metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-2-methyl­quinolin-8-olato)-κ3N,O:O;κ3O:N,O-bis­­[(acetato-κO)(methanol-κO)zinc(II)]

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 April 2009; accepted 16 April 2009; online 22 April 2009)

The reaction of zinc acetate and 2-methyl-8-hydroxy­quinoline in methanol yielded the centrosymmetric dinuclear title compound, [Zn2(C10H8NO)2(CH3CO2)2(CH3OH)2], which has the Zn atom within a distorted NO4 trigonal–bipyramidal coordination geometry. Methanol–acetate O—H⋯O hydrogen bonds link the dinculear units into a linear supra­molecular chain extending parallel to [100].

Related literature

Unlike 8-hydroxy­quinoline, which yields a large number of metal derivatives, 2-methyl-8-hydroxy­quinoline forms only a small number of metal chelates. Besides a related chloride salt (Sattarzadeh et al., 2009[Sattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m553.]), there is only one crystal structure report of another zinc derivative; for aqua­bis(2-methyl­quinolin-8-ato)zinc, see: da Silva et al. (2007[Silva, L. E. da, Joussef, A. C., Rebelo, R. A., Foro, S. & Schmidt, B. (2007). Acta Cryst. E63, m129-m131.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C10H8NO)2(C2H3O2)2(CH4O)2]

  • Mr = 629.26

  • Triclinic, [P \overline 1]

  • a = 6.9496 (1) Å

  • b = 9.6262 (2) Å

  • c = 9.8232 (2) Å

  • α = 75.241 (1)°

  • β = 89.688 (1)°

  • γ = 86.596 (1)°

  • V = 634.32 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.95 mm−1

  • T = 100 K

  • 0.38 × 0.28 × 0.18 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.525, Tmax = 0.721

  • 5601 measured reflections

  • 2855 independent reflections

  • 2534 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.230

  • S = 1.13

  • 2855 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 3.72 e Å−3

  • Δρmin = −1.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3i 0.84 1.88 2.602 (6) 143
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

Unlike 8-hydroxyquinoline, which yields a large number of metal derivatives, 2-methyl-8-hydroxyquinoline forms only a small number of metal chelates. There is only one crystal structure report of a zinc derivative; for aquabis(2-methylquinolin-8-ato)zinc, see: da Silva et al. (2007).

Experimental top

Zinc acetate (0.17 g, 0.75 mmol) and 2-methyl-8-hydroxyquinoline (0.24 g, 1.5 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Crystals were collected from the side arm after several days. Although well formed, all specimens had a slightly blemished interior.

Refinement top

The crystal used in the study was a multiply twinned crystal. The diffraction intensities were separated with the RLATT routine of the data collection software, and that component that diffracted to the highest 2θ limit was selected for integration. Although the specimen diffracted strongly, with a high proportion of 'observeds', there was serious overlapping between the main component and the minor components, particularly at low angles.

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å; O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C, O).

The final difference Fourier map had a large peak/deep hole in the vicinity of the Zn1 atom. These could not be reduced even with the 2θ maximum was lowered to 50 °.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of dinuclear [Zn(C10H8NO)(CH3OH)(CH3CO2)]2; ellipsoids are drawn at the 70% probability level and H atoms of arbitrary radius. The unlabelled atoms are related by a centre of inversion.
Bis(µ-2-methylquinolin-8-olato)- κ3N,O:O;κ3O:N,O- bis[(acetato-κO)(methanol-κO)zinc(II)] top
Crystal data top
[Zn2(C10H8NO)2(C2H3O2)2(CH4O)2]Z = 1
Mr = 629.26F(000) = 324
Triclinic, P1Dx = 1.647 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9496 (1) ÅCell parameters from 3551 reflections
b = 9.6262 (2) Åθ = 2.2–28.3°
c = 9.8232 (2) ŵ = 1.95 mm1
α = 75.241 (1)°T = 100 K
β = 89.688 (1)°Block, yellow
γ = 86.596 (1)°0.38 × 0.28 × 0.18 mm
V = 634.32 (2) Å3
Data collection top
Bruker SMART APEX
diffractometer
2855 independent reflections
Radiation source: fine-focus sealed tube2534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.525, Tmax = 0.721k = 1212
5601 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.1574P)2 + 1.7954P]
where P = (Fo2 + 2Fc2)/3
2855 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 3.72 e Å3
0 restraintsΔρmin = 1.85 e Å3
Crystal data top
[Zn2(C10H8NO)2(C2H3O2)2(CH4O)2]γ = 86.596 (1)°
Mr = 629.26V = 634.32 (2) Å3
Triclinic, P1Z = 1
a = 6.9496 (1) ÅMo Kα radiation
b = 9.6262 (2) ŵ = 1.95 mm1
c = 9.8232 (2) ÅT = 100 K
α = 75.241 (1)°0.38 × 0.28 × 0.18 mm
β = 89.688 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2855 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2534 reflections with I > 2σ(I)
Tmin = 0.525, Tmax = 0.721Rint = 0.042
5601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.230H-atom parameters constrained
S = 1.13Δρmax = 3.72 e Å3
2855 reflectionsΔρmin = 1.85 e Å3
175 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.57254 (8)0.63131 (6)0.87572 (5)0.0148 (3)
O10.5349 (5)0.4205 (4)0.9193 (4)0.0174 (8)
O20.4331 (6)0.8211 (4)0.8160 (4)0.0201 (8)
O30.1619 (6)0.7137 (5)0.8017 (4)0.0236 (9)
O40.8356 (6)0.6830 (5)0.9340 (4)0.0233 (9)
H40.90890.72310.86950.028*
N10.6717 (6)0.5859 (5)0.6847 (5)0.0165 (9)
C10.5872 (7)0.3551 (6)0.8200 (5)0.0169 (10)
C20.5764 (8)0.2097 (6)0.8320 (6)0.0184 (10)
H20.53130.14930.91680.022*
C30.6315 (9)0.1497 (6)0.7196 (6)0.0229 (11)
H30.62380.04920.73030.028*
C40.6955 (8)0.2334 (6)0.5956 (6)0.0232 (11)
H4A0.73010.19120.52070.028*
C50.7104 (8)0.3827 (6)0.5786 (6)0.0191 (10)
C60.6596 (7)0.4431 (6)0.6917 (5)0.0150 (9)
C70.7707 (8)0.4776 (6)0.4547 (6)0.0196 (11)
H70.80290.44270.37480.023*
C80.7834 (8)0.6205 (6)0.4485 (5)0.0208 (11)
H80.82480.68460.36460.025*
C90.7341 (8)0.6730 (6)0.5687 (5)0.0178 (10)
C100.7542 (9)0.8281 (6)0.5643 (6)0.0227 (11)
H10A0.73360.84270.65860.034*
H10B0.65820.88790.49880.034*
H10C0.88380.85520.53260.034*
C110.2496 (8)0.8207 (6)0.8104 (5)0.0179 (10)
C120.1384 (9)0.9585 (7)0.8161 (7)0.0297 (13)
H12A0.22441.03810.79390.045*
H12B0.08640.94880.91080.045*
H12C0.03220.97800.74740.045*
C130.9045 (8)0.6565 (7)1.0750 (6)0.0233 (11)
H13A1.04260.62851.07860.035*
H13B0.83500.57871.13560.035*
H13C0.88320.74411.10790.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0190 (4)0.0192 (4)0.0083 (4)0.0030 (2)0.0016 (2)0.0068 (2)
O10.027 (2)0.0212 (18)0.0063 (16)0.0035 (15)0.0078 (14)0.0071 (14)
O20.025 (2)0.0206 (19)0.0146 (17)0.0033 (15)0.0021 (15)0.0033 (14)
O30.023 (2)0.032 (2)0.020 (2)0.0040 (16)0.0045 (16)0.0146 (17)
O40.0186 (19)0.041 (2)0.0123 (18)0.0090 (16)0.0026 (14)0.0094 (16)
N10.018 (2)0.024 (2)0.0098 (19)0.0017 (16)0.0004 (15)0.0079 (16)
C10.018 (2)0.024 (3)0.012 (2)0.0030 (19)0.0016 (18)0.0084 (19)
C20.023 (3)0.019 (2)0.015 (2)0.0026 (19)0.0028 (19)0.0058 (19)
C30.030 (3)0.021 (3)0.021 (3)0.001 (2)0.002 (2)0.012 (2)
C40.025 (3)0.029 (3)0.020 (3)0.001 (2)0.000 (2)0.015 (2)
C50.017 (2)0.027 (3)0.016 (2)0.000 (2)0.0011 (19)0.012 (2)
C60.017 (2)0.021 (2)0.008 (2)0.0006 (18)0.0004 (17)0.0055 (18)
C70.018 (2)0.032 (3)0.012 (2)0.002 (2)0.0005 (19)0.012 (2)
C80.020 (3)0.033 (3)0.010 (2)0.001 (2)0.0003 (19)0.008 (2)
C90.018 (2)0.027 (3)0.009 (2)0.003 (2)0.0009 (18)0.0058 (19)
C100.035 (3)0.023 (3)0.012 (2)0.006 (2)0.003 (2)0.006 (2)
C110.020 (2)0.024 (3)0.010 (2)0.0004 (19)0.0012 (18)0.0057 (19)
C120.027 (3)0.027 (3)0.034 (3)0.002 (2)0.002 (2)0.006 (2)
C130.023 (3)0.035 (3)0.013 (2)0.004 (2)0.001 (2)0.009 (2)
Geometric parameters (Å, º) top
Zn1—O11.997 (4)C4—C51.414 (8)
Zn1—O21.968 (4)C4—H4A0.9500
Zn1—O1i2.092 (3)C5—C71.402 (8)
Zn1—O42.045 (4)C5—C61.413 (7)
Zn1—N12.134 (4)C7—C81.369 (8)
O1—C11.328 (6)C7—H70.9500
O1—Zn1i2.092 (3)C8—C91.431 (7)
O2—C111.277 (7)C8—H80.9500
O3—C111.250 (7)C9—C101.497 (7)
O4—C131.423 (6)C10—H10A0.9800
O4—H40.8400C10—H10B0.9800
N1—C91.319 (7)C10—H10C0.9800
N1—C61.366 (7)C11—C121.508 (8)
C1—C21.381 (7)C12—H12A0.9800
C1—C61.435 (7)C12—H12B0.9800
C2—C31.412 (7)C12—H12C0.9800
C2—H20.9500C13—H13A0.9800
C3—C41.366 (9)C13—H13B0.9800
C3—H30.9500C13—H13C0.9800
O1—Zn1—O1i75.2 (2)C6—C5—C4119.1 (5)
O1—Zn1—O2142.5 (2)N1—C6—C5122.8 (5)
O1—Zn1—O4114.7 (2)N1—C6—C1116.8 (4)
O1—Zn1—N179.8 (2)C5—C6—C1120.4 (5)
O1i—Zn1—O295.8 (2)C8—C7—C5120.2 (5)
O1i—Zn1—O494.5 (2)C8—C7—H7119.9
O1i—Zn1—N1155.0 (2)C5—C7—H7119.9
O2—Zn1—O4102.1 (2)C7—C8—C9119.9 (5)
O2—Zn1—N1104.7 (2)C7—C8—H8120.1
O4—Zn1—N195.0 (2)C9—C8—H8120.1
C1—O1—Zn1116.2 (3)N1—C9—C8120.7 (5)
C1—O1—Zn1i139.0 (3)N1—C9—C10119.2 (5)
Zn1—O1—Zn1i104.81 (16)C8—C9—C10120.1 (5)
C11—O2—Zn1116.0 (3)C9—C10—H10A109.5
C13—O4—Zn1125.3 (3)C9—C10—H10B109.5
C13—O4—H4117.3H10A—C10—H10B109.5
Zn1—O4—H4117.3C9—C10—H10C109.5
C9—N1—C6119.7 (4)H10A—C10—H10C109.5
C9—N1—Zn1130.0 (4)H10B—C10—H10C109.5
C6—N1—Zn1110.3 (3)O3—C11—O2123.5 (5)
O1—C1—C2124.6 (5)O3—C11—C12120.0 (5)
O1—C1—C6117.0 (5)O2—C11—C12116.5 (5)
C2—C1—C6118.4 (5)C11—C12—H12A109.5
C1—C2—C3120.8 (5)C11—C12—H12B109.5
C1—C2—H2119.6H12A—C12—H12B109.5
C3—C2—H2119.6C11—C12—H12C109.5
C4—C3—C2121.2 (5)H12A—C12—H12C109.5
C4—C3—H3119.4H12B—C12—H12C109.5
C2—C3—H3119.4O4—C13—H13A109.5
C3—C4—C5120.1 (5)O4—C13—H13B109.5
C3—C4—H4A119.9H13A—C13—H13B109.5
C5—C4—H4A119.9O4—C13—H13C109.5
C7—C5—C6116.7 (5)H13A—C13—H13C109.5
C7—C5—C4124.2 (5)H13B—C13—H13C109.5
O2—Zn1—O1—C1102.0 (4)C6—C1—C2—C31.3 (8)
O4—Zn1—O1—C189.7 (4)C1—C2—C3—C40.5 (9)
O1i—Zn1—O1—C1177.9 (5)C2—C3—C4—C50.9 (9)
N1—Zn1—O1—C11.1 (4)C3—C4—C5—C7178.6 (6)
O2—Zn1—O1—Zn1i80.1 (3)C3—C4—C5—C60.5 (8)
O4—Zn1—O1—Zn1i88.17 (19)C9—N1—C6—C50.4 (8)
O1i—Zn1—O1—Zn1i0.0Zn1—N1—C6—C5178.2 (4)
N1—Zn1—O1—Zn1i179.0 (2)C9—N1—C6—C1178.9 (5)
O1—Zn1—O2—C117.8 (5)Zn1—N1—C6—C10.3 (6)
O4—Zn1—O2—C11161.4 (4)C7—C5—C6—N11.5 (8)
O1i—Zn1—O2—C1165.4 (4)C4—C5—C6—N1179.3 (5)
N1—Zn1—O2—C11100.1 (4)C7—C5—C6—C1176.9 (5)
O2—Zn1—O4—C13107.2 (4)C4—C5—C6—C12.3 (8)
O1—Zn1—O4—C1365.5 (5)O1—C1—C6—N11.2 (7)
O1i—Zn1—O4—C1310.3 (4)C2—C1—C6—N1178.8 (5)
N1—Zn1—O4—C13146.6 (4)O1—C1—C6—C5177.3 (5)
O2—Zn1—N1—C936.2 (5)C2—C1—C6—C52.7 (8)
O1—Zn1—N1—C9178.0 (5)C6—C5—C7—C81.8 (8)
O4—Zn1—N1—C967.7 (5)C4—C5—C7—C8179.1 (5)
O1i—Zn1—N1—C9179.6 (4)C5—C7—C8—C90.3 (8)
O2—Zn1—N1—C6142.2 (3)C6—N1—C9—C82.1 (8)
O1—Zn1—N1—C60.4 (3)Zn1—N1—C9—C8176.2 (4)
O4—Zn1—N1—C6113.9 (3)C6—N1—C9—C10177.6 (5)
O1i—Zn1—N1—C61.9 (6)Zn1—N1—C9—C104.1 (8)
Zn1—O1—C1—C2178.4 (4)C7—C8—C9—N11.8 (8)
Zn1i—O1—C1—C21.5 (9)C7—C8—C9—C10177.9 (5)
Zn1—O1—C1—C61.6 (6)Zn1—O2—C11—O320.5 (7)
Zn1i—O1—C1—C6178.5 (4)Zn1—O2—C11—C12159.0 (4)
O1—C1—C2—C3178.7 (5)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3ii0.841.882.602 (6)143
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn2(C10H8NO)2(C2H3O2)2(CH4O)2]
Mr629.26
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.9496 (1), 9.6262 (2), 9.8232 (2)
α, β, γ (°)75.241 (1), 89.688 (1), 86.596 (1)
V3)634.32 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.95
Crystal size (mm)0.38 × 0.28 × 0.18
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.525, 0.721
No. of measured, independent and
observed [I > 2σ(I)] reflections
5601, 2855, 2534
Rint0.042
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.230, 1.13
No. of reflections2855
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.72, 1.85

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.841.882.602 (6)143
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, L. E. da, Joussef, A. C., Rebelo, R. A., Foro, S. & Schmidt, B. (2007). Acta Cryst. E63, m129–m131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds