (13)
C110.0276 (14)0.0176 (13)0.0170 (12)0.0024 (11)0.0041 (11)0.0006 (10)
C120.0271 (15)0.0254 (14)0.0227 (14)0.0006 (11)0.0048 (12)0.0022 (11)
C130.0295 (15)0.0253 (15)0.0281 (15)0.0009 (12)0.0123 (12)0.0011 (12)
C140.0379 (17)0.0252 (15)0.0210 (14)0.0042 (13)0.0086 (12)0.0017 (11)
C150.0306 (15)0.0196 (13)0.0209 (14)0.0044 (11)0.0049 (11)0.0026 (11)
C160.0266 (14)0.0181 (13)0.0199 (13)0.0033 (11)0.0047 (11)0.0005 (10)
C170.0380 (17)0.0286 (16)0.0198 (14)0.0054 (13)0.0016 (12)0.0013 (12)
C180.0282 (15)0.0321 (16)0.0260 (15)0.0031 (13)0.0040 (12)0.0026 (12)
C190.0274 (15)0.0230 (15)0.0307 (16)0.0033 (12)0.0005 (12)0.0000 (12)
C200.0264 (16)0.0411 (19)0.043 (2)0.0007 (14)0.0029 (14)0.0084 (15)
C210.048 (2)0.057 (2)0.040 (2)0.0010 (18)0.0137 (17)0.0023 (18)
Geometric parameters (Å, º) top
Zn1—N12.043 (2)C8—H80.9500
Zn1—O11.980 (2)C9—C101.488 (4)
Zn1—Cl12.2318 (8)C10—H10A0.9800
Zn1—Cl22.2331 (8)C10—H10B0.9800
O1—C11.331 (3)C10—H10C0.9800
O2—C111.342 (3)C11—C121.368 (4)
O2—H2O0.841 (10)C11—C161.418 (4)
O3—C211.329 (5)C12—C131.407 (4)
O3—H3O0.836 (10)C12—H120.9500
N1—C91.332 (4)C13—C141.365 (4)
N1—C61.365 (4)C13—H130.9500
N2—C191.335 (4)C14—C151.406 (4)
N2—C161.367 (4)C14—H140.9500
N2—H2N0.881 (10)C15—C161.414 (4)
C1—C21.382 (4)C15—C171.417 (4)
C1—C61.426 (4)C17—C181.359 (5)
C2—C31.406 (4)C17—H170.9500
C2—H20.9500C18—C191.402 (4)
C3—C41.364 (5)C18—H180.9500
C3—H30.9500C19—C201.484 (4)
C4—C51.417 (5)C20—H20A0.9800
C4—H40.9500C20—H20B0.9800
C5—C71.411 (4)C20—H20C0.9800
C5—C61.412 (4)C21—H21C0.9800
C7—C81.360 (5)C21—H21B0.9800
C7—H70.9500C21—H21A0.9800
C8—C91.413 (4)
O1—Zn1—N183.36 (9)H10A—C10—H10B109.5
O1—Zn1—Cl1110.46 (7)C9—C10—H10C109.5
N1—Zn1—Cl1123.24 (7)H10A—C10—H10C109.5
O1—Zn1—Cl2113.75 (7)H10B—C10—H10C109.5
N1—Zn1—Cl2111.22 (7)O2—C11—C12125.6 (3)
Cl1—Zn1—Cl2111.78 (3)O2—C11—C16115.8 (2)
C1—O1—Zn1111.79 (18)C12—C11—C16118.5 (3)
C11—O2—H2O114 (3)C11—C12—C13120.6 (3)
C21—O3—H3O117 (4)C11—C12—H12119.7
C9—N1—C6119.9 (2)C13—C12—H12119.7
C9—N1—Zn1130.4 (2)C14—C13—C12121.6 (3)
C6—N1—Zn1109.52 (18)C14—C13—H13119.2
C19—N2—C16123.6 (3)C12—C13—H13119.2
C19—N2—H2N118 (2)C13—C14—C15119.6 (3)
C16—N2—H2N118 (2)C13—C14—H14120.2
O1—C1—C2123.6 (3)C15—C14—H14120.2
O1—C1—C6118.6 (3)C14—C15—C16118.8 (3)
C2—C1—C6117.8 (3)C14—C15—C17124.1 (3)
C1—C2—C3120.7 (3)C16—C15—C17117.0 (3)
C1—C2—H2119.6N2—C16—C15119.5 (3)
C3—C2—H2119.6N2—C16—C11119.7 (2)
C4—C3—C2122.2 (3)C15—C16—C11120.9 (3)
C4—C3—H3118.9C18—C17—C15120.7 (3)
C2—C3—H3118.9C18—C17—H17119.7
C3—C4—C5119.0 (3)C15—C17—H17119.7
C3—C4—H4120.5C17—C18—C19121.0 (3)
C5—C4—H4120.5C17—C18—H18119.5
C7—C5—C6116.7 (3)C19—C18—H18119.5
C7—C5—C4124.2 (3)N2—C19—C18118.1 (3)
C6—C5—C4119.1 (3)N2—C19—C20118.8 (3)
N1—C6—C5122.2 (3)C18—C19—C20123.0 (3)
N1—C6—C1116.6 (2)C19—C20—H20A109.5
C5—C6—C1121.1 (3)C19—C20—H20B109.5
C8—C7—C5120.3 (3)H20A—C20—H20B109.5
C8—C7—H7119.8C19—C20—H20C109.5
C5—C7—H7119.8H20A—C20—H20C109.5
C7—C8—C9120.2 (3)H20B—C20—H20C109.5
C7—C8—H8119.9O3—C21—H21C109.5
C9—C8—H8119.9O3—C21—H21B109.5
N1—C9—C8120.6 (3)H21C—C21—H21B109.5
N1—C9—C10117.7 (3)O3—C21—H21A109.5
C8—C9—C10121.7 (3)H21C—C21—H21A109.5
C9—C10—H10A109.5H21B—C21—H21A109.5
C9—C10—H10B109.5
N1—Zn1—O1—C12.8 (2)C5—C7—C8—C90.5 (4)
Cl1—Zn1—O1—C1125.81 (18)C6—N1—C9—C81.0 (4)
Cl2—Zn1—O1—C1107.55 (19)Zn1—N1—C9—C8175.8 (2)
O1—Zn1—N1—C9178.1 (3)C6—N1—C9—C10178.7 (3)
Cl1—Zn1—N1—C971.7 (3)Zn1—N1—C9—C103.8 (4)
Cl2—Zn1—N1—C965.2 (3)C7—C8—C9—N11.0 (4)
O1—Zn1—N1—C62.88 (18)C7—C8—C9—C10178.6 (3)
Cl1—Zn1—N1—C6113.03 (17)O2—C11—C12—C13179.2 (3)
Cl2—Zn1—N1—C6110.05 (17)C16—C11—C12—C130.1 (4)
Zn1—O1—C1—C2176.7 (3)C11—C12—C13—C140.1 (4)
Zn1—O1—C1—C62.2 (3)C12—C13—C14—C150.1 (4)
O1—C1—C2—C3178.9 (3)C13—C14—C15—C160.7 (4)
C6—C1—C2—C30.1 (5)C13—C14—C15—C17178.4 (3)
C1—C2—C3—C40.3 (5)C19—N2—C16—C151.7 (4)
C2—C3—C4—C50.1 (5)C19—N2—C16—C11177.4 (3)
C3—C4—C5—C7179.0 (3)C14—C15—C16—N2178.1 (3)
C3—C4—C5—C60.3 (4)C17—C15—C16—N20.2 (4)
C9—N1—C6—C50.5 (4)C14—C15—C16—C110.9 (4)
Zn1—N1—C6—C5176.3 (2)C17—C15—C16—C11178.9 (2)
C9—N1—C6—C1178.4 (3)O2—C11—C16—N20.8 (4)
Zn1—N1—C6—C12.6 (3)C12—C11—C16—N2178.4 (2)
C7—C5—C6—N10.1 (4)O2—C11—C16—C15179.9 (2)
C4—C5—C6—N1179.4 (3)C12—C11—C16—C150.7 (4)
C7—C5—C6—C1178.8 (3)C14—C15—C17—C18177.0 (3)
C4—C5—C6—C10.6 (4)C16—C15—C17—C180.8 (4)
O1—C1—C6—N10.4 (4)C15—C17—C18—C190.5 (5)
C2—C1—C6—N1179.3 (3)C16—N2—C19—C182.0 (4)
O1—C1—C6—C5178.6 (3)C16—N2—C19—C20176.8 (3)
C2—C1—C6—C50.4 (4)C17—C18—C19—N20.9 (4)
C6—C5—C7—C80.1 (4)C17—C18—C19—C20177.8 (3)
C4—C5—C7—C8179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.84 (1)1.70 (1)2.534 (3)177 (4)
O3—H3O···Cl1i0.84 (1)2.47 (3)3.239 (4)153 (5)
N2—H2N···O30.88 (1)1.87 (2)2.727 (4)163 (3)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C10H10NO)[ZnCl2(C10H8NO)]·CH4O
Mr486.68
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.0717 (2), 13.7886 (3), 15.4828 (3)
β (°) 105.48 (1)
V3)2072.15 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.32 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.651, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
18982, 4753, 3600
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.02
No. of reflections4753
No. of parameters277
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.08, 1.00

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.84 (1)1.70 (1)2.534 (3)177 (4)
O3—H3O···Cl1i0.84 (1)2.47 (3)3.239 (4)153 (5)
N2—H2N···O30.88 (1)1.87 (2)2.727 (4)163 (3)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m554.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, L. E. da, Joussef, A. C., Rebelo, R. A., Foro, S. & Schmidt, B. (2007). Acta Cryst. E63, m129–m131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds