organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1124

(20R)-24-Bromo-5β-cholane

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 18 April 2009; accepted 20 April 2009; online 25 April 2009)

In the title compound (5S,8R,9R,10R,13S,14S,17R,20R)-24-bromo-5β-cholane, C24H41Br, the fused-chair conformation of the cyclo­hexane A/B ring junction is cis with a 5β-H configuration.

Related literature

For the isostructural chloro analog, see: Cox et al. (2001[Cox, P. J., Nahar, L. & Turner, A. B. (2001). J. Chem. Res. (S), pp. 162-164.]).

[Scheme 1]

Experimental

Crystal data
  • C24H41Br

  • Mr = 409.48

  • Orthorhombic, P 21 21 21

  • a = 7.4797 (2) Å

  • b = 9.9094 (3) Å

  • c = 29.3371 (8) Å

  • V = 2174.5 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.90 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.03 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.606, Tmax = 0.746 (expected range = 0.767–0.945)

  • 15233 measured reflections

  • 4988 independent reflections

  • 4263 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.075

  • S = 0.99

  • 4988 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2124 Friedel pairs

  • Flack parameter: 0.018 (8)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the isostructural chloro analog, see: Cox et al. (2001).

Experimental top

The procedure employed was that used for synthesizing 5β-cholan-24-yl chloride, but with phosphorus tribromide in place of phosphorus trichloride. Phosphorus tribromide (0.06 ml, 0.65 mmol) in dichloromethane (10 ml) was added to 24-hydroxy-5β-cholane (22 mg, 0.65 mmol) in dichloromethane (10 ml). The mixture was kept at 283–288 K under stirring for 12 h and then made basic with sodium bicarbonate solution. The organic compound was extracted with hexane–ethyl acetate (4:1 v/v). The solvent was removed to give a yellow oil, which gradually solidified (135 mg). The compound was dissolved in hexane and chromatographed on silica gel (10 g). The first fraction gave the pure compound, m.p. 335–338 K, when the solvent was allowed to evaporate.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.98–1.00 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2–1.5 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C24H41Br at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
(20R)-24-Bromo-5β-cholane top
Crystal data top
C24H41BrF(000) = 880
Mr = 409.48Dx = 1.251 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3210 reflections
a = 7.4797 (2) Åθ = 2.8–24.5°
b = 9.9094 (3) ŵ = 1.90 mm1
c = 29.3371 (8) ÅT = 100 K
V = 2174.5 (1) Å3Plate, colorless
Z = 40.30 × 0.10 × 0.03 mm
Data collection top
Bruker SMART APEX
diffractometer
4988 independent reflections
Radiation source: fine-focus sealed tube4263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.606, Tmax = 0.746k = 1212
15233 measured reflectionsl = 3738
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0372P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
4988 reflectionsΔρmax = 0.33 e Å3
226 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Flack (1983), 2124 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.018 (8)
Crystal data top
C24H41BrV = 2174.5 (1) Å3
Mr = 409.48Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4797 (2) ŵ = 1.90 mm1
b = 9.9094 (3) ÅT = 100 K
c = 29.3371 (8) Å0.30 × 0.10 × 0.03 mm
Data collection top
Bruker SMART APEX
diffractometer
4988 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4263 reflections with I > 2σ(I)
Tmin = 0.606, Tmax = 0.746Rint = 0.048
15233 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.33 e Å3
S = 0.99Δρmin = 0.28 e Å3
4988 reflectionsAbsolute structure: Flack (1983), 2124 Friedel pairs
226 parametersAbsolute structure parameter: 0.018 (8)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.12174 (4)0.77061 (3)0.054189 (9)0.02429 (8)
C10.0806 (4)0.6772 (3)0.00361 (9)0.0224 (6)
H1A0.11650.73700.02900.027*
H1B0.04870.65810.00690.027*
C20.1835 (4)0.5463 (3)0.00693 (9)0.0177 (6)
H2A0.31330.56580.00790.021*
H2B0.15940.49060.02040.021*
C30.1301 (4)0.4678 (2)0.04965 (8)0.0193 (5)
H3A0.00020.45050.04860.023*
H3B0.15430.52460.07670.023*
C40.2281 (3)0.3324 (2)0.05535 (10)0.0173 (5)
H40.22210.28350.02560.021*
C50.4269 (3)0.3583 (3)0.06637 (9)0.0240 (7)
H5A0.48920.27180.06950.036*
H5B0.43620.40900.09500.036*
H5C0.48140.41040.04160.036*
C60.1334 (3)0.2460 (2)0.09118 (8)0.0151 (5)
H60.12360.30200.11940.018*
C70.2146 (3)0.1081 (3)0.10554 (9)0.0149 (5)
C80.2666 (4)0.0269 (3)0.06281 (9)0.0211 (6)
H8A0.31660.06030.07200.032*
H8B0.35590.07730.04530.032*
H8C0.16020.01210.04390.032*
C90.3702 (4)0.1130 (2)0.13960 (8)0.0175 (5)
H9A0.34180.17850.16400.021*
H9B0.47920.14490.12380.021*
C100.4070 (3)0.0258 (3)0.16101 (9)0.0200 (6)
H10A0.45090.08780.13700.024*
H10B0.50290.01630.18410.024*
C110.2430 (3)0.0883 (3)0.18361 (9)0.0158 (5)
H110.20620.02410.20820.019*
C120.2789 (3)0.2260 (3)0.20769 (9)0.0210 (6)
C130.3411 (4)0.3321 (3)0.17341 (10)0.0308 (7)
H13A0.24980.34350.14980.046*
H13B0.36000.41820.18910.046*
H13C0.45330.30270.15930.046*
C140.4248 (3)0.2139 (3)0.24460 (9)0.0228 (6)
H14A0.45350.30550.25600.027*
H14B0.53440.17700.23040.027*
C150.3754 (4)0.1259 (3)0.28485 (9)0.0246 (6)
H15A0.47390.12700.30740.030*
H15B0.35880.03170.27440.030*
C160.2049 (4)0.1755 (3)0.30718 (10)0.0300 (7)
H16A0.17010.11250.33180.036*
H16B0.22620.26520.32100.036*
C170.0533 (4)0.1856 (3)0.27254 (10)0.0284 (7)
H17A0.02180.09400.26180.034*
H17B0.05340.22460.28760.034*
C180.1038 (3)0.2733 (3)0.23142 (9)0.0248 (6)
H180.12640.36640.24330.030*
C190.0515 (4)0.2839 (3)0.19738 (11)0.0302 (7)
H19A0.02430.35490.17470.036*
H19B0.16150.31060.21380.036*
C200.0845 (3)0.1502 (3)0.17263 (10)0.0239 (7)
H20A0.12980.08290.19470.029*
H20B0.17770.16370.14910.029*
C210.0841 (3)0.0953 (3)0.15005 (9)0.0166 (6)
H210.11740.15680.12440.020*
C220.0536 (3)0.0461 (3)0.13073 (9)0.0156 (5)
H220.03080.10580.15760.019*
C230.1020 (4)0.0685 (2)0.09833 (8)0.0184 (6)
H23A0.21700.07030.11500.022*
H23B0.10690.00310.07480.022*
C240.0613 (3)0.2077 (3)0.07660 (9)0.0174 (6)
H24A0.14720.27630.08770.021*
H24B0.07030.20230.04300.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02565 (13)0.02078 (12)0.02645 (13)0.00045 (12)0.00377 (13)0.00517 (11)
C10.0273 (18)0.0216 (13)0.0184 (14)0.0042 (12)0.0029 (11)0.0008 (11)
C20.0125 (13)0.0209 (13)0.0198 (14)0.0004 (11)0.0018 (11)0.0013 (11)
C30.0215 (13)0.0207 (12)0.0156 (12)0.0007 (12)0.0015 (14)0.0002 (10)
C40.0148 (13)0.0203 (12)0.0169 (12)0.0011 (10)0.0006 (12)0.0010 (13)
C50.0177 (15)0.0284 (15)0.0258 (16)0.0027 (11)0.0000 (11)0.0082 (12)
C60.0133 (11)0.0166 (13)0.0155 (11)0.0001 (12)0.0003 (10)0.0027 (9)
C70.0125 (13)0.0173 (13)0.0150 (13)0.0006 (11)0.0004 (11)0.0007 (10)
C80.0208 (15)0.0229 (14)0.0196 (16)0.0036 (11)0.0036 (12)0.0038 (11)
C90.0101 (12)0.0223 (13)0.0201 (13)0.0011 (13)0.0003 (13)0.0032 (10)
C100.0151 (15)0.0228 (13)0.0223 (14)0.0009 (11)0.0023 (12)0.0019 (11)
C110.0144 (13)0.0151 (13)0.0180 (13)0.0021 (10)0.0041 (11)0.0013 (11)
C120.0184 (13)0.0169 (12)0.0278 (14)0.0013 (12)0.0053 (11)0.0030 (13)
C130.0326 (19)0.0209 (14)0.0389 (18)0.0089 (13)0.0092 (15)0.0002 (13)
C140.0150 (13)0.0214 (14)0.0321 (15)0.0004 (11)0.0032 (11)0.0099 (13)
C150.0285 (15)0.0217 (13)0.0236 (14)0.0023 (15)0.0098 (15)0.0064 (11)
C160.0326 (17)0.0320 (16)0.0254 (16)0.0009 (14)0.0012 (14)0.0102 (13)
C170.0218 (15)0.0290 (16)0.0343 (17)0.0024 (12)0.0024 (13)0.0150 (13)
C180.0205 (13)0.0162 (11)0.0378 (15)0.0044 (14)0.0080 (12)0.0103 (12)
C190.0254 (15)0.0214 (14)0.0439 (18)0.0079 (14)0.0070 (14)0.0090 (15)
C200.0151 (15)0.0234 (14)0.0331 (16)0.0040 (11)0.0063 (12)0.0059 (12)
C210.0129 (14)0.0166 (12)0.0203 (13)0.0005 (10)0.0044 (11)0.0001 (10)
C220.0113 (12)0.0155 (13)0.0202 (14)0.0018 (10)0.0022 (11)0.0046 (11)
C230.0147 (14)0.0220 (13)0.0184 (13)0.0029 (12)0.0040 (12)0.0009 (10)
C240.0116 (12)0.0237 (14)0.0168 (13)0.0018 (10)0.0005 (10)0.0018 (11)
Geometric parameters (Å, º) top
Br1—C11.956 (3)C12—C141.542 (3)
C1—C21.511 (4)C12—C181.555 (4)
C1—H1A0.9900C13—H13A0.9800
C1—H1B0.9900C13—H13B0.9800
C2—C31.528 (3)C13—H13C0.9800
C2—H2A0.9900C14—C151.514 (4)
C2—H2B0.9900C14—H14A0.9900
C3—C41.538 (3)C14—H14B0.9900
C3—H3A0.9900C15—C161.515 (4)
C3—H3B0.9900C15—H15A0.9900
C4—C61.530 (3)C15—H15B0.9900
C4—C51.542 (3)C16—C171.526 (4)
C4—H41.0000C16—H16A0.9900
C5—H5A0.9800C16—H16B0.9900
C5—H5B0.9800C17—C181.534 (4)
C5—H5C0.9800C17—H17A0.9900
C6—C71.553 (3)C17—H17B0.9900
C6—C241.565 (3)C18—C191.536 (4)
C6—H61.0000C18—H181.0000
C7—C91.535 (4)C19—C201.530 (4)
C7—C81.539 (3)C19—H19A0.9900
C7—C221.541 (4)C19—H19B0.9900
C8—H8A0.9800C20—C211.525 (3)
C8—H8B0.9800C20—H20A0.9900
C8—H8C0.9800C20—H20B0.9900
C9—C101.537 (3)C21—C221.529 (4)
C9—H9A0.9900C21—H211.0000
C9—H9B0.9900C22—C231.519 (4)
C10—C111.526 (4)C22—H221.0000
C10—H10A0.9900C23—C241.550 (3)
C10—H10B0.9900C23—H23A0.9900
C11—C211.545 (3)C23—H23B0.9900
C11—C121.560 (4)C24—H24A0.9900
C11—H111.0000C24—H24B0.9900
C12—C131.527 (4)
C2—C1—Br1112.46 (18)C12—C13—H13A109.5
C2—C1—H1A109.1C12—C13—H13B109.5
Br1—C1—H1A109.1H13A—C13—H13B109.5
C2—C1—H1B109.1C12—C13—H13C109.5
Br1—C1—H1B109.1H13A—C13—H13C109.5
H1A—C1—H1B107.8H13B—C13—H13C109.5
C1—C2—C3110.9 (2)C15—C14—C12114.8 (2)
C1—C2—H2A109.5C15—C14—H14A108.6
C3—C2—H2A109.5C12—C14—H14A108.6
C1—C2—H2B109.5C15—C14—H14B108.6
C3—C2—H2B109.5C12—C14—H14B108.6
H2A—C2—H2B108.1H14A—C14—H14B107.5
C2—C3—C4114.1 (2)C16—C15—C14110.8 (2)
C2—C3—H3A108.7C16—C15—H15A109.5
C4—C3—H3A108.7C14—C15—H15A109.5
C2—C3—H3B108.7C16—C15—H15B109.5
C4—C3—H3B108.7C14—C15—H15B109.5
H3A—C3—H3B107.6H15A—C15—H15B108.1
C6—C4—C3110.0 (2)C15—C16—C17111.0 (2)
C6—C4—C5113.3 (2)C15—C16—H16A109.4
C3—C4—C5109.7 (2)C17—C16—H16A109.4
C6—C4—H4107.9C15—C16—H16B109.4
C3—C4—H4107.9C17—C16—H16B109.4
C5—C4—H4107.9H16A—C16—H16B108.0
C4—C5—H5A109.5C16—C17—C18112.2 (2)
C4—C5—H5B109.5C16—C17—H17A109.2
H5A—C5—H5B109.5C18—C17—H17A109.2
C4—C5—H5C109.5C16—C17—H17B109.2
H5A—C5—H5C109.5C18—C17—H17B109.2
H5B—C5—H5C109.5H17A—C17—H17B107.9
C4—C6—C7119.9 (2)C19—C18—C17111.3 (2)
C4—C6—C24112.27 (19)C19—C18—C12111.5 (2)
C7—C6—C24103.01 (19)C17—C18—C12112.9 (2)
C4—C6—H6107.0C19—C18—H18106.9
C7—C6—H6107.0C17—C18—H18106.9
C24—C6—H6107.0C12—C18—H18106.9
C9—C7—C8110.8 (2)C20—C19—C18111.8 (2)
C9—C7—C22107.0 (2)C20—C19—H19A109.3
C8—C7—C22112.3 (2)C18—C19—H19A109.3
C9—C7—C6116.4 (2)C20—C19—H19B109.3
C8—C7—C6109.7 (2)C18—C19—H19B109.3
C22—C7—C6100.12 (19)H19A—C19—H19B107.9
C7—C8—H8A109.5C19—C20—C21112.4 (2)
C7—C8—H8B109.5C19—C20—H20A109.1
H8A—C8—H8B109.5C21—C20—H20A109.1
C7—C8—H8C109.5C19—C20—H20B109.1
H8A—C8—H8C109.5C21—C20—H20B109.1
H8B—C8—H8C109.5H20A—C20—H20B107.8
C7—C9—C10111.9 (2)C22—C21—C20111.4 (2)
C7—C9—H9A109.2C22—C21—C11108.0 (2)
C10—C9—H9A109.2C20—C21—C11112.1 (2)
C7—C9—H9B109.2C22—C21—H21108.4
C10—C9—H9B109.2C20—C21—H21108.4
H9A—C9—H9B107.9C11—C21—H21108.4
C11—C10—C9113.4 (2)C23—C22—C21118.7 (2)
C11—C10—H10A108.9C23—C22—C7103.9 (2)
C9—C10—H10A108.9C21—C22—C7115.3 (2)
C11—C10—H10B108.9C23—C22—H22106.0
C9—C10—H10B108.9C21—C22—H22106.0
H10A—C10—H10B107.7C7—C22—H22106.0
C10—C11—C21111.1 (2)C22—C23—C24103.7 (2)
C10—C11—C12114.4 (2)C22—C23—H23A111.0
C21—C11—C12112.4 (2)C24—C23—H23A111.0
C10—C11—H11106.1C22—C23—H23B111.0
C21—C11—H11106.1C24—C23—H23B111.0
C12—C11—H11106.1H23A—C23—H23B109.0
C13—C12—C14107.5 (2)C23—C24—C6106.6 (2)
C13—C12—C18110.1 (2)C23—C24—H24A110.4
C14—C12—C18107.8 (2)C6—C24—H24A110.4
C13—C12—C11110.9 (2)C23—C24—H24B110.4
C14—C12—C11111.8 (2)C6—C24—H24B110.4
C18—C12—C11108.8 (2)H24A—C24—H24B108.6
Br1—C1—C2—C3172.81 (18)C16—C17—C18—C19179.2 (2)
C1—C2—C3—C4179.6 (2)C16—C17—C18—C1254.6 (3)
C2—C3—C4—C6165.3 (2)C13—C12—C18—C1964.9 (3)
C2—C3—C4—C569.4 (3)C14—C12—C18—C19178.1 (2)
C3—C4—C6—C7175.8 (2)C11—C12—C18—C1956.8 (3)
C5—C4—C6—C752.6 (3)C13—C12—C18—C17168.9 (2)
C3—C4—C6—C2463.2 (3)C14—C12—C18—C1752.0 (3)
C5—C4—C6—C24173.6 (2)C11—C12—C18—C1769.4 (3)
C4—C6—C7—C979.4 (3)C17—C18—C19—C2070.3 (3)
C24—C6—C7—C9155.1 (2)C12—C18—C19—C2056.7 (3)
C4—C6—C7—C847.5 (3)C18—C19—C20—C2153.6 (3)
C24—C6—C7—C878.0 (2)C19—C20—C21—C22172.9 (2)
C4—C6—C7—C22165.7 (2)C19—C20—C21—C1151.7 (3)
C24—C6—C7—C2240.2 (2)C10—C11—C21—C2253.7 (3)
C8—C7—C9—C1068.8 (3)C12—C11—C21—C22176.6 (2)
C22—C7—C9—C1053.9 (3)C10—C11—C21—C20176.8 (2)
C6—C7—C9—C10164.8 (2)C12—C11—C21—C2053.5 (3)
C7—C9—C10—C1155.0 (3)C20—C21—C22—C2353.6 (3)
C9—C10—C11—C2154.2 (3)C11—C21—C22—C23177.1 (2)
C9—C10—C11—C12177.2 (2)C20—C21—C22—C7177.7 (2)
C10—C11—C12—C1362.0 (3)C11—C21—C22—C758.8 (3)
C21—C11—C12—C1365.9 (3)C9—C7—C22—C23169.8 (2)
C10—C11—C12—C1457.9 (3)C8—C7—C22—C2368.4 (3)
C21—C11—C12—C14174.1 (2)C6—C7—C22—C2347.9 (2)
C10—C11—C12—C18176.8 (2)C9—C7—C22—C2158.6 (3)
C21—C11—C12—C1855.3 (3)C8—C7—C22—C2163.2 (3)
C13—C12—C14—C15172.6 (2)C6—C7—C22—C21179.6 (2)
C18—C12—C14—C1553.9 (3)C21—C22—C23—C24165.6 (2)
C11—C12—C14—C1565.5 (3)C7—C22—C23—C2436.0 (2)
C12—C14—C15—C1656.6 (3)C22—C23—C24—C610.0 (3)
C14—C15—C16—C1754.7 (3)C4—C6—C24—C23149.5 (2)
C15—C16—C17—C1854.7 (3)C7—C6—C24—C2319.2 (2)

Experimental details

Crystal data
Chemical formulaC24H41Br
Mr409.48
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.4797 (2), 9.9094 (3), 29.3371 (8)
V3)2174.5 (1)
Z4
Radiation typeMo Kα
µ (mm1)1.90
Crystal size (mm)0.30 × 0.10 × 0.03
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.606, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
15233, 4988, 4263
Rint0.048
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.075, 0.99
No. of reflections4988
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.28
Absolute structureFlack (1983), 2124 Friedel pairs
Absolute structure parameter0.018 (8)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We are grateful to the late Professor Charles J. W. Brooks of Glasgow University for the gift of 24-hydroxy-5β-cholane. We thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCox, P. J., Nahar, L. & Turner, A. B. (2001). J. Chem. Res. (S), pp. 162–164.  CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1124
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds