organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1176

2-(2-Methyl-5-nitro-1H-imidazol-1-yl)ethyl 3-bromo­benzoate

aHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, bDepartment of Chemistry, University of Karachi, Karachi 75270, Pakistan, and cDepartment of Chemistry, University of Leicester, George Porter Building, University Road, Leicester LE1 7RH, England
*Correspondence e-mail: raza_shahm@yahoo.com

(Received 16 April 2009; accepted 25 April 2009; online 30 April 2009)

The mol­ecule of the title compound, C13H12BrN3O4, is non-planar, as indicated in the dihedral angle of 59.5 (4)° formed between the least-squares planes through the imidazole and benzene rings. In the crystal, mol­ecules are connected via C—H⋯O contacts, forming a supra­molecular chain.

Related literature

For potential pharmacological uses of benzoic acid derivatives, see: Correa-Basurto et al. (2005[Correa-Basurto, J., Espinosa-Raya, J., Vazquez-Alcantara, I., Flores-Sandoval, C. A. & Trujillo-Ferrara, J. (2005). Chem. Biol. Interact. 157, 353-434.]); Jetten et al. (1987[Jetten, A. M., Anderson, K., Deas, M. A., Kagechika, H., Lotan, R., Rearick, J. I. & Shudo, K. (1987). Cancer Res. 47, 3523-3527.]); Kelly et al. (2007[Kelly, P. N., Adeline, P., Siobhan, D., Isobel, O., Rosaleen, D., Alok, G., John, G. F., Alan, L. J. & Peter, K. T. M. (2007). J. Organomet. Chem. 692, 1327-1331.]); Sato et al. (2005[Sato, M., Shudo, K. & Hiragun, A. (2005). J. Cell. Physiol. 135, 179-188.]). For a related structure, see: Wang et al. (2008[Wang, S.-Q., Jian, F.-F. & Liu, H.-Q. (2008). Acta Cryst. E64, o1750.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12BrN3O4

  • Mr = 354.17

  • Monoclinic, C c

  • a = 11.871 (2) Å

  • b = 19.840 (4) Å

  • c = 7.1983 (13) Å

  • β = 124.488 (3)°

  • V = 1397.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.96 mm−1

  • T = 150 K

  • 0.20 × 0.07 × 0.03 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.589, Tmax = 0.916

  • 5456 measured reflections

  • 2680 independent reflections

  • 1636 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.119

  • S = 0.86

  • 2680 reflections

  • 191 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.55 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1301 Friedel pairs

  • Flack parameter: 0.091 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4a⋯O2i 0.99 2.59 3.494 (10) 152
Symmetry code: (i) x, y, z-1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART for Windows NT/2000. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of benzoic acid offer promise as compounds that possess multifunctional physiological activity (hypolesterolemic, antitumor, antithrombic, etc.) and do not cause hypervitaminosis and other side-effects (Jetten et al. 1987). It has been reported that synthesized benzoic acid derivatives of the amide- and chalcone-series show inhibitory activity of squamous cell differentiation of rabbit traeheal epithelial cell but induce differentiation of mouse embryonal carcinoma F9 and human promyelocytic leukemia HL60 cells (Correa-Basurto et al., 2005). p-Aminobenzoic acid derivatives were evaluated as acetylcholinesterase inhibitors (AChEIs) (Sato et al., 2005). Benzoic acid derivatives have also been found to exhibit cytotoxic effects on the MDA-MB-435-S—F breast cancer cell line (Kelly et al., 2007).

In the crystal structure of the title compound (I), Fig. 1, the key C=O and C—N bond distances are in agreement with those observed in the related structure of imidazolmethyl phthalimide (Wang et al., 2008).

Related literature top

For potential pharmacological uses of benzoic acid derivatives, see: Correa-Basurto et al. (2005); Jetten et al. (1987); Kelly et al. (2007); Sato et al. (2005). For a related structure, see: Wang et al. (2008).

Experimental top

Metronidazole (5 g, 29.23 mmol) was added to 3-bromobenzoic acid (7.64 g, 38.01 mmol) dissolved in anhydrous CH2Cl2 (10 ml). Then 4-dimethylaminopyridine (0.15 equiv.) and dicyclohexylcarbodiimide (1.25 equiv) were added, and the resulting solution stirred. After 12 h, the solvent was evaporated under reduced pressure. The crude reaction mixture was subjected to flash column chromatography over silica gel, successively eluting with n-hexane–ethyl acetate (3:7) which afforded (I) in 70% yield. Colorless crystals were obtained from the slow evaporation of a CH2Cl2 solution of (I).

Refinement top

H atoms were placed in calculated positions, C—H = 0.95–0.99 Å, and included in the riding model approximation with Uiso set to 1.5Ueq(C) for methyl-H atoms and 1.2Ueq(C) for remaining H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular Structure of (I) show atom labelling and 30% displacement ellipsoids.
2-(2-Methyl-5-nitro-1H-imidazol-1-yl)ethyl 3-bromobenzoate top
Crystal data top
C13H12BrN3O4F(000) = 712
Mr = 354.17Dx = 1.683 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 616 reflections
a = 11.871 (2) Åθ = 3.7–23.3°
b = 19.840 (4) ŵ = 2.96 mm1
c = 7.1983 (13) ÅT = 150 K
β = 124.488 (3)°Needle, colourless
V = 1397.4 (4) Å30.20 × 0.07 × 0.03 mm
Z = 4
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
2680 independent reflections
Radiation source: fine-focus sealed tube1636 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.589, Tmax = 0.916k = 2423
5456 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0345P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max = 0.001
2680 reflectionsΔρmax = 0.66 e Å3
191 parametersΔρmin = 0.55 e Å3
2 restraintsAbsolute structure: Flack (1983), 1301 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.091 (17)
Crystal data top
C13H12BrN3O4V = 1397.4 (4) Å3
Mr = 354.17Z = 4
Monoclinic, CcMo Kα radiation
a = 11.871 (2) ŵ = 2.96 mm1
b = 19.840 (4) ÅT = 150 K
c = 7.1983 (13) Å0.20 × 0.07 × 0.03 mm
β = 124.488 (3)°
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
2680 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1636 reflections with I > 2σ(I)
Tmin = 0.589, Tmax = 0.916Rint = 0.087
5456 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.119Δρmax = 0.66 e Å3
S = 0.86Δρmin = 0.55 e Å3
2680 reflectionsAbsolute structure: Flack (1983), 1301 Friedel pairs
191 parametersAbsolute structure parameter: 0.091 (17)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.81001 (10)0.59782 (5)0.72927 (13)0.0588 (3)
O10.0138 (5)0.6343 (3)0.5323 (9)0.0363 (14)
O20.0896 (5)0.7074 (3)0.8019 (9)0.0434 (15)
O30.2933 (5)0.5475 (3)0.4184 (9)0.0309 (14)
O40.2623 (6)0.4375 (3)0.4381 (11)0.0437 (16)
N10.0966 (6)0.6786 (3)0.6597 (11)0.0322 (16)
N20.2152 (6)0.6769 (3)0.4669 (9)0.0234 (14)
N30.3904 (6)0.7449 (3)0.6962 (11)0.0324 (16)
C10.2023 (8)0.6976 (4)0.6362 (12)0.0261 (17)
C20.3074 (10)0.7391 (4)0.7650 (18)0.042 (3)
H20.32160.76220.89240.050*
C30.3307 (8)0.7090 (4)0.5099 (13)0.0281 (18)
C40.1261 (7)0.6329 (4)0.2730 (12)0.0280 (18)
H4A0.14130.64220.15370.034*
H4B0.02950.64360.21150.034*
C50.1513 (7)0.5597 (4)0.3332 (13)0.0294 (19)
H5A0.13440.54900.44980.035*
H5B0.09030.53150.19880.035*
C60.3328 (8)0.4832 (4)0.4592 (12)0.0222 (18)
C70.4765 (8)0.4759 (4)0.5349 (12)0.0263 (19)
C80.5272 (9)0.4134 (4)0.5409 (13)0.041 (2)
H80.46860.37540.49660.049*
C90.6614 (10)0.4036 (5)0.6098 (14)0.048 (2)
H90.69620.35960.61980.057*
C100.7422 (9)0.4597 (5)0.6630 (13)0.049 (3)
H100.83330.45380.70530.059*
C110.6978 (8)0.5231 (4)0.6579 (12)0.035 (2)
C120.5625 (7)0.5325 (4)0.5850 (12)0.032 (2)
H120.52770.57680.56880.038*
C130.3796 (8)0.7029 (4)0.3597 (13)0.043 (2)
H13A0.33190.73590.23730.064*
H13B0.36080.65730.29620.064*
H13C0.47810.71150.44720.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0321 (4)0.0955 (8)0.0384 (5)0.0218 (7)0.0137 (4)0.0017 (7)
O10.025 (3)0.046 (4)0.035 (3)0.002 (3)0.014 (3)0.006 (3)
O20.038 (3)0.065 (4)0.039 (3)0.001 (3)0.028 (3)0.007 (3)
O30.025 (3)0.031 (3)0.036 (4)0.002 (3)0.017 (3)0.005 (3)
O40.042 (4)0.031 (3)0.062 (4)0.003 (3)0.032 (4)0.005 (3)
N10.021 (4)0.044 (4)0.030 (4)0.007 (3)0.014 (3)0.013 (3)
N20.025 (4)0.028 (4)0.018 (3)0.009 (3)0.012 (3)0.003 (3)
N30.031 (4)0.036 (4)0.036 (4)0.007 (3)0.022 (4)0.012 (3)
C10.024 (4)0.031 (4)0.025 (4)0.005 (4)0.015 (4)0.006 (4)
C20.030 (5)0.030 (5)0.059 (7)0.003 (5)0.021 (5)0.000 (5)
C30.035 (5)0.024 (4)0.030 (5)0.006 (4)0.021 (4)0.008 (4)
C40.027 (4)0.039 (5)0.022 (4)0.005 (4)0.017 (4)0.000 (4)
C50.021 (4)0.043 (5)0.028 (5)0.003 (4)0.017 (4)0.008 (4)
C60.027 (5)0.028 (5)0.010 (4)0.004 (4)0.010 (3)0.002 (4)
C70.024 (4)0.037 (5)0.019 (4)0.005 (4)0.013 (4)0.002 (4)
C80.044 (6)0.046 (6)0.024 (5)0.004 (5)0.014 (4)0.003 (4)
C90.049 (6)0.049 (6)0.041 (6)0.022 (5)0.023 (5)0.011 (5)
C100.038 (5)0.085 (8)0.035 (6)0.012 (5)0.027 (5)0.012 (5)
C110.029 (5)0.050 (6)0.021 (4)0.005 (4)0.011 (4)0.000 (4)
C120.025 (4)0.045 (5)0.021 (4)0.009 (4)0.010 (4)0.009 (4)
C130.053 (6)0.043 (5)0.044 (5)0.010 (5)0.035 (5)0.006 (4)
Geometric parameters (Å, º) top
Br1—C111.861 (8)C4—H4B0.9900
O1—N11.248 (7)C5—H5A0.9900
O2—N11.216 (8)C5—H5B0.9900
O3—C61.334 (9)C6—C71.475 (10)
O3—C51.451 (8)C7—C81.369 (10)
O4—C61.183 (9)C7—C121.420 (11)
N1—C11.410 (9)C8—C91.389 (12)
N2—C11.374 (9)C8—H80.9500
N2—C31.378 (9)C9—C101.375 (11)
N2—C41.468 (8)C9—H90.9500
N3—C31.317 (9)C10—C111.356 (11)
N3—C21.334 (11)C10—H100.9500
C1—C21.336 (12)C11—C121.391 (10)
C2—H20.9500C12—H120.9500
C3—C131.493 (10)C13—H13A0.9800
C4—C51.497 (10)C13—H13B0.9800
C4—H4A0.9900C13—H13C0.9800
C6—O3—C5115.6 (6)H5A—C5—H5B108.7
O2—N1—O1123.3 (6)O4—C6—O3124.8 (7)
O2—N1—C1117.7 (7)O4—C6—C7124.0 (8)
O1—N1—C1119.0 (6)O3—C6—C7111.3 (7)
C1—N2—C3105.0 (6)C8—C7—C12118.0 (7)
C1—N2—C4129.7 (6)C8—C7—C6119.7 (8)
C3—N2—C4125.2 (6)C12—C7—C6122.1 (7)
C3—N3—C2104.3 (7)C7—C8—C9122.2 (8)
C2—C1—N2105.7 (7)C7—C8—H8118.9
C2—C1—N1128.8 (8)C9—C8—H8118.9
N2—C1—N1125.4 (6)C10—C9—C8117.7 (8)
N3—C2—C1113.0 (9)C10—C9—H9121.1
N3—C2—H2123.5C8—C9—H9121.1
C1—C2—H2123.5C11—C10—C9122.9 (8)
N3—C3—N2111.8 (6)C11—C10—H10118.5
N3—C3—C13125.1 (7)C9—C10—H10118.5
N2—C3—C13123.0 (7)C10—C11—C12118.9 (8)
N2—C4—C5112.5 (6)C10—C11—Br1121.6 (7)
N2—C4—H4A109.1C12—C11—Br1119.3 (6)
C5—C4—H4A109.1C11—C12—C7120.0 (8)
N2—C4—H4B109.1C11—C12—H12120.0
C5—C4—H4B109.1C7—C12—H12120.0
H4A—C4—H4B107.8C3—C13—H13A109.5
O3—C5—C4106.1 (6)C3—C13—H13B109.5
O3—C5—H5A110.5H13A—C13—H13B109.5
C4—C5—H5A110.5C3—C13—H13C109.5
O3—C5—H5B110.5H13A—C13—H13C109.5
C4—C5—H5B110.5H13B—C13—H13C109.5
C3—N2—C1—C20.1 (8)C6—O3—C5—C4173.1 (6)
C4—N2—C1—C2177.6 (7)N2—C4—C5—O359.7 (7)
C3—N2—C1—N1178.8 (7)C5—O3—C6—O42.7 (11)
C4—N2—C1—N11.3 (12)C5—O3—C6—C7177.4 (6)
O2—N1—C1—C27.5 (12)O4—C6—C7—C813.3 (12)
O1—N1—C1—C2173.8 (8)O3—C6—C7—C8166.7 (7)
O2—N1—C1—N2171.2 (7)O4—C6—C7—C12172.0 (7)
O1—N1—C1—N27.5 (10)O3—C6—C7—C128.0 (10)
C3—N3—C2—C13.8 (10)C12—C7—C8—C94.8 (12)
N2—C1—C2—N32.3 (10)C6—C7—C8—C9179.8 (7)
N1—C1—C2—N3178.8 (7)C7—C8—C9—C103.0 (13)
C2—N3—C3—N23.8 (9)C8—C9—C10—C112.2 (13)
C2—N3—C3—C13176.0 (8)C9—C10—C11—C123.3 (13)
C1—N2—C3—N32.5 (8)C9—C10—C11—Br1179.6 (6)
C4—N2—C3—N3179.8 (6)C10—C11—C12—C75.1 (11)
C1—N2—C3—C13177.3 (7)Br1—C11—C12—C7178.5 (6)
C4—N2—C3—C130.3 (11)C8—C7—C12—C115.8 (11)
C1—N2—C4—C581.4 (9)C6—C7—C12—C11179.4 (7)
C3—N2—C4—C5101.6 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4a···O2i0.992.593.494 (10)152
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC13H12BrN3O4
Mr354.17
Crystal system, space groupMonoclinic, Cc
Temperature (K)150
a, b, c (Å)11.871 (2), 19.840 (4), 7.1983 (13)
β (°) 124.488 (3)
V3)1397.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.96
Crystal size (mm)0.20 × 0.07 × 0.03
Data collection
DiffractometerBruker APEX 2000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.589, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
5456, 2680, 1636
Rint0.087
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.119, 0.86
No. of reflections2680
No. of parameters191
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.55
Absolute structureFlack (1983), 1301 Friedel pairs
Absolute structure parameter0.091 (17)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4a···O2i0.992.593.494 (10)152
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors thank the Pakistan Science Foundation for financial support.

References

First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART for Windows NT/2000. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorrea-Basurto, J., Espinosa-Raya, J., Vazquez-Alcantara, I., Flores-Sandoval, C. A. & Trujillo-Ferrara, J. (2005). Chem. Biol. Interact. 157, 353–434.  Web of Science CrossRef PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJetten, A. M., Anderson, K., Deas, M. A., Kagechika, H., Lotan, R., Rearick, J. I. & Shudo, K. (1987). Cancer Res. 47, 3523–3527.  CAS PubMed Web of Science Google Scholar
First citationKelly, P. N., Adeline, P., Siobhan, D., Isobel, O., Rosaleen, D., Alok, G., John, G. F., Alan, L. J. & Peter, K. T. M. (2007). J. Organomet. Chem. 692, 1327–1331.  Web of Science CSD CrossRef CAS Google Scholar
First citationSato, M., Shudo, K. & Hiragun, A. (2005). J. Cell. Physiol. 135, 179–188.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-Q., Jian, F.-F. & Liu, H.-Q. (2008). Acta Cryst. E64, o1750.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1176
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds